15-462 Computer Graphics I
Lecture 14

Rasterization

Scan Conversion
Antialiasing
Compositing
[Angel, Ch. 7.9-7.11, 8.9-8.12]

March 13, 2003
Frank Pfenning
Carnegie Mellon University
http://www.cs.cmu.edu/~fp/courses/graphics/

Rasterization

- Final step in pipeline: rasterization (scan conv.)
- From screen coordinates (float) to pixels (int)
- Writing pixels into frame buffer
- Separate z-buffer, display, shading, blending
- Concentrate on primitives:
- Lines
- Polygons

DDA Loop

- Assume write_pixel(int x, int y, int value)

For ($\mathrm{ix}=\mathrm{x} 1$; $\mathrm{ix}<=\mathrm{x} 2$; $\mathrm{ix}++$)
\{
y += m;
$y+=m ;$
write_pixel(ix, round(y), color); \}

- Slope restriction needed
- Easy to interpolate colors

Bresenham's Algorithm II

- Decision variable $a-b$
- If $a-b>0$ choose lower pixel
- If $a-b \leq 0$ choose higher pixel
- Goal: avoid explicit computation of $a-b$
- Step 1: re-scale $d=\left(x_{2}-x_{1}\right)(a-b)=\Delta x(a-b)$
- d is always integer

Bresenham's Algorithm IV

- Case: j did change ($\mathrm{d}_{\mathrm{k}} \leq 0$)
- a decreases by $m-1, b$ increases by $m-1$
$-(a-b)$ decreases by $2 m-2=2(\Delta y / \Delta x-1)$
- $\Delta x(a-b)$ decreases by $2(\Delta y-\Delta x)$

Bresenham's Algorithm VI

- Need different cases to handle other m
- Highly efficient
- Easy to implement in hardware and software
- Widely used
int $x, \bar{y}=y 0$;
int $d x=2^{*}(x 2-x 1), d y=2^{*}(y 2-y 1)$;
int $d y d x=d y-d x, D=(d y-d x) / 2$;
for ($\mathrm{x}=\mathrm{x} 1$; $\mathrm{x}<=\mathrm{x} 2$; $\mathrm{x}++$) \{
write_pixel(x, y, color);
if $(D>0) D-=d y$;
else $\{y++; D-=d y d x ;\}$
\}
\}
03/13/2003 15-462 Graphics I $\quad 9$
3/13/2003
15-462 Graphics I

Scan Conversion of Polygons

- Multiple tasks for scan conversion
- Filling polygon (inside/outside)
- Pixel shading (color interpolation)
- Blending (accumulation, not just writing)
- Depth values (z-buffer hidden-surface removal)
- Texture coordinate interpolation (texture mapping)
- Hardware efficiency critical
- Many algorithms for filling (inside/outside)
- Much fewer that handle all tasks well

Filling Convex Polygons

- Find top and bottom vertices
- List edges along left and right sides
- For each scan line from top to bottom
- Find left and right endpoints of span, xl and xr
- Fill pixels between xl and xr
- Can use Bresenham's alg. to update $x l$ and $x r$

03/13/2003
15-462 Graphics I

Other Operations

- Pixel shading (Gouraud)
- Bilinear interpolation of vertex colors
- Depth values (z-Buffer)
- Bilinear interpolation of vertex depth
- Read, and write only if visible
- Preserve depth (final orthographic projection)
- Texture coordinates u and v
- Rational linear interpolation to avoid distortion
$-u(x, y)=(A x+B y+C) /(D x+E y+F)$ similarly for $v(x, y)$
- Two divisions per pixel for texture mapping
- Due to perspective transformation

Concave Polygons: Winding Rule

- Approach 2: winding rule
- Orient the lines in polygon
- For each scan line
- Winding number = right-hdd - left-hdd crossings
- Interior if winding number non-zero
- Different only for self-intersecting polygons

03/13/2003
15-462 Graphics I
Even-odd rule

Boundary Cases

- Boundaries and special cases require care
- Cracks between polygons
- Parity bugs: fill to infinity
- Intersections on pixel: set at beginning, not end
- Shared vertices: count $y_{\text {min }}$ for parity, not $y_{\text {max }}$
- Horizontal edges. don't change parity

Edge/Scan Line Intersections

- Brute force: calculate intersections explicitly
- Incremental method (Bresenham's algorithm)
- Caching intersection information
- Edge table with edges sorted by $\mathrm{y}_{\text {min }}$
- Active edges, sorted by x-intersection, left to right
- Process image from smallest $y_{\text {min }} u p$

Aliasing

- Artefacts created during scan conversion
- Inevitable (going from continuous to discrete)
- Aliasing (name from digital signal processing): we sample a continues image at grid points
- Effect
- Jagged edges
- Moire patterns

Moire pattern from sandlotscience.com
$03 / 132003$
15-462 Graphics I

Antialiasing for Line Segments

- Use area averaging at boundary

an

B

©

iti
- (c) is aliased, magnified
- (d) is antialiased, magnified
- Warning: these images are sampled on screen!

Antialiasing by Supersampling

- Mostly for off-line rendering (e.g., ray tracing)
- Render, say, 3×3 grid of mini-pixels
- Average results using a filter
- Can be done adaptively
- Stop if colors are similar
- Subdivide at discontinuities
.

