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Abstract

We have designed a new logic programming language called LM (Linear Meld) for program-
ming graph-based algorithms in a declarative fashion. Our language is based on linear logic, an
expressive logical system where logical facts can be consumed. Because LM integrates both clas-
sical and linear logic, LM tends to be more expressive than other logic programming languages.
LM programs are naturally concurrent because facts are partitioned by nodes of a graph data
structure. Computation is performed at the node level while communication happens between
connected nodes. In this paper, we present the syntax and operational semantics of our language
and illustrate its use through a number of examples.
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1 Introduction

Due to the popularity of social networks and the explosion of the content available in the
World Wide Web, there has been increased interest in running graph-based algorithms
concurrently. Most of the available frameworks are implemented as libraries on top of
imperative programming languages, which require knowledge of both the library and
the interface, making it difficult for both novice and expert programmers to learn and use
correctly. Reasoning about the programs requires knowing how the library schedules
execution and the operational semantics of the underlying language.

Some good examples are the Dryad, Pregel and GraphLab systems. The Dryad sys-
tem (Isard et al. 2007) is a framework that combines computational vertices with com-
munication channels (edges) to form a data-flow graph. Each program is scheduled to
run on multiple computers or cores and data is partitioned during runtime. Routines
that run on computational vertices are sequential, with no locking required. The Pregel
system (Malewicz et al. 2010) is also graph-based, although programs have a more strict
structure. They must be represented as a sequence of iterations where each iteration
is composed of computation and message passing. Pregel is aimed at solving very big
graphs and to scale to large architectures. GraphLab (Low et al. 2010) is a C++ library for
developing parallel machine learning algorithms. While Pregel uses message passing,



2 Flavio Cruz, Ricardo Rocha, Seth Copen Goldstein and Frank Pfenning

GraphLab allows nodes to have read/write access to different scopes through different
concurrent access models in order to balance performance and data consistency. Each
consistency model provides different guarantees that are suited to multiple classes of
algorithms. GraphLab also provides several schedulers that dictate the order in which
node’s are computed.

An alternative promising approach for graph-based algorithms is logic programming.
For instance, the P2 system (Loo et al. 2006), used Datalog to map nodes of a computer
network to a graph, where each node would do computation locally and could commu-
nicate with neighbor nodes. Another good example is the Meld language, created by
Ashley-Rollman et al. (Ashley-Rollman et al. 2007; Ashley-Rollman et al. 2009). Meld
was itself inspired in the P2 system but adapted to the concept of massively distributed
systems made of modular robots with a dynamic topology. Logic-based systems are
more amenable to proof since a program is just a set of logical clauses.

In this paper, we present a new logic programming language called LM (Linear Meld)
for concurrent programming over graph structures designed to take advantage of the
recent architectures such as multicores or clusters of multicores. LM is based on the
Meld language, but differs from other logic programming languages such as Datalog
or Prolog in three main aspects. First, it integrates both classical logic and linear logic
into the language, allowing some facts to be retracted and asserted in a logical fashion.
Second, unlike Prolog, LM is a bottom up logic programming language (similar to
Datalog) since the database is updated incrementally as rules are applied. Third, LM is
a language created to solve general graph-based algorithms, unlike P2 or Meld which
were designed for more specific domains.

In the following sections, we present the syntax and semantics of our language and
explain how to write programs that take advantage of its expressive power. We identify
three key contributions in our work:

Linear Logic: We integrate linear logic into the original Meld language so that program
state can be encoded naturally. Meld started as a classical logic programming language
where everything that is derived is true until the end of the execution. Linear logic
turns logical facts into resources that will be consumed when a rule is applied. In turn,
this makes it possible to represent program state in a natural and declarative fashion.

Concurrency: LM programs are naturally concurrent because facts are partitioned by
vertices of a graph data structure. While the original Meld sees graphs as a network
of robots, we see each node as a member of a distributed data structure. This is made
possible due to the restrictions on derivation rules which only use local facts but also
permit node communication.

Semantics: Starting from a fragment of linear logic used in LM, we formalize a high level
dynamic semantics that is closely related to this fragment. We then design a low level
dynamic semantics and sketch the soundness proof of our low level semantics with
respect to the high level language specification. The low level specification provides
the basis for a correct implementation of LM.

To realize LM, we have implemented a compiler and a virtual machine that executes
LM programs on multicore machines 1. We also have a preliminary version that runs on

1 Source code is available at http://github.com/flavioc/meld.
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networks by using OpenMPI as a communication layer. Our experimental results show
that LM has good scalability. Several interesting programs were implemented such as
belief propagation (Gonzalez et al. 2009), belief propagation with residual splash (Gonza-
lez et al. 2009), PageRank, graph coloring, N queens, shortest path, diameter estimation,
map reduce, game of life, quick-sort, neural network training, among others. While these
results are evidence that LM is a promising language, this paper will only focus on the
more formal aspects of our work.

2 LM By Example

Linear Meld (LM) is a forward chaining logic programming language in the style of
Datalog (Ullman 1990). The program is defined as a database of facts and a set of derivation
rules. Initially, we populate the database with the program’s axioms and then determine
which derivation rules can be applied by using the current database. Once a rule is
applied, we derive new facts, which are then added to the database. If a rule uses linear
facts, they are consumed and thus deleted from the database. The program stops when
we reach quiescence, that is, when we can no longer apply any derivation rule.

The database of facts can be seen as a graph data structure where each node or vertex
contains a fraction of the database. Since derivation rules can only manipulate facts
belonging to a node, we are able to perform independent rule derivations.

Each fact is a predicate on a tuple of values, where the type of the predicate prescribes
the types of the arguments. LM rules are type-checked using the predicate declarations
in the header of the program. LM has a simple type system that includes types such as
node, int, float, string, bool. Recursive types such as list X and pair X; Y are also allowed.

The first argument of every predicate must be typed as a node. For concurrency and
data partitioning purposes, derivation rules are constrained by the expressions that can
be written in the body. The body of every rule can only refer to facts in the same node
(same first argument). However, the expressions in the head may refer to other nodes,
as long as those nodes are instantiated in the body of the rule.

Each rule in LM has a defined priority that is inferred from its position in the source
file. Rules at the beginning of the file have higher priority. At the node level, we consider
all the new facts that have been not consider yet to create a set of candidate rules. The set
of candidate rules is then applied (by priority) and updated as new facts are derived.

Our first program example is shown in Fig. 1. This is a message routing program that
simulates message transmission through a network of nodes. We first declare all the
predicates (lines 1-2), which represent the different facts we are going to use. Predicate
edge/2 is a non linear (persistent) predicate and message/3 is linear. While linear facts
may be retracted, persistent facts are always true once they are derived.

The program rules are declared in lines 4-8, while the program’s axioms are written in
lines 10-11. The general form of a rule is A1, ..., An -o B1, ..., Bm, where A1, ..., An are matched
against local facts and B1, ..., Bm are locally asserted or transmitted to a neighboring node.
When persistent facts are used (line 4) they must be preceded by ! for readability.

The first rule (lines 4-5) grabs the next node in the route list (third argument of
message/3), ensures that a communication edge exists with !edge(A, B) and derives a
new message(B, Content, L) fact at node B. When the route list is empty, the message
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1 type edge(node, node). // define direct edge
2 type linear message(node, string, list node). // message format
3

4 message(A, Content, [B | L]), !edge(A, B)
5 -o message(B, Content, L). // message derived at node B
6

7 message(A, Content, [])
8 -o 1. // message received
9

10 !edge(@1, @2). !edge(@2, @3). !edge(@3, @4). !edge(@1, @3).
11 message(@1, ’Hello World’, [@3, @4]).

Fig. 1. Message program.

has reached its destination and thus it is consumed (rule in lines 7-8). Note that the ’1’
in the head of the rule on line 8 means that nothing is derived.

Figure 2 presents another complete LM program which given a graph of nodes visits
all nodes reachable from node @1. The first rule of the program (lines 6-7) is fired when
a node A has both the visit(A) and unvisited(A) facts. When fired, we first derive
visited(A) to mark node A as visited and use a comprehension to go through all the edge
facts edge(A,B) and derive visit(B) for each one (comprehensions are explained next
in detail). This forces those nodes to be visited. The second rule (lines 9-10) is fired when
a node A is already visited more than once: we keep the visited(A) fact and delete
visit(A). Line 14 starts the process by asserting the visit(@1) fact.

