
1

March 18, 2003
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Blending
Display Color Models
Filters
Dithering
Image Compression

Image Processing

15-462 Computer Graphics I
Lecture 15

03/18/2003 15-462 Graphics I 2

Blending

• Frame buffer
– Simple color model: R, G, B; 8 bits each
– α-channel A, another 8 bits

• Alpha determines opacity, pixel-by-pixel
– α = 1: opaque
– α = 0: transparent

• Blend translucent objects during rendering
• Achieve other effects (e.g., shadows)

03/18/2003 15-462 Graphics I 3

Image Compositing

• Compositing operation
– Source: s = [sr sg sb sa]
– Destination: d = [dr dg db da]
– b = [br bg bb ba] source blending factors
– c = [cr cg cb ca] destination blending factors
– d’ = [brsr + crdr bgsg + cgdg bbsb + cbdb basa + cada]

• Overlay n images with equal weight
– Set α-value for each pixel in each image to 1/n
– Source blending factor is “α”
– Destination blending factor is “1”

03/18/2003 15-462 Graphics I 4

Blending in OpenGL

• Enable blending

• Set up source and destination factors

• Source and destination choices
– GL_ONE, GL_ZERO
– GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
– GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA

glEnable(GL_BLEND);

glBlendFund(source_factor, dest_factor);

03/18/2003 15-462 Graphics I 5

Blending Errors

• Operations are not commutative
• Operations are not idempotent
• Interaction with hidden-surface removal

– Polygon behind opaque one should be culled
– Translucent in front of others should be composited
– Solution: make z-buffer read-only for translucent

polygons with glDepthMask(GL_FALSE);

03/18/2003 15-462 Graphics I 6

Antialiasing Revisited

• Single-polygon case first
• Set α-value of each pixel to covered fraction
• Use destination factor of “1 – α”
• Use source factor of “α”
• This will blend background with foreground
• Overlaps can lead to blending errors

2

03/18/2003 15-462 Graphics I 7

Antialiasing with Multiple Polygons

• Initially, background color C0, α0 = 0
• Render first polygon; color C1 fraction α1

– Cd = (1 – α1)C0 + α1C1

– αd = α1

• Render second polygon; assume fraction α2

• If no overlap (a), then
– C’d = (1 – α2)Cd + α2C2

– α’d = α1 + α2

03/18/2003 15-462 Graphics I 8

Antialiasing with Overlap

• Now assume overlap (b)
• Average overlap is α1α2

• So αd = α1 + α2 – α1α2

• Make front/back decision for color as usual

03/18/2003 15-462 Graphics I 9

Antialiasing in OpenGL

• Avoid explicit α-calculation in program
• Enable both smoothing and blending

glEnable(GL_POINT_SMOOTH);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

03/18/2003 15-462 Graphics I 10

Outline

• Blending
• Display Color Models
• Filters
• Dithering
• Image Compression

03/18/2003 15-462 Graphics I 11

Displays and Framebuffers

• Image stored in memory as 2D pixel array,
called framebuffer

• Value of each pixel controls color
• Video hardware scans the framebuffer at 60Hz
• Depth of framebuffer is information per pixel

– 1 bit: black and white display (cf. Smithsonian)
– 8 bit: 256 colors at any given time via colormap
– 16 bit: 5, 6, 5 bits (R,G,B), 216 = 65,536 colors
– 24 bit: 8, 8, 8 bits (R,G,B), 224 = 16,777,216 colors

03/18/2003 15-462 Graphics I 12

Fewer Bits: Colormaps

• Colormaps typical for 8 bit framebuffer depth
• With screen 1024 * 768 = 786432 = 0.75 MB
• Each pixel value is index into colormap
• Colormap is array of RGB values, 8 bits each
• All 224 colors can be represented
• Only 28 = 256 at a time
• Poor approximation of full color
• Who owns the colormap?
• Colormap hacks: affect image w/o changing

framebuffer (only colormap)

3

03/18/2003 15-462 Graphics I 13

More Bits: Graphics Hardware

• 24 bits: RGB
• + 8 bits: A (α-channel for opacity)
• + 16 bits: Z (for hidden-surface removal)
• * 2: double buffering for smooth animation
• = 96 bits
• For 1024 * 768 screen: 9 MB

03/18/2003 15-462 Graphics I 14

Image Processing

• 2D generalization of signal processing
• Image as a two-dimensional signal
• Point processing: modify pixels independently
• Filtering: modify based on neighborhood
• Compositing: combine several images
• Image compression: space-efficient formats
• Other topics (not in this course)

