Constructive Authorization Logics

Frank Pfenning

Carnegie Mellon University

Invited Talk
Workshop on Foundations of Computer Security (FCS'05)
Chicago, Illinois, June 30-July 1, 2005

Joint work with Deepak Garg and Kevin Watkins

Work in progress!
Outline

• Background
• Towards Universal Access Control
• Desiderata for Authorization
• Proof-Carrying Authorization
• Logic Design Principles
• Intuitionistic Authorization Logic
• Cut Elimination
• Independence and Non-Interference
• Most Closely Related Work
• Conclusion
Authentication and Authorization

- **Authentication**: who made a statement
 - Public key cryptography
 - Signed certificates

- **Authorization**: who should gain access to resource
 - Access control lists
 - Trust management
 - Relies on authentication
Authorization Logics

- **Authorization logics** provide a high-level, formal approach to access control in distributed systems

- Unifying basis for “EEE”
 - *Expressing* access control policy
 - *Enforcing* access control policy
 - *Exploring* consequences of access control policy

- Abstract away from
 - Mechanisms for authentication
 - Communication media and encryption
 - Protocols
Our Project

- Distributed System Security via Logical Frameworks
- PIs: Lujo Bauer, Mike Reiter, Frank Pfenning
- Supported by ONR N00014-04-1-0724 and NSF Cybertrust Center
- Using *smart phones* as “universal” access control device
 - Office door, computer (right now!)
Sample Scenario

- Office door lock equipped with Bluetooth device
- Principal with smart phone approaches door
- Mutual discovery protocol
- Authorization dialog
- Door opens (or not)
- Implemented on CyLab floor, CiC, CMU
Sample Access Control Policy

- I can access my office
- The department head can access my office
- My secretary can access my office
- I trust my secretary to let others into my office
- My students can access my office
- The floor marshal can access my office
- I trust my wife in all things
- Anyone may ask me to get into my office
Desiderata for Authorization

- Expression, Enforcement, Exploration (EEE)
 - Expressive policy language
 - Simple enforcement of policies
 - Feasible reasoning about policies

- Extensibility

- Small trusted computing base

- Smooth integration of authentication

- Work with distributed information
Proof-Carrying Authorization

- Proof-carrying authorization
 [Appel & Felten’99] [Bauer’03]
- Express policy in authorization logic
- Prove right to access resource within logic
- Transmit actual proof object to resource
- Check proof object to grant access
- Authentication via signed statements
- First demonstration with web browser
 [Bauer, Schneider, Felten’02]
Scenario Revisited

- WeH 8117 is Frank’s office
- WeH 8117 equipped with Bluetooth device
- Walk through two simple exchanges
- Illustrate basic ideas
- Ignoring discovery
- Ignoring freshness, nonces, etc.
- Handled in implementation
"I can open my office"

- Policy: *I can open my office*
- Frank approaches WeH 8117 with smart phone
- WeH 8117 challenges with

 \(? : \text{frank says open}(\text{frank}, \text{weh.8117})\)

- Policy embodied in challenge
- Frank signs

 \(\text{frank says open}(\text{frank}, \text{weh.8117})\)

 to obtain c38d9103294
"I can open my office"

- Frank replies
 \[x509(\text{c38d9103294})\]
- WeH 8117 checks (trivial) proof
 \[x509(\text{c38d9103294}) : \text{frank says open(frank, weh.8117)}\]
- Door opens
- Proof checking requires certificate checking for authentication
"My secretary can open my office"

- Policy: *My secretary can open my office*
- Policy expressed as policy axiom
 \[r1 : \text{frank says} \]
 \[\forall S. \text{depthead says secretary}(\text{frank}, S) \]
 \[\supset \text{frank says open}(S, \text{weh.8117}) \]
- Policy known to Jenn, Frank, and WeH 8117
- Jenn approaches WeH 8117 with smart phone
- WeH 8117 challenges with
 \[\text{frank says open}(\text{jenn}, \text{weh.8117}) \]
"My secretary can open my office"

- Jenn asks database (silent phone call)

 ? : depthead says secretary(frank, jenn)

- Database replies with signed certificate as proof

 x509(cdksi92899) : depthead says secretary(frank, jenn)

- Jenn assembles and sends proof

 r1(x509(cdksi92899))

- WeH 8117 checks

 r1(x509(cdksi92899)) : frank says open(jenn, weh.8117)

- Door opens
"My secretary can open my office"

- Could also relativize "my office"

\[
\forall P. \forall O. \text{depthead says office}(P, O) \supset \text{office}(P, O)
\]
\[
\forall P. \forall O. \text{office}(P, O) \supset \text{open}(P, O)
\]

