
Refinement Types for ML

Tim Freeman
tsf@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

Frank Pfenning
fp@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

Abstract

We describe a refinement of ML’s type system allow-
ing the specification of recursively defined subtypes of
user-defined datatypes. The resulting system of refine-
ment types preserves desirable properties of ML such as
decidability of type inference, while at the same time
allowing more errors to be detected at compile-time.
The type system combines abstract interpretation with
ideas from the intersection type discipline, but remains
closely tied to ML in that refinement types are given
only to programs which are already well-typed in ML.

1 Introduction

Standard ML [MTH90] is a practical programming lan-
guage with higher-order functions, polymorphic types,
and a well-developed module system. It is a statically
typed language, which allows the compiler to detect
many kinds of errors at compile time, thus leading to
more reliable programs. Type inference is decidable and
every well-typed expression has a principal type, which
means that the programmer is free to omit type decla-
rations (almost) anywhere in a program.

In this paper we summarize the design of a system
of subtypes for ML which preserves the desirable prop-
erties listed above, while at the same time providing
for specification and inference of significantly more pre-
cise type information. We call the resulting types re-
finement types, as they can be thought of as refining
user-defined data types of ML. In particular, we do
not extend the language of programs for ML (only the
language of types) and, furthermore, we provide refined
type information only for programs which are already
well-typed in ML. In this preliminary report we only
deal with an extension of Mini-ML [CDDK86], but we
believe that the ideas described here can be further ex-

To appear in ACM SIGPLAN 1991 Conference on Pro-
gramming Language Design and Implementation.

tended to the full Standard ML language.
To see the opportunity to improve ML’s type system,

consider the following function which returns the last
cons cell in a list:

datatype α list = nil | cons of α * α list

fun lastcons (last as cons(hd,nil)) = last

| lastcons (cons(hd,tl)) = lastcons tl

We know that this function will be undefined when
called on an empty list, so we would like to obtain a
type error at compile-time when lastcons is called with
an argument of nil. Using refinement types this can be
achieved, thus preventing runtime errors which could be
caught at compile-time. Similarly, we would like to be
able to write code such as

case lastcons y of

cons(x,nil) => print x

without getting a compiler warning. However, the ML
type system does not distinguish singleton lists from
lists in general, so when compiling this case statement
ML compilers will issue a warning because it does not
handle all possible forms of lists. Here, refinement types
allow us to eliminate unreachable cases.

Attempting to take such refined type information into
account at compile time can very quickly lead to un-
decidable problems. The key idea which allows us to
circumvent undecidability is that subtype distinctions
(such as singleton lists as a subtype of arbitrary lists)
must be made explicitly by the programmer in the form
of recursive type declarations. In the example above,
we can declare the refinement type of singleton lists as

datatype α list = nil | cons of α * α list

rectype α singleton = cons (α, nil)

This rectype declaration instructs the type checker to
distinguish singleton lists from other lists. The datatype
constructor names cons and nil in the right-hand side
of the rectype declaration stand for subtypes which
one can think of as subsets. At any type α the type

1

expression nil can be interpreted as the set {nil} and
cons(X,Y) stands for {l | l = cons(x, y) ∧ x ∈ X ∧ y ∈
Y }.

We can think of the refinement type inference al-
gorithm as performing abstract interpretation over a
programmer-specified finite lattice of refinements of
each ML type. Finiteness is important, since it is nec-
essary for the decidability of refinement type inference
in our system. Since type inference can only know
that a list has one element if its tail is nil, it also needs
to create a type for the empty list; suppose the name
of this type is ?nil. With this notation our abstract
interpretation works over the following lattice:

⊥

α singleton α ?nil

α singleton ∨ α ?nil

α list

@
@@

�
�
�

@
@@

�
��

To perform the abstract interpretation, the type sys-
tem needs to know the behavior of datatype construc-
tors on these abstract domains. This can be expressed
through refinement types given to each constructor. For
example, cons applied to anything of type α and nil

will return a singleton list:

cons : (α ∗ α ?nil) → α singleton

The constructor cons also has other types, such as:

cons : (α ∗ α singleton)→ α list

cons : (α ∗ α list) → α list

In our refinement type system, we express the principal
type for cons by using the intersection operator “∧” to
combine all these types, resulting in:

cons : (α ∗ α ?nil) → α singleton ∧
(α ∗ α singleton)→ α list ∧
(α ∗ α list) → α list

This type for cons can be generated automatically from
the rectype declaration for singleton above.

