15-462 Computer Graphics I

Lecture 18

Radiosity

April 8, 2003

Measures of Illumination The Radiosity Equation Form Factors Radiosity Algorithms [Angel, Ch 13.4-13.5]

Frank Pfenning
Carnegie Mellon University
http://www.cs.cmu.edu/~fp/courses/graphics/

Local vs. Global Illumination

- Local illumination: Phong model (OpenGL)
- Light to surface to viewer
- No shadows, interreflections
- Fast enough for interactive graphics
- Global illumination: Ray tracing
- Multiple specular reflections and transmissions
- Only one step of diffuse reflection
- Global illumination: Radiosity
- All diffuse interreflections; shadows
- Advanced: combine with specular reflection

Image vs. Object Space

- Image space: Ray tracing
- Trace backwards from viewer
- View-dependent calculation
- Result: rasterized image (pixel by pixel)
- Object space: Radiosity
- Assume only diffuse-diffuse interactions
- View-independent calculation
- Result: 3D model, color for each surface patch
- Can render with OpenGL

Classical Radiosity Method

- Divide surfaces into patches (elements)
- Model light transfer between patches as system of linear equations
- Important assumptions:
- Reflection and emission are diffuse
- Recall: diffuse reflection is equal in all directions
- So radiance is independent of direction
- No participating media (no fog)
- No transmission (only opaque surfaces)
- Radiosity is constant across each element
- Solve for R, G, B separately

Outline

- Measures of Illumination
- The Radiosity Equation
- Form Factors
- Radiosity Algorithms

Solid Angle

- 2D angle subtended by object O from point x :
- Length of projection onto unit circle at x
- Measured in radians (0 to 2π)
- 3D solid angle subtended by O from point x :
- Area of of projection onto unit sphere at x
- Measured in steradians (0 to 4π)

J. Stewart

Radiant Power and Radiosity

- Radiant power P
- Rate at which light energy is transmitted
- Dimension: power = energy / time
- Flux density Φ
- Radiant power per unit area of the surface
- Dimension: power / area
- Irradiance E: incident flux density of surface
- Radiosity B: exitant flux density of surface
- Dimension: power / area
- Flux density at a point $\Phi(x)=d P / d x$

Power at Point in a Direction

- Radiant intensity I
- Power radiated per unit solid angle by point source
- Dimension: power / solid angle
- Radiant intensity in direction ω
$-I(\omega)=d P / d \omega$
- Radiance L(x, ω)
- Flux density at point x in direction ω
- Dimension: power / (area \times solid angle)

Radiance

- Measured across surface in direction ω

J. Stewart '98
- For angle θ between ω and normal \mathbf{n}

$$
L(x, \omega)=\frac{d^{2} P}{d \omega d x^{\prime}}=\frac{d^{2} P}{d \omega \cos \theta d x}
$$

Radiosity and Radiance

- Radiosity $\mathrm{B}(\mathrm{x})=\mathrm{dP} / \mathrm{dx}$
- Radiance $L(x, \omega)=d^{2} P / d \omega \cos \theta d x$
- Let Ω be set of all directions above x

$$
B(x)=\int_{\Omega} L(x, \omega) \cos \theta d \omega
$$

Outline

- Measures of Illumination
- The Radiosity Equation
- Form Factors
- Radiosity Algorithms

Balance of Energy

- Lambertian surfaces (ideal diffuse reflector)
- Divided into n elements
- Variables
- A_{i} Area of element i (computable)
- B_{i} Radiosity of element i (unknown)
- E_{i} Radiant emitted flux density of element i (given)
- ρ_{i} Reflectance of element i (given)
- $\mathrm{F}_{\mathrm{j} i}$ Form factor from j to i (computable)

$$
A_{i} B_{i}=A_{i} E_{i}+\rho_{i} \sum_{j=1}^{n} F_{j i} A_{j} B_{j}
$$

Form Factors

- Form factor $\mathrm{F}_{\mathrm{i} j}$: Fraction of light leaving element i arriving at element j
- Depends on
- Shape of patches i and j
- Relative orientation of both patches
- Distance between patches
- Occlusion by other patches

Form Factor Equation

- Polar angles θ and θ^{\prime} between normals and ray between x and y
- Visibility function $v(x, y)=0$ if ray from x to y is occluded, $\mathrm{v}(\mathrm{x}, \mathrm{y})=1$ otherwise
- Distance r between x and y

$$
A_{i} F_{i j}=\int_{x \in P_{i}} \int_{y \in P_{j}} \frac{\cos \theta \cos \theta^{\prime}}{\pi r^{2}} v(x, y) d y d x
$$