1 type edge(node, node).
2 type linear visit(node).
3 type linear unvisited(node).
4 type linear visited(node).
5

6 visit(A), unvisited(A)
7 -o visited(A), {B | !edge(A, B) | visit(B)}. // mark node as visited and visit neighbors
8

9 visit(A), visited(A)
10 -o visited(A). // already visited
11

12 !edge(@1, @2). !edge(@2, @3). !edge(@1, @4). !edge(@2, @4).
13 unvisited(@1). unvisited(@2). unvisited(@3). unvisited(@4).
14 visit(@1).

Fig. 2. Visit program.

If the graph is connected, it is easy to prove that every node Awill derive visited(A),
regardless of the order in which rules are applied.

3 The LM Language

Table 1 shows the abstract syntax for rules in LM. An LM program Prog consists of a set
of derivation rules Σ and a database D. A derivation rule R may be written as BE ( HE
where BE is the body of the rule and HE is the head. We can also explicitly universally
quantify over variables in a rule using ∀x.R. If we want to control how facts are selected
in the body, we may use selectors of the form [ S⇒ y; BE ] ( HE (explained later).

The body of the rule, BE, may contain linear (L) and persistent (P) fact expressions and
constraints (C). We can chain those elements by using BE,BE or introduce body variables
using∃x.BE. Alternatively we can use an empty body by using 1, which creates an axiom.

Fact expressions are template facts that instantiate variables (from facts in the database)
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Program Prog ::= Σ,D
Set Of Rules Σ ::= · | Σ,R
Database D ::= Γ; ∆
Rule R ::= BE ( HE | ∀x.R | [ S⇒ y; BE ] ( HE
Body Expression BE ::= L | P | C | BE,BE | ∃x.BE | 1
Head Expression HE ::= L | P | HE,HE | EE | CE | AE | 1
Linear Fact L ::= l(x̂)
Persistent Fact P ::= !p(x̂)
Constraint C ::= c(x̂)
Selector Operation S ::= min | max | random

Exists Expression EE ::= ∃x̂.SH
Comprehension CE ::= { x̂; BE; SH }
Aggregate AE ::= [ A⇒ y; x̂; BE; SH1; SH2 ]
Aggregate Operation A ::= min | max | sum | count

Sub-Head SH ::= L | P | SH,SH | 1
Known Linear Facts ∆ ::= · | ∆, l(t̂)
Known Persistent Facts Γ ::= · | Γ, !p(t̂)

Table 1. Abstract syntax of LM.

such as visit(A) in line 10 in Fig. 2. Constraints are boolean expressions that must be
true in order for the rule to be fired (for example, C = A + B). Constraints use variables
from fact expressions and are built using a small functional language that includes
mathematical operations, boolean operations, external functions and literal values.

The head of a rule (HE) contains linear (L) and persistent (P) fact templates which are
uninstantiated facts and will derive new facts. The head can also have exist expressions
(EE), comprehensions (CE) and aggregates (AE). All those expressions may use all the
variables instantiated in the body. We can also use an empty head by choosing 1.

Selectors When a rule body is instantiated using facts from the database, facts are picked
non-deterministically. While our system uses an implementation dependent order for
efficiency reasons, sometimes it is important to sort facts by one of the arguments
because linearity imposes commitment during rule derivation. The abstract syntax for
this expression is [ S ⇒ y; BE ] ( HE, where S is the selection operation and y is
the variable in the body BE that represents the value to be selected according to S. An
example using concrete syntax is as follows:
[min => W | !edge(A, B), weight(A, B, W)] -o picked(A, B, W).

In this case, we order the weight facts by W in ascending order and then try to match
them. Other operations available are max and random (to force no pre-defined order).

Exists Expression Exists expressions (EE) are based on the linear logic term of the same
name and are used to create new node addresses. We can then use the new address to
instantiate new facts for this node. The following example illustrates the use of the exists
expression, where we derive perform-work at a new node B.
do-work(A, W) -o exists B. (perform-work(B, W)).

Comprehensions Sometimes we need to consume a linear fact and then immediately
generate several facts depending on the contents of the database. To solve this par-
ticular need, we created the concept of comprehensions, which are sub-rules that are
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applied with all possible combinations of facts from the database. In a comprehension
{ x̂; BE; SH }, x̂ is a list of variables, BE is the comprehension’s body and SH is the head.
The body BE is used to generate all possible combinations for the head SH, according to
the facts in the database. Note that BE is also locally restricted.

We have already seen an example of comprehensions in the visit program (Fig. 2 line
7). Here, we match !edge(A, B) using all the combinations available in the database
and derive visit(B) for each combination.

Aggregates Another useful feature in logic programs is the ability to reduce several facts
into a single fact. In LM we have aggregates (AE), a special kind of sub-rule similar to
comprehensions. In the abstract syntax [ A ⇒ y; x̂; BE; SH1; SH2 ], A is the aggregate
operation, x̂ is the list of variables introduced in BE, SH1 and SH2 and y is the variable in
the body BE that represents the values to be aggregated using A. We use x̂ to try all the
combinations of BE, but, in addition to deriving SH1 for each combination, we aggregate
the values represented by y and derive SH2 only once using y.

Let’s consider a database with the following facts and a rule:
price(@1, 3). price(@1, 4). price(@1, 5).
count-prices(@1).
count-prices(A) -o [sum => P | . | price(A, P) | 1 | total(A, P)].

By applying the rule, we consume count-prices(@1) and derive the aggregate which
consumes all the price(@1, P) facts. These are added and total(@1, 12) is derived.
LM provides aggregate operations such as min (minimum), max (maximum), sum and
count.

4 Some Sample LM Programs

We now present LM programs in order to illustrate common programming techniques2.

Shortest Distance Finding the shortest distance between two nodes in a graph is another
well known graph problem. Fig. 3 presents the LM code to solve this particular problem.

We use an edge/3 predicate to represent directed edges between nodes and their
corresponding weights. To represent the shortest distance to a node startnodewe have
a path(A,D,F) where D is the distance to startnode and F is a flag to indicate if such
distance has been propagated to the neighbors. Since the distance from the startnode
to itself is 0, we start the algorithm with the axiom path(startnode,0,notused).

The first rule avoids propagating paths with the same distance and the second rule
eliminates paths where the distance is already larger than some other distance. Finally,
the third rule, marks the path as used and propagates the distance to the neighboring
nodes by taking into account the edge weights. Eventually, the program will reach quies-
cence and the shortest distance between startnode and finalnodewill be determined.

In the worst case, this algorithm runs in O
(
NE

)
, where N is the number of nodes and

E is the number of edges. If we decide to always propagate the shortest distance of the
graph, we get Dijkstra’s algorithm (Dijkstra 1959). However, this is not feasible, since
we would need to globally decide which node to run next, removing concurrency.

2 More examples of LM programs are available at http://github.com/flavioc/meld.
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1 type edge(node, node, int).
2 type linear path(node, int, int).
3

4 const used = 1.
5 const notused = 0.
6

7 path(startnode, 0, notused).
8

9 path(A, D, used), path(A, D, notused)
10 -o path(A, D, used).
11

12 path(A, D1, X), path(A, D2, Y), D1 <= D2
13 -o path(A, D1, X). // keep the shorter distance
14

15 path(A, D, notused), A <> finalnode
16 -o {B, W | !edge(A, B, W) | path(B, D + W, notused)}, path(A, D, used). // propagate new distance

Fig. 3. Shortest Distance Program.

PageRank PageRank (Page 2001) is a well known graph algorithm that is used to compute
the relative relevance of web pages. The code for a synchronous version of the algorithm
is shown in Fig. 4. As the name indicates, the pagerank is computed for a certain number
of iterations. The initial pagerank is the same for every page and is initialized in the first
rule (line 12) along with an accumulator.