- Simplified proof expression here for brevity
- Knowledge can be shared and distributed since signed
- Certificates and proofs can be cached
- Checking certificates checks expiration
Authorization Logic Implementation

- Representation in Logical Framework
 - Logic: LF signature
 - Policy: LF signature of restricted form
 - Proof: LF object
- Proof generation [Bauer, Garriss, Reiter’05]
 - Extensive caching to minimize communication
 - Distributed certifying prover
- Proof checking
 - X.509 certificate checking
 - Proof checking as LF type checking
Some Authorization Logic Issues

- Intuitionistic or classical?
- Laws for “says” modality?
- Set of logical connectives?
- Propositional or first-order or higher-order?
- Decidable?
- Monotonic?
- Temporal?
Logic Design Principles

• Proof-theoretic semantics
 [Martin-Löf’83] [Pf & Davies’01]
 • Separating judgments from propositions
 • Characterize connectives and modalities via their rules
 • Cut elimination and identity principles
 • Focusing [Andreoli’92]

• Consequences
 • Independence of logical connectives from each other
 • Intuitive interpretation
 • Amenable to meta-theoretic analysis (exploration!)
 • Open-ended design (extensibility!)
Judgments

- **Judgments** are objects of knowledge
- **Evidence** for judgments is given by deductions
- Basic judgments
 - $A \text{ true}$ — proposition A is true
 - $P \text{ aff } A$ — principal P affirms proposition A
- Logical connectives are defined by their *introduction* and *elimination* rules
- Must match in certain ways to be meaningful
- Here, truth is almost subsidiary, because affirmation expresses intent
Hypothetical Judgments

- **Hypothetical judgments** for reasoning from assumptions
 \[J_1, \ldots, J_n \vdash J \]

- Will freely reorder assumptions
- **Hypothesis rule**
 \[\Gamma, J \vdash J \]

- **Substitution principle**
 If \(\Gamma \vdash J \) and \(\Gamma, J \vdash J' \) then \(\Gamma \vdash J' \).

- Fixes meaning of hypothetical judgments
Implication

• Introduction rule

\[\frac{\Gamma, A \text{ true} \vdash B \text{ true}}{\Gamma \vdash A \supset B \text{ true}} \vdash I \]

• Elimination rule

\[\frac{\Gamma \vdash A \supset B \text{ true} \quad \Gamma \vdash A \text{ true}}{\Gamma \vdash B \text{ true}} \vdash E \]
Local Soundness

- An introduction followed by any elimination of a connective can be reduced away
- Shows elimination rules are not too strong

\[
\frac{\varepsilon}{\Gamma, A \text{ true} \vdash B \text{ true}} \quad \frac{\Gamma \vdash A \supset B \text{ true}}{\Gamma \vdash A \text{ true}} \quad \frac{\Gamma \vdash A \text{ true}}{\Gamma \vdash B \text{ true}} \quad \frac{\Gamma \vdash B \text{ true}}{\Gamma \vdash B \text{ true}}
\]

\[\varepsilon' \Rightarrow_R \Gamma \vdash B \text{ true}\]

- \(\varepsilon'\) constructed by substituting \(\mathcal{D}\) in \(\varepsilon\)
- Possible by substitution principle
Local Completeness

- There is a way to apply eliminations to a compound proposition so we can reintroduce the proposition from the results.
- Shows elimination rules are not too weak.

\[
\frac{\Gamma, A \text{true} \vdash A \supset B \text{true} \quad \Gamma, A \text{true} \vdash A \text{true}}{\Gamma \vdash A \supset B \text{true} \quad \Gamma \vdash A \supset B \text{true} \quad \vdash E}
\]

- \(\mathcal{D}'\) constructed by weakening from \(\mathcal{D}\)
Truth and Affirmation

- Define *affirmation judgment* relative to truth
- If A is true then any P affirms A

$$
\Gamma \vdash A \ true \\
\Gamma \vdash P \ aff \ A
$$

- If P affirms A, then we can assume A is true, but only while establishing an affirmation by P

$$
\text{If } \Gamma \vdash P \ aff \ A \ \text{and } \Gamma, A \ true \vdash P \ aff \ C \\
\text{then } \Gamma \vdash P \ aff \ C
$$
Internalizing Judgments

- Implication internalizes hypothetical reasoning
- “says” modality internalizes affirmation
- Introduction rule

\[
\Gamma \vdash P \aff A \\
\Gamma \vdash (P \text{ says } A) \text{ true} \quad \text{saysI}
\]