We borrow the operator ∧ from the intersection type
discipline [RDR88], though we use it in a very restricted
way here (we can only intersect types which are refine-
ments of the same ML type). Type inference for inter-
section types, however, is in general undecidable. Thus,
for them to be useful in a programming language, some

explicit type annotations are required, as, for exam-
ple, in Forsythe [Rey88]. Here we avoid explicit typing,
while still retaining decidability, by allowing only the in-
tersection of types which are subtypes of a common ML
type. It is also this restriction which makes the combi-
nation of polymorphism and intersection types simple
and direct (see [Pie89] for an investigation in a more
general context).

As we will see later, we also require a form of union
types so we can assign more accurate types to case

statements. The inspiration for this and for the subtyp-
ing rules for function types (sketched in Section 4) are
due to Pierce [Pie90].

In many examples, subtypes which could be specified
explicitly as refinement types are implicit in current ML
programs. For example, when we consider bitstrings to
represent natural numbers, we have in mind a “stan-
dard form” of representation without leading zeros, and
we would like to guarantee that functions such as ad-
dition and multiplication return standard forms when
given standard forms. As another example, consider the
representation of terms in a λ-calculus. Some natural
manipulations of these terms will only work on terms
in head normal form—a property which can easily be
described via a refinement type.

Thus, using refinement types, the programmer is en-
couraged to make explicit the distinctions which cur-
rently must remain implicit or informal in code com-
ments (such as standard form or head normal form in
the examples above). Moreover, type errors can be de-
scribed in a meaningful way if the type checker deals
with the same quantities that the programmer under-
stands. Thus, refinement types can increase the benefits
of compile-time type checking and inference as already
present in ML, without forcing the programmer to take
advantage of them (any legal ML program continues to
be legal if no refinements are specified). Finally, the
fact that we tightly control the lattices making up the
abstract domains makes type inference more practical
and efficient.

Two examples of subtypes which cannot be speci-
fied as refinement types in our system are lists with-
out repeated elements (to efficiently represent sets), and
closed terms in a λ-calculus. Intuitively, this is because
these sets cannot be described by regular expressions.
In fact, our rectype declarations (with the proper re-
strictions, see Section 3) have a close connection to reg-
ular expressions since our declarations specify so-called
regular tree sets for which many well-understood algo-
rithms exist [GS84]. Regular tree sets have also shown
themselves to be useful in the context of typed logic
programming [Mis84, YFS91].

One interesting aspect of our proposal is that it
merges two views which are traditionally considered

2

as opposites: should recursive types be generative (as
the ML datatype construct), or should they be non-
generative (as, for example, in Quest [Car89] in func-
tional programming or in typed HiLog [YFS91] in logic
programming). Our conclusion is that generative types
should be the principal notion, but that non-generative
recursively defined subtypes can make a type system sig-
nificantly more powerful and useful.

The remainder of the paper is organized as follows.
In Section 2 we introduce the syntax of our language,
following the presentation of Mini-ML [CDDK86]. In
Section 3 we show how recursive refinement type decla-
rations can be used to generate finite lattices defining
the domain of abstract interpretation for type inference.
These lattices of values induce subtype relationships on
the function types, as we describe in Section 4. Poly-
morphism in ML requires a similar polymorphism for
refinement types which we discuss in Section 5. We
then present the type inference algorithm in form of
some inference rules in Section 6. Finally, in Section 7
we discuss some aspects of implementation and future
work.

2 The Language

In this section we define our extension to the language
of types as present in ML and give some examples. The
next three sections will then discuss the refinement type
system and the problems of type checking and inference
in more detail.

While we hope to eventually be able to extend all of
Standard ML by rectype declarations, we confine our-
selves in this paper to the functional portion of Standard
ML. Moreover, for the purpose of this presentation we
ignore product types and multi-arity type constructors.
They can be added to the language in a straightforward
way and, moreover, are not crucial in this context since
functions with multiple arguments can be curried. In
order to keep the examples in this paper intuitive and
close to ML, we generally follow ML syntax. In order to
give a manageable description of type inference in Sec-
tion 6 we restrict ourselves there to a much simpler ex-
pression language which can be thought of as the result
of “desugaring” the ML syntax used in the examples.