1 type output(node, node, float).
2 type linear pagerank(node, float, int).
3 type numLinks(node, int).
4 type numInput(node, int).
5 type linear accumulator(node, float, int, int).
6 type linear newrank(node, node, float, int).
7 type linear start(node).
8

9 start(A).
10

11 start(A), !numInput(A, T)
12 -o accumulator(A, 0.0, T, 1), pagerank(A, 1.0 / float(@world), 0).
13

14 pagerank(A, V, Id), !numLinks(A, C), Id < iterations, Result = V / float(C)
15 -o {B, W | !output(A, B, W) | newrank(B, A, Result, Id + 1)}. // propagate new pagerank value
16

17 accumulator(A, Acc, 0, Id), !numInput(A, T), V = 0.85 + 0.15 * Acc, Id <= iterations
18 -o pagerank(A, V, Id), accumulator(A, 0.0, T, Id + 1). // new pagerank value
19

20 newrank(A, B, V, Id), accumulator(A, Acc, T, Id), T > 0
21 -o [sum => S, count => C | D | newrank(A, D, S, Id) | 1 | accumulator(A, Acc + V + S, T - 1 - C, Id)].

Fig. 4. Synchronous PageRank program.

The second rule of the program (lines 14-15) propagates a newly computed pagerank
value to all neighbors. Each node will then accumulate the pagerank values that are sent
to them through the fourth rule (lines 20-21) and it will immediately add other currently
available values through the use of the aggregate. When we have accumulated all the
values we need, the third rule (lines 17-18) is fired and a new pagerank value is derived.

N-Queens The N-Queens (Hoffman et al. 1969) puzzle is the problem of placing N chess
queens on an NxN chessboard so that no pair of two queens attack each other. The specific
challenge of finding all the distinct solutions to this problem is a good benchmark in
designing parallel algorithms. The LM solution is presented in Appendix A.

First, we consider each cell of the chessboard as a node that can communicate with
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the adjacent left (left) and adjacent right (right) cells and also with the first two non-
diagonal cells in the next row (down-left and down-right). For instance, the node at
cell (0, 3) (fourth cell in the first row) will connect to cells (0, 2), (0, 4) and also
(1, 1) and (1, 5), respectively. The states are represented as a list of integers, where
each integer is the column number where the queen was placed. For example [2, 0]
means that a queen is placed in cell (0, 0) and another in cell (1, 2).

An empty state is instantiated in the top-left node (0, 0) and then propagated to
all nodes in the same row (lines 19-20). Each node then tries to place a queen on their
cell and then send a new state to the row below (lines 52-54). Recursively, when a node
receives a new state, it will (i) send the state to the left or to the right and (ii) try to place
the queen in its cell (using test-y, test-diag-left and test-diag-right). When a cell
cannot place a queen, that state is deleted (lines 29, 37 and 45). When the program ends,
the states will be placed in the bottom row (lines 49-50).

Most parallel implementations distribute the search space of the problem by assigning
incomplete boards as tasks to workers. Our approach is unusual because our tasks are
the cells of the board.

5 Proof Theory

We now present the sequent calculus of a fragment of intuitionistic linear logic (Girard
1987) used by LM followed by the dynamic semantics of LM built on top of this fragment.

We use a standard set of connectives except the def A connective, which is inspired on
Baelde’s work on least and greatest fixed points in linear logic (Baelde 2012) and is used
to logically justify comprehensions and aggregates. The sequent calculus (Appendix B)
has the form Ψ; Γ; ∆ → C, where Ψ is the typed term context used in the quantifiers,
Γ is the set of persistent terms, ∆ is the multi-set of linear propositions and C is the
proposition to prove. Table 2 relates linear logic with LM.

Connective Description LM Place LM Example

fact(x̂) Linear facts. Body/Head path(A, P)

!fact(x̂) Persistent facts. Body/Head !edge(X, Y, W)
1 Represents rules with an empty head. Head 1

A ⊗ B Connect two expressions. Body/Head p(A), e(A, B)

∀x.A For variables defined in the rule. Rule p(A) ( r(A)

∃x.A Instantiates new node variables. Head exists A.(p(A, P))

A ( B ( means ”linearly implies”. Rule p(A, B) ( r(A, B)

A is the body and B is the head.
defA.B Extension called definitions. Used for Head {B | !e(A, B) | v(B)}

comprehensions and aggregates.

Table 2. Connectives from Linear Logic used in LM.

In a comprehension, we want to apply an implication to as many matches as the
database allows. Our approach is to use definitions: given a comprehension C = { x̂; A; B }
with a body A and a head B, then we can build the following recursive definition:
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def C 4
= 1 N ((A ( B) ⊗ def C)

We unfold def C to either stop (by selecting 1) or get a linear implication A ( B
and a recursive definition. This uses linear logic’s additive conjunction N. This form of
definition does not capture the desired maximality aspect of the comprehension, since it
commits to finding a particular form of proof and not all possible proofs. The low level
operational semantics will ensure maximality.

Aggregates work identically, but they need an extra argument to accumulate the
aggregated value. If a sum aggregate C has the form [ sum⇒ y; x̂; A; B1; B2 ], then the
definition will be as follows (the aggregate is initiated as def C 0):

def C V 4
= (λv.B2)V N (∀x.((Ax ( B1) ⊗ def C (x + V)))

Dynamic Semantics The dynamic semantics formalize the mechanism of matching and
deriving a single rule at the node level. The semantics receive the node database and
the program’s rules as inputs and return as outputs the consumed linear facts, derived
linear facts and derived persistent facts. Then, it is possible to compute the program as
a sequence of steps, by updating the database through sending or asserting.

High Level Dynamic Semantics The High Level Dynamic (HLD) Semantics are closely
related to the linear logic fragment presented above. From the sequent calculus, we
consider Γ and ∆ the database of persistent and linear facts, respectively. We consider
the rules of the program as persistent linear implications of the form !(A ( B) that we
put in a separate context Φ. We ignore the right hand side C of the calculus and use
inversion on the ∆ and Γ contexts so that we only have atomic terms (facts). To apply
rules we use chaining by focusing (marc Andreoli 1992) on the derivation rules of Φ.
The HLD semantics are shown in Fig. 5 and are composed of four judgments:

1. run Γ; ∆; Φ → Ξ′; ∆′; Γ′ picks a rule from Φ and applies it using facts from Γ and
∆. Ξ′, ∆′ and Γ′ are the outputs of the derivation process. Ξ′ are the linear facts
consumed, ∆′ are the linear facts derived and Γ′ the new persistent facts;

2. apply Γ; ∆; R→ Ξ′; ∆′; Γ′ picks a subset of linear facts from ∆ and matches the body
of the rule R and then derives the head;

3. match Γ; ∆ → A verifies that all facts in ∆ (set of consumed linear facts) prove A,
the body of the rule. The context Γ will be used to prove any persistent term in A;

4. derive Γ; ∆; Ξ; Γ1; ∆1,Ω→ Ξ′; ∆′; Γ′ deconstructs and instantiates the ordered head
terms Ω (we start with the head of the rule B) and adds them to ∆1 and Γ1, the
contexts for the newly derived linear and persistent facts, respectively.

Comprehensions are derived by non-deterministically deciding to apply the compre-
hension (derive N L and derive N R) and then using the match judgment in the rule
derive comp. We note that the HLD semantics do not take distribution into account, since
we assume that the database is global. We do not deal with unification or quantifiers
since this is a well understood problem (Baader and Siekmann 1994).

Low Level Dynamic Semantics The Low Level Dynamic (LLD) Semantics shown in Ap-
pendix C improve upon HLD by adding rule priorities, by removing non-determinism
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apply Γ; ∆; R→ Ξ′; ∆′; Γ′