Reciprocity

- Symmetry of form factor
$A_{i} F_{i j}=\int_{x \in P_{i}} \int_{y \in P_{j}} \frac{\cos \theta \cos \theta^{\prime}}{\pi r^{2}} v(x, y) d y d x=A_{j} F_{j i}$
- Divide earlier radiosity equation

$$
A_{i} B_{i}=A_{i} E_{i}+\rho_{i} \sum_{j=1}^{n} F_{j i} A_{j} B_{j}
$$

by A_{i}

$$
\begin{aligned}
B_{i} & =E_{i}+\rho_{i} \sum_{j}\left(F_{j i} A_{j} / A_{i}\right) B_{j} \\
& =E_{i}+\rho_{i} \sum_{j} F_{i j} B_{j}
\end{aligned}
$$

Radiosity as a Linear System

- Restate radiosity equation $B_{i}-\rho_{i} \sum_{j} F_{i j} B_{j}=E_{i}$
- In matrix form
$\left[\begin{array}{cccc}1-\rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & \rho_{1} F_{1 n} \\ -\rho_{2} F_{21} & 1-\rho_{2} F_{22} & \cdots & \rho_{2} F_{2 n} \\ \vdots & \vdots & & \vdots \\ -\rho_{n} F_{n 1} & \rho_{n} F_{n 2} & \cdots & 1-\rho_{n} F_{n n}\end{array}\right]\left[\begin{array}{c}B_{1} \\ B_{2} \\ \vdots \\ B_{n}\end{array}\right]=\left[\begin{array}{c}E_{1} \\ E_{2} \\ \vdots \\ E_{n}\end{array}\right]$
- Known: reflectances ρ_{i}, form factors F_{i}, emissions E_{i}
- Unknown: Radiosities B_{i}
- n linear equations in n unknowns

Radiosity "Pipeline"

Visualization

- Radiosity solution is viewer independent
- Can exploit graphics hardware to obtain image
- Convert color on patch to vertex color
- Easy part of radiosity method

Outline

- Measures of Illumination
- The Radiosity Equation
- Form Factors
- Radiosity Algorithms

Computing Form Factors

- Visibility critical
- Two principal methods
- Hemicube: exploit z-buffer hardware
- Ray casting (can be slow)
- Both exhibit aliasing effects
- For inter-visible elements
- Many special cases can be solved analytically
- Avoid full numeric approximation of double integral

Hemicube Algorithm

- Render model onto a hemicube as seen from the center of a patch
- Store patch identifiers j instead of color
- Use z-buffer to resolve visibility
- Efficiently implementable in hardware
- Examples of antialiasing [Chandran et al.]

Outline

- Measures of Illumination
- The Radiosity Equation
- Form Factors
- Radiosity Algorithms

Radiosity Equation Revisited

- Direct form

$$
B_{i}=E_{i}+\rho_{i} \sum_{j} F_{i j} B_{j}
$$

- As matrix equation

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & \rho_{1} F_{1 n} \\
-\rho_{2} F_{21} & 1-\rho_{2} F_{22} & \cdots & \rho_{2} F_{2 n} \\
\vdots & \vdots & & \vdots \\
-\rho_{n} F_{n 1} & \rho_{n} F_{n 2} & \cdots & 1-\rho_{n} F_{n n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right]
$$

- Unknown: radiosity B_{i}
- Known: emission E_{i}, form factor $F_{i j}$, reflect. ρ_{i}

Classical Radiosity Algorithms

- Matrix Radiosity
- Diagonally dominant matrix
- Use Gauss-Seidel iterative solution
- Time and space complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for n elements
- Memory cost excessive
- Progressive Refinement Radiosity
- Solve equations incrementally with form factors
- Time complexity is $O(n \cdot s)$ for s iterations
- Used more commonly (space complexity O(n))

Matrix Radiosity

- Compute all form factors F_{ij}
- Make initial approximation to radiosity
- Emitting elements $\mathrm{B}_{\mathrm{i}}=\mathrm{E}_{\mathrm{i}}$
- Other elements $B_{i}=0$
- Apply equation to get next approximation

$$
B_{i}^{\prime}=E_{i}+\rho_{i} \sum_{j} F_{i j} B_{j}
$$

- Iterate with new approximation
- Intuitively
- Gather incoming light for each element i
- Base new estimate on previous estimate

Radiosity Summary

- Assumptions
- Opaque Lambertian surfaces (ideal diffuse)
- Radiosity constant across each element
- Radiosity computation structure
- Break scene into patches
- Compute form factors between patches
- Lighting independent
- Solve linear radiosity equation
- Viewer independent
- Render using standard hardware

Lecture Summary

- Measures of Illumination
- The Radiosity Equation
- Form Factors
- Radiosity Algorithms

Preview

- Next Lecture
- Radiosity refinements
- Combining ray tracing and radiosity
- Assignment 7 (Ray Tracer) due April 24
- Different from OpenGL programming (150 pts)