- Elimination rule

\[
\Gamma \vdash (P \text{ says } A) \text{ true} \quad \Gamma, A \text{ true} \vdash P \aff C \\
\Gamma \vdash P \aff C \quad \text{saysE}
\]
Local Soundness

• Reduce introduction followed by elimination

\[\Gamma \vdash P \text{aff} A \]
\[\Gamma \vdash (P \text{ says } A) \text{ true} \]
\[\Gamma \vdash P \text{ aff } C \]

\[\Gamma, A \text{ true } \vdash P \text{ aff } C \]

\[\Gamma \vdash P \text{ aff } C \]

\[\Rightarrow R \quad \Gamma \vdash P \text{ aff } C \]

• \(\mathcal{E}' \) is constructed from \(\mathcal{D} \) and \(\mathcal{E} \)

• Exists by definition of affirmation
Local Completeness

- Eliminate to re-introduce

\[D \]
\[\Gamma \vdash (P \text{ says } A) \text{ true} \quad \Rightarrow_E \]
\[G \]
\[\Gamma \vdash (P \text{ says } A) \text{ true} \quad \Gamma, A \text{ true} \vdash A \text{ true} \]
\[\Gamma, A \text{ true} \vdash P \text{ aff } A \quad \text{says } E \]
\[\Gamma \vdash P \text{ aff } A \quad \Gamma \vdash (P \text{ says } A) \text{ true} \quad \text{says } I \]
Some Consequences

• Principals are isolated: they only share truth!
• Dependencies only from policy axioms

\[
\begin{align*}
\text{frank says} & \\
\forall S. \text{depthead says secretary}(\text{frank}, S) & \supset \text{frank says open}(S, \text{weh.8117})
\end{align*}
\]
Affirmation as Indexed Monad

- P-indexed family of strong monads
 - $\vdash A \supset (P \text{ says } A)$
 - $\vdash (P \text{ says } A) \supset (A \supset (P \text{ says } C)) \supset (P \text{ says } C)$
 - $\vdash (A \supset B) \supset ((P \text{ says } A) \supset (P \text{ says } B))$
 - $\vdash (P \text{ says } (P \text{ says } A)) \supset (P \text{ says } A)$

- Strong monads used in functional programming to isolate effects

- P says A corresponds to $\Diamond \Box A$ from *lax logic*
 [Benton, Bierman, de Paiva’98]

- Decomposes into $\Diamond \Box A$ from *modal logic* CS4
 [Pf. & Davies’01]
Other Connectives

• Judgmental foundation allows modular addition of new connectives by introductions and eliminations

• Quantifiers are also straightforward

• Some consequences:
 • $\vdash ((P \text{ says } A) \lor (P \text{ says } B)) \supset (P \text{ says } (A \lor B))$
 • $\not\vdash (P \text{ says } (A \lor B)) \supset ((P \text{ says } A) \lor (P \text{ says } B))$
 • $\vdash \bot \supset (P \text{ says } \bot)$
 • $\not\vdash (P \text{ says } \bot) \supset \bot$

• Last property is critical, since principals are not constrained in what they affirm
Cut Elimination

• How do we prove $\not\vdash (P \text{ says } \bot) \supset \bot$?
• Generalize from local soundness and local completeness to global properties
• Via cut-free atomic sequent calculus
• Show cut and identity principle are admissible
• Introduce new basic judgment
 \(A \ hyp \) — proposition \(A \) is hypothesis

• Use only on left-hand side of hypothetical
 \(A_1 \ hyp, \ldots, A_n \ hyp \vdash A \ true \) (write: \(\Delta \ \Rightarrow \ A \ true \))
 \(A_1 \ hyp, \ldots, A_n \ hyp \vdash P \ aff \ A \) (write: \(\Delta \ \Rightarrow \ P \ aff \ A \))

• Judgmental rules

\[
\begin{align*}
\Delta, a \ hyp & \Rightarrow a \ true \\
\Delta \Rightarrow A \ true \\
\Delta \Rightarrow P \ aff \ A
\end{align*}
\]
Sequent Rules

- Right rule from intro, left rule from elim
- Omit (implicit) contraction
- J either C true or P aff C

\[
\begin{align*}
\Delta, A \text{ hyp } & \Rightarrow B \text{ true } & \Delta, B \text{ hyp } & \Rightarrow J \\
\Delta \Rightarrow A \supset B \text{ true } & \supset R & \Delta, A \supset B \text{ hyp } & \Rightarrow J \quad \supset L \\
\Delta \Rightarrow P \text{ aff } A & \Rightarrow R & \Delta \Rightarrow P \text{ aff } C & \Rightarrow L \\
\Delta \Rightarrow (P \text{ says } A) \text{ true } & \Rightarrow R & \Delta, (P \text{ says } A) \text{ hyp } & \Rightarrow P \text{ aff } C
\end{align*}
\]
Cut and Identity