run Γ; ∆; R,Φ→ Ξ′; ∆′; Γ′
run rule

match Γ; ∆→ A derive Γ; ∆′′; ∆; ·; ·; B→ Ξ′; ∆′; Γ′

apply Γ; ∆,∆′′; A ( B→ Ξ′; ∆′; Γ′
apply rule

match Γ; · → 1
match 1

match Γ; p→ p
match p

match Γ, p; · → !p
match !p

match Γ; ∆1 → A match ∆2 → B
match Γ; ∆1,∆2 → A ⊗ B

match ⊗

derive Γ; ∆; Ξ; Γ1; p,∆1; Ω→ Ξ′; ∆′; Γ′

derive Γ; ∆; Ξ; Γ1; ∆1; p,Ω→ Ξ′; ∆′; Γ′
derive p

derive Γ; ∆; Ξ; Γ1, p; ∆1; Ω→ Ξ′; ∆′; Γ′

derive Γ; ∆; Ξ; Γ1; ∆1; !p,Ω→ Ξ′; ∆′; Γ′
derive !p

derive Γ; ∆; Ξ; Γ1; ∆1; A,B,Ω→ Ξ′; ∆′; Γ′

derive Γ; ∆; Ξ; Γ1; ∆1; A ⊗ B,Ω→ Ξ′; ∆′; Γ′
derive ⊗

derive Γ; ∆; Ξ; Γ1; ∆1; Ω→ Ξ′; ∆′; Γ′

derive Γ; ∆; Ξ; Γ1; ∆1; 1,Ω→ Ξ′; ∆′; Γ′
derive 1

derive Γ; ∆; Ξ′; Γ′; ∆′; · → Ξ′; ∆′; Γ′
derive end

match Γ; ∆a → A derive Γ; ∆b; Ξ,∆a; Γ1; ∆1; B,Ω→ Ξ′; ∆′; Γ′

derive Γ; ∆a,∆b; Ξ; Γ1; ∆1; A ( B,Ω→ Ξ′; ∆′; Γ′
derive (

derive Γ; ∆; Ξ; Γ1; ∆1; 1 N (A ( B ⊗ comp A ( B),Ω→ Ξ′; ∆′; Γ′

derive Γ; ∆; Ξ; Γ1; ∆1; comp A ( B,Ω→ Ξ′; ∆′; Γ′
derive comp

derive Γ; ∆; Ξ; Γ1; ∆1; A,Ω→ Ξ′; ∆′; Γ′

derive Γ; ∆; Ξ; Γ1; ∆1; A N B,Ω→ Ξ′; ∆′; Γ′
derive N L

derive Γ; ∆; Ξ; Γ1; ∆1; B,Ω→ Ξ′; ∆′; Γ′

derive Γ; ∆; Ξ; Γ1; ∆1; A N B,Ω→ Ξ′; ∆′; Γ′
derive N R

Fig. 5. High Level Dynamic Semantics.

when matching the body of rules by modeling all the matching steps and by applying
comprehensions or aggregates as many times as the database allows. Selectors can also
be trivially implemented in LLD, although they are not shown in paper.

In LLD we try all the rules in order. For each rule, we use a continuation stack to store the
continuation frames created by each fact template p present in the body of the rule. Each
frame considers all the facts relevant to the template given the current variable bindings
(matchLLD rules), that may or not fail during the remaining matching process. If we fail,
we backtrack to try other alternatives (through contLLD rules). If the continuation stack
becomes empty, we backtrack to try the next rule (rule contLLD next rule). When we
succeed the facts consumed are known (matchLLD end).

The derivation process in LLD is similar to the one used in HDL, except for the case of
comprehensions or aggregates. For such cases (deriveLLD comp), we need to create a con-
tinuation stack and start matching the body of the expression as we did before. When we
match the body (matchLLDc judgment), we fully derive the head (deriveLLDc judgment)
and then we reuse the continuation stack to find which other combinations of the
database facts can be consumed (deriveLLDc end). By definition, the continuation stack
contains enough information to go through all combinations in the database.

However, in order to reuse the stack, we need to fix it by removing all the frames
pushed after the first continuation frame of a linear fact. If we tried to use those frames,
we would assumed that the linear facts used by the other frames were still in the database,
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but that is not true because they have been consumed during the first application of the
comprehension. For example, if the body is !a(X), b(X), c(X) and the continuation stack
has three frames (one per fact), we cannot backtrack to the frame of c(X) since at that
point the matching process was assuming that the previous b(X) linear fact was still
available. Moreover, we also remove the consumed linear facts from the frames of b(X)
and !a(X) in order to make the stack fully consistent with the new database. This is
performed by rules using the updateLLD and fixLLD judgments.

We finally stop applying the comprehension when the continuation stack is empty
(contLLDc end). Aggregates use the same mechanism as comprehensions, however we
also need to keep track of the accumulated value.

Soundness The soundness theorem proves that if a rule was successfully derived in the
LLD semantics then it can also be derived in the HLD semantics. The completeness
theorem cannot be proven since LLD lacks the non-determinism inherent in HLD.

We need prove to prove matching and derivation soundness of LLD in relation to
HLD. The matching soundness lemma uses induction on the size of the continuation
frames, the size of the continuation stack and the size of terms to match.

The derivation soundness lemma is trivial except for the case of comprehensions
and aggregates. For such cases we use a modified version of the matching soundness
theorem applied to the comprehension’s body. It gives us n match and n derive proofs
(for maximality) that are used to rebuild the full derivation proof in HLD. This theorem
is proved by induction on the size of the continuation stack and continuation frames and
uses lemmas that prove the correctness of the continuation stack after each application.3

6 Concurrency

Due to the restrictions on LM rules and the partitioning of facts across the graph, nodes
are able to run rules independently without using other node’s facts. Node computation
follows a don’t care or committed choice non-determinism since any node can be picked to
run as long as it contains enough facts to fire a derivation rule. Facts coming from other
nodes will arrive in order of derivation but may be considered partially and there is no
particular order among the neighborhood. To improve concurrency, the programmer is
encouraged to write rules that take advantage of non-deterministic execution.

LM programs can then be made parallel by simply processing many nodes simultane-
ously. Our implementation partitions the graph of N nodes into P subgraphs and then
each processing unit will work on its subgraph. For improved load balancing we use
node stealing during starvation. Our results show that LM programs running on mul-
ticores have good scalability. The implementation of the compiler and virtual machine
and the analysis of experimental results will be presented in a future paper.

7 Related Work

To the best of our knowledge, LM is the first bottom-up linear logic programming
language that is intended to be executed over graph structures. Although there are a few

3 Details can be found in https://github.com/flavioc/formal-meld/blob/master/doc.pdf?raw=true.
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logic programming languages such as P2 (Loo et al. 2006), Meld (Ashley-Rollman et al.
2009), or Dedalus (Alvaro et al. 2009) that already do this, they are based on classical
logic, where facts are persistent. For most of these systems, there is no concept of state,
except for Dedalus where state is modeled as time.

Linear logic has been used in the past as a basis for logic-based programming lan-
guages (Miller 1985), including bottom-up and top-down programming languages. Lolli,
a programming language presented in (Hodas and Miller 1994), is based on a fragment
of intuitionistic linear logic and proves goals by lazily managing the context of linear
resources during top-down proof search. LolliMon (López et al. 2005) is a concurrent lin-
ear logic programming language that integrates both bottom-up and top-down search,
where top-down search is done sequentially but bottom-up computations, which are
encapsulated inside a monad, can be performed concurrently. Programs start by per-
forming top-down search but this can be suspended in order to perform bottom-up
search. This concurrent bottom-up search stops until a fix-point is achieved, after which
top-down search is resumed. LolliMon is derived from the concurrent logical framework
called CLF (Watkins et al. 2004; Cervesato et al. 2002; Watkins et al. 2003).

Since LM is a bottom-up linear logic programming language, it also shares similarities
with Constraint Handling Rules (CHR) (Betz and Frühwirth 2005; Betz and Frühwirth
2013). CHR is a concurrent committed-choice constraint language used to write con-
straint solvers. A CHR program is a set of rules and a set of constraints. Constraints can
be consumed or generated during the application of rules. Unlike LM, in CHR there is no
concept of rule priorities, but there is an extension to CHR that supports them (De Kon-
inck et al. 2007). Finally, there is also a CHR extension that adds persistent constraints
and it has been proven to be sound and complete (Betz et al. 2010).

Graph Transformation Systems (GTS) (Ehrig and Padberg 2004), commonly used to
model distributed systems, perform rewriting of graphs through a set of graph produc-
tions. GTS also introduces concepts of concurrency, where it may be possible to apply
several transformations at the same time. In principle, it should be possible to model LM
programs as a graph transformation: we directly map the LM graph of nodes to GTS’s
initial graph and consider logical facts as nodes that are connected to LM’s nodes. Each
LM rule is then a graph production that manipulates the node’s neighbors (the database)
or sends new facts to other nodes. On the other hand, it is also possible to embed GTS
inside CHR (Raiser and Frühwirth 2011).

8 Closing Remarks

In this paper, we have presented LM, a new linear logic programming language designed
with concurrency in mind. LM is a bottom-up logic language that can naturally model
state due to its foundations on linear logic. We presented several LM programs that show
the viability of linear logic programming to solve interesting graph-based problems.