2.1 Rectype Declarations

The grammar for rectype declarations is:

rectype ::= rectype rectypedecl
rectypedecl ::= < mltyvar > reftyname = recursivety

< and rectypedecl >
recursivety ::= (recursivety | recursivety) |

mlty → recursivety |
constructor recursivetyseq | mltyvar |
< mltyvar > reftyname

In this grammar (and other ones appearing in this pa-
per), optional items are enclosed in “<>”, and the dif-
ferent productions for each nonterminal are separated
by “|”. Note that the first occurrence of “|” in this
grammar is part of the object language. The suffix
seq added to a syntactic class name means either a
nonempty, parenthesized list of elements of that syn-
tactic class, or empty.

The syntactic classes used by the above grammar that
are not defined there are

constructor Constructors, such as cons.
mlty ML types, such as α list or int.
mltyname Datatype constructors, such as

list or bool.
mltyvar ML type variables, such as α.

Each rectype declaration must be consistent with
the ML datatype it refines. For example, with
the usual definition of lists, we could not accept
rectype α bad = nil(nil) because nil does not take
arguments.

To limit interactions of refinements types with poly-
morphism, we also require that when defining a recur-
sive type, any uses of it within its own definition must
have the same type variable argument that it has on the
left hand side of the declaration.

2.2 Refinement Types

General refinement types can be built up from the usual
ML types and from recursive types by the ML type con-
structor “→”, and the new operations of intersection
“∧” and union “∨”. Intuitively, an expression has type
σ∧ τ if it has both type σ and type τ . Similarly, an ex-
pression has type σ∨τ if it has type σ or type τ , though
we may not be able to predict at compile time which one
(such union types arise, for example, from the different
branches of an if expression). Refinement types will be
inferred and printed by type inference, or can be used by
the programmer to annotate expressions, and, in an ex-
tension beyond the scope of this paper, they can appear
in signatures.

3

The grammar for refinement types is:

refty ::= refty ∧ refty | refty ∨ refty |
refty → refty | ⊥ |
< refty > mltyname |
< refty > reftyname |
reftyvar :: mltyvar

The syntactic classes used in this grammar that are not
defined there are

reftyvar Refinement type variables, written as
rα, rβ, etc.

reftyname Refinements of datatypes, like singleton.

Every refinement type variable is bounded by an ML
type variable and thus ranges only over the refinements
of an ML type. This is necessary to prevent undesirable
interactions between polymorphism and subtypes (see
Section 5 for further discussion). In contexts where the
bound is obvious, we omit it.

Refinement type names are either declared explicitly
(via rectype) or implicitly (as ?nil was in the example
in the introduction). See Section 3 for a discussion.

2.3 An Example

As a simple example consider the representation of nat-
ural numbers in binary, as in the ordinary ML datatype
declaration

datatype bitstr =

e | z of bitstr | o of bitstr

Here the constructor e makes an empty bitstring, z ap-
pends a zero as the least significant digit, and o appends
a one as the least significant digit.

When we write functions to manipulate bitstrings, we
would like to guarantee at compile time that a bitstring
does not have a zero in the most significant place. We
call this “standard form” (std). The declaration of this
refinement type requires that we also introduce the type
of positive natural numbers in standard form (stdpos):

rectype std = e | stdpos

and stdpos = o(e) | z(stdpos) | o(stdpos)

For example, the bitstring z(e) represents zero, but is
not in standard form. The bitstring z(o(e)) represents
two, and is in standard form.

Using this rectype declaration, our type checking al-
gorithm can check that

fun add e m = m

| add n e = n

| add (z n) (z m) = z(add n m)

| add (o n) (z m) = o(add n m)

| add (z n) (o m) = o(add n m)

| add (o n) (o m) = z(add (add (o e) n) m)

maps standard form bitstrings to standard form bit-
strings. More generally, it can infer that add has this
somewhat unwieldy type:

?e → ?e → ?e ∧
?e → stdpos→ stdpos ∧
?e → std → std ∧
?e → bitstr→ bitstr ∧
stdpos→ ?e → stdpos ∧
stdpos→ stdpos→ stdpos ∧
stdpos→ std → stdpos ∧
stdpos→ bitstr→ bitstr ∧
std → ?e → std ∧
std → stdpos→ stdpos ∧
std → std → std ∧
std → bitstr→ bitstr ∧
bitstr→ ?e → bitstr ∧
bitstr→ stdpos→ bitstr ∧
bitstr→ std → bitstr ∧
bitstr→ bitstr→ bitstr

In this type we use ?e to represent the type containing
just the empty bitstring. This type has one conjunct
for each nonempty refinement type we can assign to the
arguments of add.