- Cut (global soundness)
 \[\text{If } \Delta \Rightarrow A \text{ true and } \Delta, A \text{ hyp } \Rightarrow J \text{ then } \Delta \Rightarrow J \]

- Proof by simple nested structural induction on \(A \) and the two given derivations

- Identity (global completeness)
 \[\Delta, A \text{ hyp } \Rightarrow A \text{ true for any proposition } A \]

- Proof by simple structural induction on \(A \)

- \(\Gamma \vdash J \) iff \(\Gamma \Rightarrow J \) (from cut, with abuse of notation)
Some Easy Consequences

• Subformula property
• Immediate independence results
 • \(\not\Rightarrow \bot \text{ true} \)
 • \(\not\Rightarrow P \text{ aff} \bot \)
 • \((P \text{ says } \bot) \text{ hyp} \not\Rightarrow \bot \text{ true} \)
 • \(A \supset (P \text{ says } B) \text{ hyp} \not\Rightarrow (P \text{ says } (A \supset B)) \text{ true} \)

• Simple non-interference

\(\text{If } \Delta \text{ and } J \text{ do not mention } P, \text{ then } \)
\(\Delta, P \text{ says } A_1 \text{ hyp}, \ldots, P \text{ says } A_n \text{ hyp } \Rightarrow J \text{ iff } \)
\(\Delta \Rightarrow J. \)

Reasoning About Logic and Policies

- We have formally verified cut in Twelf (proof explicitly supplied) [Pf & Schürmann’99, Pf’00, Garg’05]
- Some independence results are easily verified formally
- Conjecture: these can be proven automatically [Pf & Schürmann’98]
- Deeper reasoning about policies (= sets of axioms) is tricky
 - Requires (at least) focusing
 - Clean proof theory may enable some results
Expressive Power

- Easy
 - Groups and roles
 - Delegation of specific rights
 - Joint authorization

- Slightly more complicated (not yet verified)
 - Full delegation
 - Creating new principals
Intuitionistic vs Classical Logic

• Intuitionistic logic as logic of explicit evidence
• Sample classical, but not intuitionistic truth
 [Abadi’03]

\[(P \text{ says } A) \supset (A \lor (P \text{ says } B))\] for any \(B\)

• Classical logic is *descriptive*, arises from structure
• Intuitionistic logic is *creative*, arises from properties
• Authorization is not given explicitly by a structure, but by properties (non-interference)
Authorization Logic Issues, Revisited

- Intuitionistic or classical? (intuitionistic)
- Laws for \texttt{says} modality? (indexed family of strong monads)
- Set of logical connectives? (open-ended)
- Propositional or first-order or higher-order? (first-order)
- Decidable? (no, fragment tractable?)
- Monotonic? (yes)
- Temporal? (no)
Monotonicity

- Nonmononicity dubious in distributed setting
- Instead, for access revocation:
 - Short-lived certificates
 - `notRevoked` predicate
 - External reasoning about time
- Ephemeral capabilities (future work)
 - Digital rights management
 - Electronic payment
 - Bounded delegation
 - Via *linear connectives in authorization logic?*
Most Closely Related Work

• [Abadi, Burrows, Lampson, Plotkin’93] propositional, axiomatic, rich calculus of principals

• [Appel & Felten’99] [Bauer’03] (PCA) classical, higher-order, no analysis of modalities

• [De Treville’02] (Binder) datalog, decidable, modality not classified

• [Rueß & Shankar’03] (Cyberlogic) intuitionistic, unjustified modal laws, semi-axiomatic style, more ambitious scope (protocols), proof-carrying

• [Abadi, LICS 2003] structured overview, further references
Desiderata Revisited

- Expression, Enforcement, Exploration (EEE)
 - Expressive policy language
 - Simple enforcement of policies
 - Feasible reasoning about policies

- Extensibility

- Small trusted computing base

- Smooth integration of authentication

- Work with distributed information
Conclusion

- Design of authorization logic as modal logic
 - Judgmental, constructive, open-ended, modular
 - Affirmation as indexed strong monad
 - Basic cut elimination formally verified
- Next
 - Extend verification to more connectives
 - Stronger non-interference properties
 - Cell-phone implementation (currently higher-order logic)
- Eventually:
 - Linear authorization logic for ephemeral capabilities (digital rights, electronic payments, bounded delegation)