– Image enhancement and restoration
– Computer vision

03/18/2003 15-462 Graphics I 15

Outline

• Blending
• Display Color Models
• Filters
• Dithering
• Image Compression

03/18/2003 15-462 Graphics I 16

Point Processing

• Input: a(x,y); Output: b(x,y) = f(a(x,y))
• Useful for contrast adjustment, false colors
• Examples for grayscale, 0 · v · 1

– f(v) = v (identity)
– f(v) = 1-v (negate image)
– f(v) = vp, p < 1 (brighten)
– f(v) = vp, p > 1 (darken)

• Gamma correction compensates
monitor brightness loss

v

f(v)

03/18/2003 15-462 Graphics I 17

Gamma Correction Example

Γ = 1.0; f(v) = v Γ = 0.5; f(v) = v1/0.5 = v2 Γ = 2.5; f(v) = v1/2.5 = v0.4

03/18/2003 15-462 Graphics I 18

Signals and Filtering

• Audio recording is 1D signal: amplitude(t)
• Image is a 2D signal: color(x,y)
• Signals can be continuous or discrete
• Raster images are discrete

– In space: sampled in x, y
– In color: quantized in value

• Filtering: a mapping from signal to signal

4

03/18/2003 15-462 Graphics I 19

Linear and Shift-Invariant Filters

• Linear with respect to input signal
• Shift-invariant with respect to parameter
• Convolution in 1D

– a(t) is input signal
– b(s) is output signal
– h(u) is filter
– Shorthand: b = a h (= h a, as an aside)

• Convolution in 2D

03/18/2003 15-462 Graphics I 20

Filters with Finite Support

• Filter h(u,v) is 0 except in given region
• Represent h in form of a matrix
• Example: 3 £ 3 blurring filter

• As function

• In matrix form

03/18/2003 15-462 Graphics I 21

Blurring Filters

• Average values of surrounding pixels
• Can be used for anti-aliasing
• Size of blurring filter should be odd
• What do we do at the edges and corners?
• For noise reduction, use median, not average

– Eliminates intensity spikes
– Non-linear filter

03/18/2003 15-462 Graphics I 22

Examples of Blurring Filter

Original Image Blur 3x3 mask Blur 7x7 mask

Pictures have been removed for printing
purposes due to a PowerPoint bug

03/18/2003 15-462 Graphics I 23

Example Noise Reduction

Original image Image with noise Median filter (5x5?)

Pictures have been removed for printing
due to a PowerPoint bug

03/18/2003 15-462 Graphics I 24

Edge Filters

• Discover edges in image
• Characterized by large gradient

• Approximate square root

• Approximate partial derivatives, e.g.

5

03/18/2003 15-462 Graphics I 25

Sobel Filter

• Edge detection filter, with some smoothing
• Approximate

• Sobel filter is non-linear
– Square and square root (more exact computation)
– Absolute value (faster computation)

03/18/2003 15-462 Graphics I 26

Sample Filter Computation

• Part of Sobel filter, detects vertical edges

-1

-1
-2

0

0
0

1

1
2

4
1

25
25
25
25
25
25
25

25
25
25

25
25
25
25
25
25
25

25
25
25

25
25
25
25
25
25
25

25
25
25

25
25
25
25
25
25
25

25
25
25

25
25
25
25
25
25
25

25
25
25

0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0

0
0
0

a b

25
25
25
25
25
25
25

25
25
25

0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0

0
0
0

25
25
25
25
25
25
25

25
25
25

0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0

0
0
0

0
0
0
0
0
0
0

0
0
0 0

h

03/18/2003 15-462 Graphics I 27

Example of Edge Filter

Original image Edge filter, then brightened

Images have been removed due to a PowerPoint bug

03/18/2003 15-462 Graphics I 28

Outline

• Blending
• Display Color Models
• Filters
• Dithering
• Image Compression

03/18/2003 15-462 Graphics I 29

Dithering

• Compensates for lack of color resolution
• Give up spatial resolution for color resolution
• Eye does spatial averaging
• Black/white dithering to achieve gray scale

– Each pixel is black or white
– From far away, color determined by fraction of white
– For 3x3 block, 10 levels of gray scale

03/18/2003 15-462 Graphics I 30

Halftone Screens

• Regular patterns create some artefacts
– Avoid stripes
– Avoid isolated pixels (e.g. on laser printer)
– Monotonicity: keep pixels on at higher intensities