We also gave an overview of the formal system behind LM, namely, the fragment
of linear logic used in the language, along with the high level and low level dynamic
semantics. While the former is closely tied to linear logic, the latter is closer to a real
implementation. The low level semantics can be used as a blueprint for someone that
intends to implement LM.
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Appendix A N-Queens program

1 type left(node, node).
2 type right(node, node).
3 type down-right(node, node).
4 type down-left(node, node).
5 type coord(node, int, int).
6 type linear propagate-left(node, list node, list int).
7 type linear propagate-right(node, list node, list int).
8 type linear test-and-send-down(node, list node, list int).
9 type linear test-y(node, int, list int, list node, list int).

10 type linear test-diag-left(node, int, int, list int, list node, list int).
11 type linear test-diag-right(node, int, int, list int, list node, list int).
12 type linear send-down(node, list node, list int).
13 type linear final-state(node, list node, list int).
14

15 propagate-right(@0, [], []).
16

17 propagate-left(A, Nodes, Coords)
18 -o {L | !left(A, L), L <> A | propagate-left(L, Nodes, Coords)}, test-and-send-down(A, Nodes, Coords).
19 propagate-right(A, Nodes, Coords)
20 -o {R | !right(A, R), R <> A | propagate-right(R, Nodes, Coords)}, test-and-send-down(A, Nodes, Coords).
21

22 test-and-send-down(A, Nodes, Coords), !coord(A, X, Y)
23 -o test-y(A, Y, Coords, Nodes, Coords).
24

25 // test if we have a queen on this column
26 test-y(A, Y, [], Nodes, Coords), !coord(A, OX, OY)
27 -o test-diag-left(A, OX - 1, OY - 1, Coords, Nodes, Coords).
28 test-y(A, Y, [X, Y1 | RestCoords], Nodes, Coords), Y = Y1
29 -o 1. // fail
30 test-y(A, Y, [X, Y1 | RestCoords], Nodes, Coords), Y <> Y1 -o
31 test-y(A, Y, RestCoords, Nodes, Coords).
32

33 // test if we have a queen on the left diagonal
34 test-diag-left(A, X, Y, _, Nodes, Coords), X < 0 || Y < 0, !coord(A, OX, OY)
35 -o test-diag-right(A, OX - 1, OY + 1, Coords, Nodes, Coords).
36 test-diag-left(A, X, Y, [X1, Y1 | RestCoords], Nodes, Coords), X = X1, Y = Y1
37 -o 1. // fail
38 test-diag-left(A, X, Y, [X1, Y1 | RestCoords], Nodes, Coords), X <> X1 || Y <> Y1
39 -o test-diag-left(A, X - 1, Y - 1, RestCoords, Nodes, Coords).
40

41 // test if we have a queen on the right diagonal
42 test-diag-right(A, X, Y, [], Nodes, Coords), X < 0 || Y >= size, !coord(A, OX, OY)
43 -o send-down(A, [A | Nodes], [OX, OY | Coords]). // add new queen
44 test-diag-right(A, X, Y, [X1, Y1 | RestCoords], Nodes, Coords), X = X1, Y = Y1
45 -o 1. // fail
46 test-diag-right(A, X, Y, [X1, Y1 | RestCoords], Nodes, Coords), X <> X1 || Y <> Y1
47 -o test-diag-right(A, X - 1, Y + 1, RestCoords, Nodes, Coords).
48

49 send-down(A, Nodes, Coords), !coord(A, size - 1, _)
50 -o final-state(A, Nodes, Coords).
51

52 send-down(A, Nodes, Coords)
53 -o {B | !down-right(A, B), B <> A | propagate-right(B, Nodes, Coords)},
54 {B | !down-left(A, B), B <> A | propagate-left(B, Nodes, Coords)}.
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Appendix B Linear Logic fragment used in LM

Ψ; Γ; · ⇒ 1 1R
Ψ; Γ; ∆⇒ C

Ψ; Γ; ∆, 1⇒ C 1L

Ψ; Γ; ∆⇒ A Γ; ∆⇒ B
Ψ; Γ; ∆⇒ A N B

NR
Ψ; Γ; ∆,A⇒ C

Ψ; Γ; ∆,A N B⇒ C
NL1

Ψ; Γ; ∆,B⇒ C
Ψ; Γ; ∆,B N B⇒ C

NL2

Ψ; Γ; ∆⇒ A Γ; ∆⇒ B
Ψ; Γ; ∆,∆′ ⇒ A ⊗ B ⊗R

Ψ; Γ; ∆,A,B⇒ C
Ψ; Γ; ∆,A ⊗ B⇒ C ⊗L

Ψ; Γ; ∆,A⇒ B
Ψ; Γ; ∆⇒ A ( B ( R

Ψ; Γ; ∆⇒ A Ψ; Γ; ∆′,B⇒ C
Γ; ∆,∆′,A ( B⇒ C ( L

Ψ,m : τ; Γ; ∆⇒ A{m/n}
Ψ; Γ; ∆⇒ ∀n : τ.A ∀R

Ψ `M : τ Ψ; Γ; ∆,A{M/n} ⇒ C
Ψ; Γ; ∆,∀n : τ.A⇒ C ∀L

Ψ `M : τ Ψ; Γ; ∆⇒ A{M/n}
Ψ; Γ; ∆⇒ ∃n : τ.A ∃R

Ψ,m : τ; Γ; ∆,A{m/n} ⇒ C
Ψ; Γ; ∆,∃n : τ.A⇒ C ∃L

Ψ; Γ; · ⇒ A
Ψ; Γ; · ⇒ !A !R

Ψ; Γ,A; ∆⇒ C
Ψ; Γ; ∆, !A⇒ C !L

Ψ; Γ,A; ∆,A⇒ C
Ψ; Γ,A; ∆⇒ C

copy

Ψ; Γ; ∆⇒ Bθ A 4

= B A′ � Aθ
Ψ; Γ; ∆⇒ def A′ def R

Ψ; Γ; ∆,Bθ⇒ C A 4

= B A′ � Aθ
Ψ; Γ; ∆,def A′ ⇒ C def L
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Appendix C Low Level Dynamic Semantics

All the judgments in this system share a few arguments, namely:

Γ : Set of persistent facts.
Ξ′ : Multi-set of facts consumed after applying one rule (output).
∆′ : Multi-set of linear facts derived after applying one rule (output).
Γ′ : Set of persistent facts derived after applying one rule (output).

C.1 Application

The whole process is started by the runLLD and applyLLD judgments. The runLLD Γ; ∆; Φ→
Ξ′; ∆′; Γ′ judgment starts with facts ∆ and Γ and an ordered list of rules that can be applied
Φ. The applyLLD Γ; ∆; A ( B; R→ Ξ′; ∆′; Γ′ tries to apply the rule A ( B and stores the
rule continuation R so that if the current rule fails, we can try another one (in order).

matchLLD Γ; ∆; ·; A; B; ·; R→ Ξ′; ∆′; Γ′

applyLLD Γ; ∆; A ( B; R→ Ξ′; ∆′; Γ′
applyLLD start matching

applyLLD Γ; ∆; R; (Φ,∆)→ Ξ′; ∆′; Γ′

runLLD Γ; ∆; R,Φ→ Ξ′; ∆′; Γ′
runLLD rule

C.2 Continuation Frames

Continuation frames are used for backtracking in the matching process.

C.2.1 Persistent Frame

A persistent frame has the form [Γ′; ∆; Ξ; !p; Ω; Λ; Υ], where:

∆ : Remaining multi-set of linear facts.
Ξ : Multi-set of linear facts we have consumed to reach this point.
!p : Current fact expression that originated this choice point.
Ω : Remaining terms we need to match past this choice point. This is an ordered list.
Λ : Multi-set of linear fact expressions that we have matched to reach this choice

point. All the linear facts that match these terms are located in Ξ.
Υ : Multi-set of persistent fact expressions that we matched up to this point.

C.2.2 Linear Frame

A linear frame has the form (∆; ∆′; Ξ; p; Ω; Λ; Υ), where:

∆ : Multi-set of linear facts that are not of type p plus all the other p’s we have already
tried, including the current p.

∆′ : All the other p’s we haven’t tried yet. It is a multi-set of linear facts.
Ξ : Multi-set of linear facts we have consumed to reach this point.
p : Current fact expression that originated this choice point.

Ω : Remaining terms we need to match past this choice point. This is an ordered list.