3 From Rectype Declarations to
Datatype Lattices

A datatype declaration in ML introduces datatype con-
structors and declares their type. For the purpose of
this exposition, we also assume that it implicitly de-
fines a new constant CASE_datatype which can be used
to simultaneously discriminate and destruct elements
of the datatype (see example below). A recursive type
declaration for a given datatype introduces at least one
refinement type name, but many other refinement types
can be formed by intersection, union, function type for-
mation, etc.

Many of these refinement types will be equivalent.
For example, σ ∧ σ is always equivalent to σ, and, in
the example above, ?e ∨ stdpos is the same as std.
A type checking or inference algorithm needs to under-
stand these equivalences, and we will introduce the nec-
essary structure in two steps. In this section we show
how a rectype declaration induces a lattice of subtypes
of a given ML datatype with the operations of ∧ and ∨,
understood as meet and join. In the following section we
show how this information can be lifted to refinement
types including the function type constructor →.

Our rectype declarations are essentially regular tree
grammars and they almost define regular tree sets as
discussed in Tree Automata by Gécseg and Steinby
[GS84]. The only change is that we have functions in

4

our trees, but since we require our rectype declarations
to have an ML type on the left-hand side of any→, this
extension turns out to be benign. We do not know of
any useful examples which would be ruled out by this re-
striction. Algorithms for dealing with such declarations
in Subtyping Recursive Types by Amadio and Cardelli
[AC90] do not appear to apply directly to our situation.

Let us return to the declaration of bitstrings in stan-
dard form discussed above.

datatype bitstr =

e | z of bitstr | o of bitstr

rectype std = e | stdpos

and stdpos = o(e) | z(stdpos) | o(stdpos)

Because we need to assign a refinement type to each con-
structor, we need to consider a lattice with more types
than just std and stdpos. For instance, this rectype

declaration requires the constructor o to map stdpos’s
to stdpos’s, and e’s to stdpos’s. We can only express
this as a refinement type if we create a refinement type
containing just e, which we shall call ?e. After creating
this new refinement type, we can give this type for o:

o : ?e →stdpos ∧ stdpos→stdpos

Thus the refinement types of bitstr are bitstr, std,
stdpos, and ?e. Using straightforward generalizations
of the algorithms for manipulating regular tree gram-
mars, we can infer that these four refinement types (plus
⊥) are closed under intersection and union, and they
form this lattice:

⊥

?e stdpos

std

bitstr

@
@
@

�
��

@
@
@

�
�
�

In general, closure under intersection and union may
add many new elements to the lattice—a fact which,
in an implementation, must be addressed through com-
pact representation methods such as those described in
“Graph-Based Algorithms for Boolean Function Manip-
ulation” by Bryant [Bry86].

The types for the constructors in this example are
calculated as

e : ?e
o : ?e→stdpos ∧ stdpos→stdpos

z : stdpos→stdpos

Note that, even though e also has type std, we do not
need to write e : ?e∧ std, since ?e∧ std is equivalent
to ?e.

The case statements for elements of the datatype
bitstr will look like

case E of

e => E1

| o(m) => E2

| z(m) => E3

which we will treat as the following function call:

CASE bitstr E

(fn () => E1)

(fn (m) => E2)

(fn (m) => E3)

The algorithm which analyzes recursive type decla-
rations assigns the type appearing in Figure 1 to
CASE bitstr. For an explanation of the type quanti-
fiers in this figure, see Section 5.

4 From Datatype Lattices to
Function Types

The datatype lattice is a representation of the subtype
relationship and the behavior of intersection and union
of refinements of an ML datatype. Next we need to
consider function types. More specifically we will deal
with how the subtype relationships, intersection, and
union behave on the more general class of refinement
types including “→”.