• Example of good 3£3 dithering matrix
– For intensity n, turn on pixels 0..n–1

6

03/18/2003 15-462 Graphics I 31

Floyd-Steinberg Error Diffusion

• Approximation without fixed resolution loss
• Scan in raster order
• At each pixel, draw least error output value
• Divide error into 4 different fractions
• Add the error fractions into adjacent, unwritten

pixels

7/16

3/16 5/16 1/16

03/18/2003 15-462 Graphics I 32

Floyd-Steinberg Example

Peter Anderson

Gray Scale Ramp

•Some worms

•Some checkerboards

•Enhance edges

Images have been removed due to
a PowerPoint bug

03/18/2003 15-462 Graphics I 33

Color Dithering

• Example: 8 bit framebuffer
– Set color map by dividing 8 bits into 3,3,2 for RGB
– Blue is deemphasized since we see it less well

• Dither RGB separately
– Works well with Floyd-Steinberg

• Assemble results into 8 bit index into colormap
• Generally looks good

03/18/2003 15-462 Graphics I 34

Outline

• Blending
• Display Color Models
• Filters
• Dithering
• Image Compression

03/18/2003 15-462 Graphics I 35

Image Compression

• Exploit redundancy
– Coding: some pixel values more common
– Interpixel: adjacent pixels often similar
– Psychovisual: some color differences imperceptible

• Distinguish lossy and lossless methods

03/18/2003 15-462 Graphics I 36

Some Image File Formats

Good for printingHuge1,2,4,8,24EPS

Easy to read/writeBig24PPM

Popular, but 8 bitMedium1, 4, 8GIF

Good general purposeMedium8, 24TIFF

Lossy compressionSmall24JPEG

CommentsFile SizeDepth

7

03/18/2003 15-462 Graphics I 37

Image Sizes

• 1024*1024 at 24 bits uses 3 MB
• Encyclopedia Britannica at 300 pixels/inch and

1 bit/pixes requires 25 gigabytes (25K pages)
• 90 minute movie at 640x480, 24 bits per pixels,

24 frames per second requires 120 gigabytes
• Applications: HDTV, DVD, satellite image

transmission, medial image processing, fax, ...

03/18/2003 15-462 Graphics I 38

Exploiting Coding Redundancy

• Not limited to images (text, other digital info)
• Exploit nonuniform probabilities of symbols
• Entropy as measure of information content

– H = -Σi Prob(si) log2 (Prob(si))
– If source is independent random variable need H bits

• Idea:
– More frequent symbols get shorter code strings
– Best with high redundancy (= low entropy)

• Common algorithms
– Huffman coding
– LZW coding (gzip)

03/18/2003 15-462 Graphics I 39

Huffman Coding

• Codebook is precomputed and static
– Use probability of each symbol to assign code
– Map symbol to code
– Store codebook and code sequence

• Precomputation is expensive
• What is “symbol” for image compression?

03/18/2003 15-462 Graphics I 40

Lempel-Ziv-Welch (LZW) Coding

• Compute codebook on the fly
• Fast compression and decompression
• Can tune various parameters
• Both Huffman and LZW are lossless

03/18/2003 15-462 Graphics I 41

Exploiting Interpixel Redundancy

• Neighboring pixels are correlated
• Spatial methods for low-noise image

– Run-length coding:
• Alternate values and run-length
• Good if horizontal neighbors are same
• Can be 1D or 2D (e.g. used in fax standard)

– Quadtrees:
• Recursively subdivide until cells are constant color

– Region encoding:
• Represent boundary curves of color-constant regions

• Combine methods
• Not good on natural images directly

03/18/2003 15-462 Graphics I 42

Improving Noise Tolerance

• Predictive coding:
– Predict next pixel based on prior ones
– Output difference to actual

• Fractal image compression
– Describe image via recursive affine transformation

• Transform coding
– Exploit frequency domain
– Example: discrete cosine transform (DCT)
– Used in JPEG

• Transform coding for lossy compression

8

03/18/2003 15-462 Graphics I 43

Discrete Cosine Transform

• Used for lossy compression (as in JPEG)

• JPEG (Joint Photographic Expert Group)
– Subdivide image into n £ n blocks (n = 8)
– Apply discrete cosine transform for each block
– Quantize, zig-zag order, run-length code coefficients
– Use variable length coding (e.g. Huffman)

• Many natural images can be compressed to 4
bits/pixels with little visible error

03/18/2003 15-462 Graphics I 44

Summary

• Display Color Models
– 8 bit (colormap), 24 bit, 96 bit

• Filters
– Blur, edge detect, sharpen, despeckle

• Dithering
– Floyd-Steinberg error diffusion

• Image Compression
– Coding, interpixel, psychovisual redundancy
– Lossless vs. lossy compression

03/18/2003 15-462 Graphics I 45

Preview

• Assignment 5 due Thursday
• Assignment 6 out Thursday
• Thursday: Ray Tracing