18 Flavio Cruz, Ricardo Rocha, Seth Copen Goldstein and Frank Pfenning

Λ : Multi-set of linear fact expressions that we have matched to reach this choice
point. All the linear facts that match these terms are located in Ξ.

Υ : Multi-set of persistent fact expressions that we matched up to this point.

C.3 Match

The matching judgment uses the form matchLLD Γ; ∆; Ξ; Ω; H; C; R→ Ξ′; ∆′; Γ′ where:

∆ : Multi-set of linear facts still available to complete the matching process.
Ξ : Multi-set of linear facts consumed up to this point.
Ω : Ordered list of terms we want to match.
H : Head of the rule.
C : Ordered list of frames representing the continuation stack.
R : Rule continuation. If the matching process fails, we try another rule.

Matching will attempt to use facts from ∆ and Γ to match the terms of the body of the
rule represented as Ω. During this process continuation frames are pushed into C. If the
matching process fails, we use the continuation stack through the contLLD judgment.

matchLLD Γ; ∆,∆′′; Ξ, p1; Ω; H; (∆, p1; ∆′′; p; Ω; Ξ; ·; ·); R→ Ξ′; ∆′; Γ′

matchLLD Γ; ∆, p1,∆′′; Ξ; p,Ω; H; ·; R→ Ξ′; ∆′; Γ′
matchLLD p ok f irst

matchLLD Γ; ∆,∆′′; Ξ, p1; Ω; H; (∆, p1; ∆′′; p; Ω; Ξ; q,Λ; Υ),C1,C; R→ Ξ′; ∆′; Γ′

C1 = (∆old; ∆′old; q; Ωold; Ξold; Λ; Υ)

matchLLD Γ; ∆, p1,∆′′; Ξ; p,Ω; H; C1,C; R→ Ξ′; ∆′; Γ′
matchLLD p ok other q

matchLLD Γ; ∆,∆′′; Ξ, p1; Ω; H; (∆, p1; ∆′′; p; Ω; Ξ; Λ; q,Υ),C1,C; R→ Ξ′; ∆′; Γ′

C1 = [Γold; ∆old; !q; Ωold; Ξold; Λ; Υ]

matchLLD Γ; ∆, p1,∆′′; Ξ; p,Ω; H; C1,C; R→ Ξ′; ∆′; Γ′
matchLLD p ok other !q

p < ∆ contLLD C; H; R; Γ; Ξ′; ∆′; Γ′

matchLLD Γ; ∆; Ξ; p,Ω; H; C; R→ Ξ′; ∆′; Γ′
matchLLD p f ail

matchLLD Γ, p1,Γ′′; ∆; Ξ; Ω; H; [Γ′′; ∆; !p; Ω; Ξ; ·; ·]; R→ Ξ′; ∆′; Γ′

matchLLD Γ, p1,Γ′′; ∆; Ξ; !p,Ω; H; ·; R→ Ξ′; ∆′; Γ′
matchLLD !p ok f irst

matchLLD Γ, p1,Γ
′′; ∆; Ξ; Ω; H; [Γ′′; ∆; !p; Ω; Ξ; q,Λ; Υ],C1,C; R→ Ξ′; ∆′; Γ′

C1 = (∆old; ∆′old; q; Ωold; Ξold; Λ; Υ)

matchLLD Γ, p1,Γ′′; ∆; Ξ; !p,Ω; H; C1,C; R→ Ξ′; ∆′; Γ′
matchLLD !p ok other q

matchLLD Γ, p1,Γ
′′; ∆; Ξ; Ω; H; [Γ′′; ∆; !p; Ω; Ξ; Λ; q,Υ],C1,C; R→ Ξ′; ∆′; Γ′

C1 = [Γold; ∆old; !q; Ωold; Ξold; Λ; Υ]

matchLLD Γ, p1,Γ′′; ∆; Ξ; !p,Ω; H; C1,C; R→ Ξ′; ∆′; Γ′
matchLLD !p ok other !q

!p < Γ contLLD C; H; R; Γ; Ξ′; ∆′; Γ′

matchLLD Γ; ∆; Ξ; !p,Ω; H; C; R→ Ξ′; ∆′; Γ′
matchLLD !p f ail

matchLLD Γ; ∆; Ξ; A,B,Ω; H; C; R→ Ξ′; ∆′; Γ′

matchLLD Γ; ∆; Ξ; A ⊗ B,Ω; H; C; R→ Ξ′; ∆′; Γ′
matchLLD ⊗

deriveLLD Γ; ∆; Ξ; ·; H; · → Ξ′; ∆′; Γ′

matchLLD Γ; ∆; Ξ; ·; H; C; R→ Ξ′; ∆′; Γ′
matchLLD end
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C.4 Continuation

If the previous matching process fails, we pick the top frame from the stack C and restore
the matching process using another fact and/or context. The continuation judgment
contLLD C; H; R; Γ; Ξ′; ∆′; Γ′ deals with the backtracking process where the meaning of
each argument is as follows:

C : Continuation stack.
H : Head of the current rule we are trying to match.
R : Next available rules if the current one does not match.

runLLD Γ; ∆; Φ→ Ξ′; ∆′; Γ′

contLLD ·; H; (Φ,∆); Γ; Ξ′; ∆′; Γ′
contLLD next rule

matchLLD Γ; ∆,∆′′; Ξ, p1; Ω; H; (∆, p1; ∆′′; p,Ω; H; Ξ; Λ; Υ),C; R→ Ξ′; ∆′; Γ′

contLLD (∆; p1,∆′′; p,Ω; Ξ; Λ; Υ),C; H; R; Γ; Ξ′; ∆′; Γ′
contLLD p next

contLLD C; H; R; Γ; Ξ′; ∆′; Γ′

contLLD (∆; ·; p,Ω; Ξ; Λ; Υ),C; H; R; Γ; Ξ′; ∆′; Γ′
contLLD p no more

matchLLD Γ; ∆; Ξ; Ω; H; [Γ′; ∆; !p,Ω; Ξ; Λ; Υ],C; R→ Ξ′; ∆′; Γ′

contLLD [p1,Γ′; ∆; !p,Ω; Ξ; Λ; Υ],C; H; R; Γ; Ξ′; ∆′; Γ′
contLLD !p next

contLLD C; H; R; Γ; Ξ′; ∆′; Γ′

contLLD [·; ∆; !p,Ω; Ξ; Λ; Υ],C; H; R; Γ; Ξ′; ∆′; Γ′
contLLD !p no more

C.5 Derivation

Once the list of terms Ω in the matchLLD judgment is exhausted, we derive the terms of
the head of rule. The derivation judgment uses the form deriveLLD Γ; ∆; Ξ; Γ1; ∆1; Ω →
Ξ′; ∆′; Γ′:

∆ : Multi-set of linear facts we started with minus the linear facts consumed during
the matching of the body of the rule.

Ξ : Multi-set of linear facts consumed during the matching of the body of the rule.
Γ1 : Set of persistent facts derived up to this point in the derivation.
∆1 : Multi-set of linear facts derived up to this point in the derivation.
Ω : Remaining terms to derive as an ordered list. We start with B if the original rule

is A ( B.

deriveLLD Γ; ∆; Ξ; Γ1; p,∆1; Ω→ Ξ′; ∆′; Γ′

deriveLLD Γ; ∆; Ξ; Γ1; ∆1; p,Ω→ Ξ′; ∆′; Γ′
deriveLLD p

deriveLLD Γ; ∆; Ξ; Γ1; ∆1; Ω→ Ξ′; ∆′; Γ′

deriveLLD Γ; ∆; Ξ; Γ1; ∆1; 1,Ω→ Ξ′; ∆′; Γ′
deriveLLD 1

deriveLLD Γ; ∆; Ξ; Γ1, p; ∆1; Ω→ Ξ′; ∆′; Γ′

deriveLLD Γ; ∆; Ξ; Γ1; ∆1; !p,Ω→ Ξ′; ∆′; Γ′
deriveLLD !p

deriveLLD Γ; ∆; Ξ; Γ1; ∆1; A,B,Ω→ Ξ′; ∆′; Γ′

deriveLLD Γ; ∆; Ξ; Γ1; ∆1; A ⊗ B,Ω→ Ξ′; ∆′; Γ′
deriveLLD ⊗

deriveLLD Γ; ∆; Ξ; Γ1; ∆1; · → Ξ; ∆1; Γ1
deriveLLD end

matchLLDc Γ; ∆; Ξ; Γ1; ∆1; ·; A; B; ·; ·; comp A ( B; Ω; ∆→ Ξ′; ∆′; Γ′

deriveLLD Γ; ∆; Ξ; Γ1; ∆1; comp A ( B,Ω→ Ξ′; ∆′; Γ′
deriveLLD comp
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C.6 Match Comprehension