The basic principle underlying most subtype systems
allowing higher-order functions is that of “contravari-
ance”: σ1→τ1≤σ2→τ2 if τ1≤τ2 and σ2≤σ1. If we think
of σ1→τ1 as a set of functions and ≤ as subset, we can
see why: a function accepting σ1 as type-correct input
can certainly be given any element from a subtype of
σ1, and since it then produces a value in τ1 this value
will also be in τ2. We say the type constructor “→” is
contravariant in its first argument and covariant in its
second argument.

Defined datatype constructors may also be covariant
or contravariant in their arguments, and our subtyping
algorithm keeps track of this information in order to
determine, for example, that stdpos list is a subtype
of std list. In the rare case that the constructors for a
datatype are neither all covariant nor all contravariant
no useful subtyping information can be calculated by
our algorithm. An example of this is the declaration

datatype α mixed = C1 of α | C2 of α → bool

For defining subtype relations arising out of these ba-
sic observations and for the presentation of the type

5

CASE bitstr : ∀α.∀rα1 :: α. ∀rα2 :: α. ∀rα3 :: α.
?e →(unit→rα1)→(bitstr →rα2)→(bitstr→rα3)→rα1 ∧
stdpos→(unit→rα1)→((?e ∨ stdpos)→rα2)→(stdpos→rα3)→(rα2 ∨ rα3) ∧
std →(unit→rα1)→((?e ∨ stdpos)→rα2)→(stdpos→rα3)→(rα1 ∨ rα2 ∨ rα3) ∧
bitstr→(unit→rα1)→(bitstr →rα2)→(bitstr→rα3)→(rα1 ∨ rα2 ∨ rα3)

Figure 1: Type for CASE bitstr.

inference algorithm in the next section, it is convenient
to convert types to a normal form. We can do this
by rewriting the type according to the following rewrite
rules for any refinement types ρ, σ, and τ :

ρ ∧ (σ ∨ τ) ⇒ (ρ ∧ σ) ∨ (ρ ∧ τ)
(ρ ∨ σ)→τ ⇒ (ρ→τ) ∧ (σ→τ)

Thinking of function types as sets of functions provides
some insights about why these are valid transforma-
tions. Also, for any refinements of data types ρ, σ, and
τ such that ρ = σ ∨ τ , we rewrite ρ to σ ∨ τ . After we
apply these rewrites, the refinement types will fit the
grammar

unf ::= inf | unf ∨ unf
inf ::= < unf > reftyname | inf ∧ inf |

inf→unf | reftyvar :: mltyvar

where unf stands for union normal form and inf for
intersection normal form.

We now define the subtype ordering σ ≤ τ for unf
refinement types σ and τ where σ and τ are refinements
of the same ML type. We have two cases, either their
common ML type is a datatype or it is a function type.

If the bounding ML type is a datatype, the subtype
relationship is determined by the partial order of the
lattice.

If the bounding ML type is a function type, the unf
refinement types have the form of a union of inf refine-
ment types σi and σ′j, and we have the rule

σ1 ∨ σ2 ∨ . . . ∨ σn≤σ′1 ∨ σ′2 ∨ . . . ∨ σ′m
if for each σi there is a σ′j such that σi≤σ′j .

which leaves us with the problem of comparing inf re-
finements of functional types.

Given inf refinements for a function and its argu-
ment, we can compute a refinement type for the value
of the function application: if the function has type
σ = (ρ1→τ1) ∧ (ρ2→τ2) ∧ . . . ∧ (ρn→τn) and the ar-
gument has type ρ, then the type of their application
(written apptype(σ, ρ)) is∧

{i|ρ≤ρi}
τi,

where
∧

stands for intersection of a set of types.
We can use this to solve the subtype problem for inf

refinements of functional types. Suppose we are trying
to solve the problem σ≤σ′, where

σ = (ρ1→τ1) ∧ (ρ2→τ2) ∧ . . .∧ (ρn→τn),

and

σ′ = (ρ′1→τ ′1) ∧ (ρ′2→τ ′2) ∧ . . .∧ (ρ′m→τ ′m).

In this case we define σ≤σ′ to mean, for all ρ in
{ρ1, ρ2, . . . , ρn, ρ

′
1, ρ
′
2, . . . , ρ′m},

apptype(σ, ρ)≤apptype(σ′, ρ).