Supersampling Example

- Other improvements
- Stochastic sampling (avoiding repetition)
- Jittering (perturb a regular grid)

Temporal Aliasing

- Sampling rate is frame rate (30 Hz for video)
- Example: spokes of wagon wheel in movie
- Possible to supersample and average
- Fast-moving objects are blurred
- Happens automatically in video and movies
- Exposure time (shutter speed)
- Memory persistence (video camera)
- Effect is motion blur

Motion Blur

- Achieve by stochastic sampling in time
- Still-frame motion blur, but smooth animation

Accumulation Buffer

- OpenGL mechanism for supersampling or jitter
- Accumulation buffer parallel to frame buffer
- Superimpose images from frame buffer
- Copy back into frame buffer for display
gIClear(GL_ACCUM_BUFFER_BIT);
for ($\mathrm{i}=0$; $\mathrm{i}<$ num_images; $\mathrm{i}++$) $\{$
glClear(GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT); display_image(i);
glAccum(GL_ACCUM, 1.0/(float)num_images);
\}
glAccum(GL_RETURN, 1.0)

03/13/2003
15-462 Graphics I
32

Filters for Antialiasing

- Averaging pixels with neighbors

$$
\mathbf{H}=\frac{1}{5}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

- For antialiasing: weigh center more heavily

$$
\mathbf{H}=\frac{1}{16}\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

03/13/2003
15-462 Graphics I

Depth-of-Field Jitter

- Compute

$$
x_{m i n}^{\prime}=x_{\text {min }}+\frac{\Delta x}{z_{f}}\left(z_{f}-z_{\text {min }}\right)
$$

- Blend the two images in accumulation buffer

Blending

- Frame buffer
- Simple color model: R, G, B; 8 bits each
- α-channel A, another 8 bits
- Alpha determines opacity, pixel-by-pixel
$-\alpha=1$: opaque
$-\alpha=0$: transparent
- Blend translucent objects during rendering
- Achieve other effects (e.g., shadows)

03/13/2003 15-462 Graphics I

Image Compositing

- Compositing operation
- Source: $\mathbf{s}=\left[\begin{array}{lll}s_{r} & s_{g} & s_{b} \\ s_{a}\end{array}\right]$
- Destination: $\mathbf{d}=\left[\begin{array}{lll}d_{r} & d_{g} & d_{b} \\ d_{a}\end{array}\right]$
$-\boldsymbol{b}=\left[\begin{array}{llll}b_{r} & b_{g} & b_{b} & b_{a}\end{array}\right]$ source blending factors
$-\mathbf{c}=\left[\begin{array}{llll}c_{r} & c_{g} & c_{b} & c_{a}\end{array}\right]$ destination blending factors
$-d^{\prime}=\left[b_{r} s_{r}+c_{r} d_{r} b_{g} s_{g}+c_{g} d_{g} b_{b} s_{b}+c_{b} d_{b} b_{a} s_{a}+c_{a} d_{a}\right]$
- Overlay n images with equal weight
- Set α-value for each pixel in each image to $1 / n$
- Source blending factor is " α "
- Destination blending factor is " 1 "

Blending Errors

- Operations are not commutative
- Operations are not idempotent
- Interaction with hidden-surface removal
- Polygon behind opaque one should be culled
- Translucent in front of others should be composited
- Solution: make z-buffer read-only for translucent polygons with gldepthMask (GL_FALSE);
- Gl_one, Gl zero
- GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
- GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA

03/13/2003 15-462 Graphics I $39 \quad$

03/13/2003
15-462 Graphics I

Antialiasing with Multiple Polygons

- Initially, background color $\mathbf{C}_{0}, \alpha_{0}=0$
- Render first polygon; color C_{1} fraction α_{1}
- $\mathbf{C}_{\mathrm{d}}=\left(1-\alpha_{1}\right) \mathbf{C}_{0}+\alpha_{1} \mathbf{C}_{1}$
- $\alpha_{d}=\alpha_{1}$
- Render second polygon; assume fraction α_{2}
- If no overlap (a), then
$-\mathbf{C}^{\prime}{ }_{d}=\left(1-\alpha_{2}\right) \mathbf{C}_{d}+\alpha_{2} \mathbf{C}_{2}$
$-\alpha_{d}^{\prime}=\alpha_{1}+\alpha_{2}$

Depth Cueing and Fog

- Another application of blending
- Use distance-dependent (z) blending
- Linear dependence: depth cueing effect
- Exponential dependence: fog effect
- This is not a physically-based model

GLfloat fcolor[4] = \{...\}
glEnable(GL_FOG);
glFogf(GL_FOG_MODE; GL_EXP);
gIFogf(GL_FOG_DENSITY, 0.5);
gIFogfv(GL FOG COLOR, fcolor)
[Example: Fog Tutor]

1312003 \qquad

Summary

- Scan Conversion for Polygons
- Basic scan line algorithm
- Convex vs concave
- Odd-even and winding rules, tessellation
- Antialiasing (spatial and temporal)
- Area averaging
- Supersampling
- Stochastic sampling
- Compositing
- Accumulation buffer
- Blending and α-values

Preview

- Assignment 5 due in one week
- Assignment 6 out in one week
- Next topics:
- More on image processing and pixel operations
- Ray tracing