The matching process for comprehensions is similar to the process used for matching
the body of the rule, however we use two continuation stacks, C and P. In P, we
put all the initial persistent frames and in C we put the first linear frame and then
everything else. With this we can easily find out the first linear frame and remove
everything that was pushed on top of such frame. The full judgment has the form
matchLLDc Γ; ∆; ΞN; ΓN1; ∆N1; Ξ; Ω; C; P; AB; ΩN; ∆N → Ξ′; ∆′; Γ′:

∆ : Multi-set of linear facts remaining up to this point in the matching process.
ΞN : Multi-set of linear facts used during the matching process of the body of the rule.
ΓN1 : Set of persistent facts derived up to this point in the head of the rule and all the

previous comprehensions.
∆N1 : Multi-set of linear facts derived by the head of the rule and by the previous

comprehensions.
Ξ : Multi-set of linear facts consumed up to this point.
Ω : Ordered list of terms that need to be matched for the comprehension to be applied.
C : Continuation stack that contains both linear and persistent frames. The first frame

must be linear.
P : Initial part of the continuation stack with only persistent frames.

AB : Comprehension comp A ( B that is being matched.
ΩN : Ordered list of remaining terms of the head of the rule to be derived.
∆N : Multi-set of linear facts that were still available after matching the body of the

rule and the previous comprehensions. Note that ∆,Ξ = ∆N.

matchLLDc Γ; ∆,∆′′; ΞN ; ΓN1; ∆N1; Ξ, p1; Ω; (∆, p1; ∆′′; ·; p; Ω; ·; ·); ·; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′

matchLLDc Γ; ∆, p1,∆′′; ΞN ; ΓN1; ∆N1; ·; p,Ω; ·; ·; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′
matchLLDc p ok f irst

matchLLDc Γ; ∆,∆′′; ΞN ; ΓN1; ∆N1; Ξ, p1; Ω; (∆, p1; ∆′′; Ξ; p; Ω; q,Λ; Υ),C1,C; P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′

C1 = (∆old; ∆′old; Ξold; q; Ωold; Λ; Υ)

matchLLDc Γ; ∆, p1,∆′′; ΞN ; ΓN1; ∆N1; Ξ; p,Ω; C1,C; P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′
matchLLDc p ok other q

matchLLDc Γ; ∆,∆′′; ΞN ; ΓN1; ∆N1; Ξ, p1; Ω; (∆, p1; ∆′′; Ξ; p; Ω; Λ; q,Υ),C1,C; P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′

C1 = [Γold; ∆old; Ξold; q; Ωold; Λ; Υ]

matchLLDc Γ; ∆, p1,∆′′; ΞN ; ΓN1; ∆N1; Ξ; p,Ω; C1,C; P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′
matchLLDc p ok other !qC

matchLLDc Γ; ∆,∆′′; ΞN ; ΓN1; ∆N1; p1; Ω; (∆, p1; ∆′′; ·; p; Ω; ·; q,Υ); P1,P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′

P1 = [Γold; ∆N ; ·; q; Ωold; ·; Υ]

∆N = ∆, p1,∆
′′

matchLLDc Γ; ∆, p1,∆′′; ΞN ; ΓN1; ∆N1; ·; p,Ω; ·; P1,P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′
matchLLDc p ok other !qP

p < ∆ contLLDc Γ; ∆N ; ΞN ; ΓN1; ∆N1; C; P; AB; ΩN → Ξ′; ∆′; Γ′

matchLLDc Γ; ∆; ΞN ; ΓN1; ∆N1; Ξ; p,Ω; C; P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′
matchLLDc p f ail

matchLLDc Γ,Γ′′, p; ∆N ; ΞN ; ΓN1; ∆N1; ·; Ω; ·; [Γ′′; ∆N ; ·; !p; ·; Ω; ·; ·]; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′

matchLLDc Γ,Γ′′, p; ∆N ; ΞN ; ΓN1; ∆N1; ·; !p,Ω; ·; ·; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′
matchLLDc !p f irst

matchLLDc Γ,Γ′′, p; ∆N ; ΞN ; ΓN1; ∆N1; ·; Ω; [Γ′′; ∆N ; ·; !p; ·; Ω; ·; q,Υ],P1,P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′

P1 = [Γold; ∆N ; ·; !q; Ωold; ·; Υ]

matchLLDc Γ,Γ′′, p; ∆N ; ΞN ; ΓN1; ∆N1; ·; !p,Ω; ·; P1,P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′
matchLLDc !p other !qP
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matchLLDc Γ,Γ′′, p; ∆; ΞN ; ΓN1; ∆N1; Ξ; Ω; [Γ′′; ∆; Ξ; !p; ·; Ω; Λ; q,Υ],C1,C; P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′

C1 = [Γold; ∆old; Ξold; !q; Ωold; Λ; Υ]

matchLLDc Γ,Γ′′, p; ∆; ΞN ; ΓN1; ∆N1; Ξ; !p,Ω; C1,C; P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′
matchLLDc !p other !qC

matchLLDc Γ,Γ′′, p; ∆; ΞN ; ΓN1; ∆N1; Ξ; Ω; [Γ′′; ∆; Ξ; !p; ·; Ω; Λ, q; Υ],C1,C; P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′

C1 = (∆old; ∆′old; Ξold; q; Ωold; Λ; Υ)

matchLLDc Γ,Γ′′, p; ∆; ΞN ; ΓN1; ∆N1; Ξ; !p,Ω; C1,C; P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′
matchLLDc !p other qC

!p < Γ contLLDc Γ; ∆N ; ΞN ; ΓN1; ∆N1; C; P; AB; ΩN → Ξ′; ∆′; Γ′

matchLLDc Γ; ∆; ΞN ; ΓN1; ∆N1; Ξ; !p,Ω; C; P; AB; ΩN ; ∆N → Ξ′; ∆; Γ′
matchLLDc !p f ail

matchLLDc ∆; ΞN ; ∆N1; Ξ; X,Y,Ω; C; P; AB; ΩN ; ∆N → Ξ′; ∆′

matchLLDc ∆; ΞN ; ∆N1; Ξ; X ⊗ Y,Ω; C; P; AB; ΩN ; ∆N → Ξ′; ∆′
matchLLDc ⊗

matchLLDc ∆; ΞN ; ∆N1; Ξ; Ω; C; P; AB; ΩN ; ∆N → Ξ′; ∆′

matchLLDc ∆; ΞN ; ∆N1; Ξ; 1,Ω; C; P; AB; ΩN ; ∆N → Ξ′; ∆′
matchLLDc 1

fixLLD Γ; ΞN ; ΓN1; ∆N1; Ξ; C; P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′

matchLLDc Γ; ∆; ΞN ; ΓN1; ∆N1; Ξ; ·; C; P; AB; ΩN ; ∆N → Ξ′; ∆′; Γ′
matchLLDc end

C.7 Match Comprehension Continuation

If the matching process fails, we need to backtrack to the previous frame and re-
store the matching process at that point. The judgment that backtracks has the form
contLLDc Γ; ∆N; ΞN; ∆N1; C; P; AB; ΩN → Ξ′; ∆′; Γ′:

∆N : Multi-set of linear facts that were still available after matching the body of the
rule.

ΞN : Multi-set of linear facts used to match the body of the rule and all the previous
comprehensions.

ΓN1 : Set of persistent facts derived by the head of the rule and all the previous com-
prehensions.

∆N1 : Multi-set of linear facts derived by the head of the rule and all the previous
comprehensions.