The correctness of this definition in general is implied
by the theorem stated in Section 6: if an expression of
type σ evaluates to a value v, then v will also have type
σ. On the other hand, it is quite possible that more
subtype relationships hold than can be established with
the rules above, which means that the types inferred for
higher-order functions may not be as accurate as pos-
sible. This is another case where decidability must be
balanced with the desire for accuracy in type checking.

5 Polymorphism

The interaction between polymorphism and subtypes
is potentially problematic. The main mechanism con-
sidered so far in the literature is bounded quantifica-
tion [CCHO89, CW85], where the domain of a type
variable is restricted to range over subtypes of a given
bound. In this paper we continue the separation of the
ML types and refinement types and obtain a restricted
form of bounded quantification. We define refinement
type schemes by the following grammar:

reftyscheme ::= inf |
∀α . reftyscheme |
∀rα :: α . reftyscheme

The first case in this grammar refers to types in inter-
section normal form, which we have already discussed.

The second case is quantification over an ML type
variable, which is very similar to quantification over ML

6

type variables as used in ML. This can be regarded as an
infinite intersection; for instance, the identity function

val id = fn x => x

has the ML type
∀α . α→α

which we can loosely regard as the intersection of

α→α

for all ML types α, although in practice we do not rep-
resent ML types this way.

The third case quantifies over a refinement type vari-
able, and we also regard this as an intersection. How-
ever, once we instantiate the ML type variable with an
ML type, there are only finitely many refinements of
that ML type, so there are only finitely many types
in the intersection. When we instantiate a refinement
type, we perform this expansion. For example, the re-
finement type for the identity function id is

∀α. ∀rα :: α. rα→rα

If we instantiate α to bitstr and instantiate the refine-
ment type quantifier, we get the refinement type

bitstr→bitstr ∧
stdpos→stdpos ∧
std → std ∧
?e → ?e ∧
⊥ → ⊥

With this notion of instantiation, the refinements of
ML type variables are exactly the refinement type vari-
ables. This notion is already implicit in the earlier
examples: α singleton is a refinement of α list, but
neither bool singleton nor std list are refinements
of α list. A relaxation of this notion could quickly
lead to undecidable type inference problems, as in the
Milner-Mycroft calculus [KTU89, Myc84]. On the other
hand, this restriction entails some loss of accuracy in
determining refinement type information in some cases.
Refinement type schemes are considered during type in-
ference when analyzing a let expression and when in-
stantiating the type of a polymorphic variable or con-
stant.

6 The Type Inference Algo-
rithm

This section will present a type inference algorithm for
refinement types as a deductive system. Just as the de-
ductive system for ML types leads to type inference by

unification, our deductive system, too, can be given an
operational interpretation which first performs an ML
type inference pass and then a refinement type inference
pass using abstract interpretation. Space unfortunately
does not permit a more detailed discussion of the infer-
ence rules or their operational reading.

We infer refinement types for the program by infer-
ence system in Figure 2. The characters are used as
follows in the inference rules:

e, e′ are expressions,
x, f are ML variables,
C is a refinement type in inf,
D is a refinement type in unf,
L is an ML type,
Γ is an environment mapping variables to

refinement type schemes, and
S is a refinement type scheme.

The grammar for the language fragment used in this
section is

exp ::= variable | exp exp |
λ variable. exp |
exp : refty |
let variable = exp in exp |
fix variable. exp

The notation Γ ` e : D :: L means that in the type

environment Γ, the expression e has refinement type D
which is a refinement of the ML type L.

If we take this inference system and eliminate all of
the refinement types, leaving just the expressions and
the ML types, we get a conventional inference system
for Mini-ML.

The rules in Figure 2 use the auxiliary judgment
LOOP to compute successive approximations to the re-
finement type of recursive functions until a fixpoint is
reached. This is guaranteed to terminate because there
are only finitely many refinement types below a given
ML type (which our algorithm computes first). The ex-
pression “close(Γ, C :: L)” generalizes over the free type
variables in C and L which are not free in Γ and returns
the resulting refinement type scheme.

Now we shall state a theorem that the typing rules
stated above are sound. This is sometimes paraphrased
as well-typed programs cannot go wrong, that is, if an
expression has refinement type σ, and evaluation of that
expression terminates, then the value of the expression
will also have the type σ. The operational semantics is
very close to the one given for Mini-ML [CDDK86] and
we omit it here.

Theorem: For all valid type environments Γ and ex-

pressions e, if e evaluates to v and Γ ` e : D :: L then

Γ ` v : D′ :: L for some D′≤D.

7

INST: Γ ` x : C :: L if x : S is in Γ and C :: L is an instance of S.

APPL:
Γ ` e :

∨
i Ci :: L1→L2 Γ ` e′ :

∨
j C
′
j :: L1

Γ ` e e′ :
∨
i,j apptype(Ci, C

′
j) :: L2

ABS:
Γ, x : Ci :: L1 ` e : Di :: L2 for each Ci that is a refinement of L1

Γ ` λx. e :
∧
i(Ci→Di) :: L1→L2

LET:
Γ ` e1 :

∨
i Ci :: L1 (Γ, x : (close (Γ, Ci :: L1)) ` e2 : Di :: L2) for each Ci

Γ ` let x = e1 in e2 :
∨
iDi :: L2

RESTRICT:
Γ ` e : D :: L D≤D′

Γ ` (e:D′) : D′ :: L

FIX1:
Γ ` LOOP(f, λy. e,⊥, L)

FIX2:
Γ ` LOOP(f, λy. e, C1, L) Γ, f : C1 :: L ` λy. e : C2 :: L

Γ ` LOOP(f, λy. e, C2, L)

FIX3:
Γ ` LOOP(f, λy. e, C, L) Γ, f : C :: L ` λy. e : C :: L

Γ ` fix f. λy. e : C :: L

Figure 2: Rules for type inference system

We omit the proof, which proceeds by induction on
the structure of the definition of the “evaluates to” re-
lation.

7 Future Work

We currently have a naive prototype implementation
of the type inference algorithm as shown above. This
prototype takes the lattice for each datatype, the types
for the constructors, and the types for the case state-
ments as inputs. The main implementation problem ap-
pears to be to deal efficiently with refinements of types
of higher-order functions, as the number of such refine-
ment types can become large very quickly. For example,
since there are five refinements of the ML type stdpos

used in the examples earlier, there are 55 functions map-
ping refinement types of stdpos to refinement types of
stdpos. A naive representation of the refinement types
of stdpos→stdpos would list all of these functions.
Compact representations of refinement types, for exam-
ple through an appropriate generalization of Binary De-
cision Diagrams [Bry86, BCM+90] to deal with function
types, seem promising. Since finding a type error in a
program with refinement types will require looking at
representations of refinement types, we will have to find
a reasonably concise way to print these types.

The more refinements we consider of a given datatype,
the slower type checking will be. This problem is al-
leviated when more distinct datatype declarations are
made even if the datatypes present would be sufficient
to encode the information we need to represent. In ML,
this technique is good programming style in any case, as
it enhances program readability and allows more type
errors to be detected at compile-time. We also need
to consider embedded refinement type declarations (as
in let rectype ... in ... end) which naturally ex-
tends ML datatype declarations and also limits the vis-
ibility of refinements, thus cutting down on the size of
the refinement type lattice.

The refinement types proposed here address only a
subset of Standard ML [MTH90]. We need to carefully
examine the interaction of refinement types with other
features of the ML type system, such as imperative type
variables and equality types, since we would like to ex-
tend our proposal to encompass all of Standard ML.
Although Standard ML does not provide primitives for
manipulating the current continuation, some dialects
of ML do, so we would like to be able to deal with
callcc also. Despite some potential problems which
may lead to a loss of accuracy of refinement type in-
formation across modules, refinement types open the
possibility of communicating some information about

8

functions between modules without violating the pri-
vacy of the modules. This appears to be much more
difficult, if not impossible, in approaches using general
set constraints as, for example, in [HJ90], or abstract
interpretation which is not tied to the type system.

We also would like to explore the possibility of refin-
ing predefined types, such as int, which are not given
as datatype declarations. There are no conceptual dif-
ficulties as long as the appropriate subtype structure
forms a lattice. For example, we could distinguish the
positive integers, the negative integers, and zero by giv-
ing appropriate types to constants appearing in the pro-
gram and to the arithmetic operators. We would have to
devise some notation for doing this other than rectype

declarations because we do not have constructors for the
integers.