C,P : Continuation stacks.
AB : Comprehension comp A ( B that is being matched.
ΩN : Ordered list of remaining terms of the head of the rule to be derived.

deriveLLD Γ; ∆N; ΞN; ΓN1; ∆N1; Ω→ Ξ′; ∆′; Γ′

contLLDc Γ; ∆N; ΞN; ΓN1; ∆N1; ·; ·; comp A ( B; Ω→ Ξ′; ∆′; Γ′
contLLDc end

matchLLDc Γ; ∆; ΞN; ΓN1; ∆N1; Ξ; Ω; (∆, p1; ∆′′; Ξ; p; Ω; Λ; Υ),C; P; AB; ΩN; ∆N → Ξ′; ∆′; Γ′

contLLDc Γ; ∆N; ΞN; ΓN1; ∆N1; (∆; p1,∆′′; Ξ; p; Ω; Λ; Υ),C; P; AB; ΩN → Ξ′; ∆′; Γ′
contLLDc nextC p

matchLLDc Γ; ∆; ΞN; ΓN1; ∆N1; Ξ; Ω; [Γ′; ∆; Ξ; !p; Ω; Λ; Υ],C; P; AB; ΩN; ∆N → Ξ′; ∆′; Γ′

contLLDc Γ; ∆N; ΞN; ΓN1; ∆N1; [p1,Γ′; ∆; Ξ; !p; Ω; Λ; Υ],C; P; AB; ΩN → Ξ′; ∆′; Γ′
contLLDc nextC !p
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contLLDc Γ; ∆N; ΞN; ΓN1; ∆N1; C; P; AB; ΩN → Ξ′; ∆′; Γ′

contLLDc Γ; ∆N; ΞN; ΓN1; ∆N1; (∆; ·; Ξ; p; Ω; Λ; Υ),C; P; AB; ΩN → Ξ′; ∆′; Γ′
contLLDc nextC empty p

contLLDc Γ; ∆N; ΞN; ΓN1; ∆N1; C; P; AB; ΩN → Ξ′; ∆′; Γ′

contLLDc Γ; ∆N; ΞN; ΓN1; ∆N1; [·; ∆; Ξ; !p; Ω; Λ; Υ],C; P; AB; ΩN → Ξ′; ∆′; Γ′
contLLDc nextC empty !p

matchLLDc Γ; ∆N; ΞN; ΓN1; ∆N1; ·; Ω; ·; [Γ′; ∆N; ·; !p; Ω; ·; Υ],P; AB; ΩN; ∆N → Ξ′; ∆′; Γ′

contLLDc Γ; ∆N; ΞN; ΓN1; ∆N1; ·; [p1,Γ′; ∆N; ·; !p; Ω; ·; Υ],P; AB; ΩN → Ξ′; ∆′; Γ′
contLLDc nextP !p

contLLDc Γ; ∆N; ΞN; ΓN1; ∆N1; ·; P; AB; ΩN → Ξ′; ∆′; Γ′

contLLDc Γ; ∆N; ΞN; ΓN1; ∆N1; ·; [·; ∆N; ·; !p; Ω; ·; Υ],P; AB; ΩN → Ξ′; ∆′; Γ′
contLLDc nextP empty !p

C.8 Stack Transformation

After a comprehension is matched and before we derive the head of such comprehension,
we need to ”fix” the continuation stack. In a nutshell, we remove all the frames except
the first linear frame and remove the consumed linear facts from the remaining frames
so that they are still valid for the next application of the comprehension. The judgment
that fixes the stack has the form fixLLD Γ; ΞN; ΓN1; ∆N1; Ξ; C; P; AB; ΩN; ∆N → Ξ′; ∆′; Γ′:

ΞN : Multi-set of linear facts used during the matching process of the body of the rule.
ΓN1 : Set of persistent facts derived by the head of the rule and all the previous com-

prehensions.
∆N1 : Multi-set of linear facts derived by the head of the rule and all the previous

comprehensions.
Ξ : Multi-set of linear facts consumed by the previous application of the comprehen-

sion.
C,P : Continuation stacks for the comprehension.
AB : Comprehension comp A ( B that is being matched.
ΩN : Ordered list of remaining terms of the head of the rule to be derived.
∆N : Multi-set of linear facts that were still available after matching the body of the

rule and all the previous comprehensions.

updateLLD Ξ; P; P′

updateLLD Ξ; [Γ′; ∆N ; ·; !p; Ω; ·; Υ],P; [Γ′; ∆N − Ξ; ·; !p,Ω; ·; Υ],P′
updateLLD

updateLLD Ξ; ·; ·
updateLLD Ξ; ·; ·

updateLLD end

updateLLD Ξ; P; P′

deriveLLDc Γ; ΞN ,Ξ; ΓN1; ∆N1; (∆x − Ξ; ∆′′ − Ξ; ·; p; Ω; ·; Υ); P′; comp A ( B; ΩN ; (∆N − Ξ)→ Ξ′; ∆′; Γ′

fixLLD Γ; ΞN ; ΓN1; ∆N1; Ξ; (∆x; ∆′′; ·; p; Ω; ·; Υ); P; comp A ( B; ΩN ; ∆N → Ξ′; ∆′; Γ′
fixLLD end linear

updateLLD Ξ; P; P′

deriveLLDc Γ; ΞN ,Ξ; ΓN1; ∆N1; ·; P′; comp A ( B; ΩN ; (∆N − Ξ)→ Ξ′; ∆′; Γ′

fixLLD Γ; ΞN ; ΓN1; ∆N1; Ξ; ·; P; comp A ( B; ΩN ; ∆N → Ξ′; ∆′; Γ′
fixLLD end empty
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fixLLD Γ; ΞN ; ΓN1; ∆N1; Ξ; X,C; P; comp A ( B; ΩN ; ∆N → Ξ′; ∆′; Γ′

fixLLD Γ; ΞN ; ΓN1; ∆N1; Ξ; ,X,C; P; comp A ( B; ΩN ; ∆N → Ξ′; ∆′; Γ′
fixLLD more

C.9 Comprehension Derivation

After the fixing process, we start deriving the head of the comprehension. All the facts de-
rived go directly to Γ1 and ∆1. The judgment has the form deriveLLDc Γ; Ξ; Γ1; ∆1; Ω; C; P; AB; ΩN; ∆N →

Ξ′; ∆′; Γ′:

Ξ : Multi-set of linear facts consumed both by the body of the rule and all the
comprehension applications.

Γ1 : Set of persistent facts derived by the head of the rule and comprehensions.
∆1 : Multi-set of linear facts derived by the head of the rule and comprehensions.
Ω : Ordered list of terms to derive.

C,P : New continuation stacks.
AB : Comprehension comp A ( B that is being derived.
ΩN : Ordered list of remaining terms of the head of the rule to be derived.
∆N : Multi-set of remaining linear facts that can be used for the next comprehension

applications.

deriveLLDc Γ; Ξ; Γ1; ∆1, p; Ω; C; P; comp A ( B; ΩN; ∆N → Ξ′; ∆′; Γ′

deriveLLDc Γ; Ξ; Γ1; ∆1; p,Ω; C; P; comp A ( B; ΩN; ∆N → Ξ′; ∆′; Γ′
deriveLLDc p

deriveLLDc Γ; Ξ; Γ1, p; ∆1; Ω; C; P; comp A ( B; ΩN; ∆N → Ξ′; ∆′; Γ′

deriveLLDc Γ; Ξ; Γ1; ∆1; !p,Ω; C; P; comp A ( B; ΩN; ∆N → Ξ′; ∆′; Γ′
deriveLLDc !p

deriveLLDc Γ; Ξ; Γ1; ∆1; A,B,Ω; C; P; comp A ( B; ΩN; ∆N → Ξ′; ∆′; Γ′

deriveLLDc Γ; Ξ; Γ1; ∆1; A ⊗ B,Ω; C; P; comp A ( B; ΩN; ∆N → Ξ′; ∆′; Γ′
deriveLLDc ⊗

deriveLLDc Γ; Ξ; Γ1; ∆1; Ω; C; P; comp A ( B; ΩN; ∆N → Ξ′; ∆′; Γ′

deriveLLDc Γ; Ξ; Γ1; ∆1; 1,Ω; C; P; comp A ( B; ΩN; ∆N → Ξ′; ∆′; Γ′
deriveLLDc 1

contLLDc Γ; ∆N; Ξ; Γ1; ∆1; C; P; comp A ( B; ΩN → Ξ′; ∆′; Γ′

deriveLLDc Γ; Ξ; Γ1; ∆1; ·; C; P; comp A ( B; ΩN; ∆N → Ξ′; ∆′; Γ′
deriveLLDc end