In some cases the refinement type information can be
used for program optimization during compilation. We
would like to explore this possibility further, though our
primary motivation remains static detection of program
errors which currently elude the ML type checker.

8 Acknowledgements

Thanks to Benjamin Pierce, Dave MacQueen, and John
Reynolds for discussions about refinement types; Ben-
jamin Pierce, Nevin Heintze, and the anonymous refer-
ees for proofreading this paper; and to John Reynolds
for his TeX macros to draw diagrams.

This research was supported by the Defense Advanced
Research Projects Agency (DOD) and monitored by
the Space and Naval Warfare Systems Command under
Contract N00039-85-C-0163, ARPA Order No. 5167.

References

[AC90] Roberto M. Amadio and Luca Cardelli. Sub-
typing recursive types. Research Report 62,
Digital Systems Research Center, Palo Alto,
California, August 1990.

[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMil-
lan, D. L. Dill, and L. J. Hwang. Sym-
bolic model checking: 1020 states and be-
yond. In Proceedings of the Fifth Annual
IEEE Symposium on Logic in Computer
Science, pages 428–439, Philadelphia, PA,
June 1990. IEEE Computer Society Press.

[Bry86] Randal E. Bryant. Graph-based algorithms
for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–
691, August 1986.

[Car89] Luca Cardelli. Typeful programming. Re-
search Report 45, Digital Equipment Corpo-
ration, Systems Research Center, Palo Alto,
California, February 1989.

[CCHO89] Peter Canning, William Cook, Walter Hill,
and Walter Olthoff. F-bounded poly-
morphism for object-oriented programming.
In Functional Programming Languages and
Computer Architecture. ACM, 1989.

[CDDK86] Dominique Clément, Joëlle Despeyroux,
Thierry Despeyroux, and Gilles Kahn. A
simple applicative language: Mini-ML. In
Proceedings of the 1986 Conference on LISP
and Functional Programming. ACM Press,
1986.

[CW85] Luca Cardelli and Peter Wegner. On un-
derstanding types, data abstraction, and
polymorphism. ACM Computing Surveys,
17:471–522, 1985.

[GS84] Ferenc Gécseg and Magnus Steinby. Tree
Automata. Akadémiai Kiadó, Budapest,
1984.

[HJ90] Nevin Heintze and Joxan Jaffar. A deci-
sion procedure for a class of set constraints.
In Proceedings of the Fifth Annual IEEE
Symposium on Logic in Computer Science,
Philadelphia. IEEE, June 1990.

[KTU89] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn.
Type-checking in the presence of polymor-
phic recursion. To appear in TOPLAS, Oc-
tober 1989.

[Mis84] Prateek Mishra. Towards a theory of types
in Prolog. In International Symposium on
Logic Programming, pages 289–298. IEEE,
1984.

[MTH90] Robin Milner, Mads Tofte, and Robert
Harper. The Definition of Standard ML.
MIT Press, Cambridge, Massachusetts,
1990.

[Myc84] Alan Mycroft. Polymorphic Type Schemes
and Recursive Definitions, pages 217–228.
International Symposium on Programming.
Springer-Verlag, New York, 1984. LNCS
167.

[Pie89] Benjamin Pierce. A decision procedure for
the subtype relation on intersection types
with bounded variables. Technical Report

9

CMU-CS-89-169, School of Computer Sci-
ence, Carnegie Mellon University, Pitts-
burgh, Pennsylvania, September 1989.

[Pie90] Benjamin C. Pierce. Preliminary investi-
gation of a calculus with intersection and
union types. Unpublished manuscript, June
1990.

[RDR88] Simone Ronchi Della Rocca. Principal type
scheme and unification for intersection type
discipline. Theoretical Computer Science,
59:181–209, 1988.

[Rey88] John C. Reynolds. Preliminary design of the
programming language Forsythe. Technical
Report CMU-CS-88-159, Carnegie Mellon
University, Pittsburgh, Pennsylvania, June
1988.

[YFS91] Eyal Yardeni, Thom Fruehwirth, and Ehud
Shapiro. Polymorphically typed logic pro-
grams. In Frank Pfenning, editor, Types in
Logic Programming. MIT Press, Cambridge,
Massachusetts, 1991. To appear.

10

