Review

- Cubic polynomial form for curve
 \[p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 = \sum_{k=0}^{3} c_k u^k \]
- Each \(c_k \) is a column vector \([c_{kx} \ c_{ky} \ c_{kz}]^T\)
- Solve for \(c_k \) given control points
- Interpolation: 4 points
- Hermite curves: 2 endpoints, 2 tangents
- Bezier curves: 2 endpoints, 2 tangent points
Splines

- Approximating more control points

![Diagram of Splines]

- C^0 continuity: points match
- C^1 continuity: tangents (derivatives) match
- C^2 continuity: curvature matches
- With Bezier segments or patches: C^0

B-Splines

- Use 4 points, but approximate only middle two

![Diagram of B-Splines]

- Draw curve with overlapping segments 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc.
- Curve may miss all control points
- Smoother at joint points
Cubic B-Splines

• Need $m+2$ control points for m cubic segments
• Computationally 3 times more expensive than simple interpolation
• C^2 continuous at each interior point
• Derive as follows:
 – Consider two overlapping segments
 – Enforce C^0 and C^1 continuity
 – Employ symmetry
 – C^2 continuity follows

Deriving B-Splines

• Consider points
 – p_{i-2}, p_{i-1}, p_i, p_{i+1}
 – $p(0)$ approx p_{i-1}, $p(1)$ approx p_i
 – p_{i-3}, p_{i-2}, p_{i-1}, p_i
 – $q(0)$ approx p_{i-2}, $q(1)$ approx p_{i-1}
• Condition 1: $p(0) = q(1)$
 – Symmetry: $p(0) = q(1) = 1/6(p_{i-2} + 4p_{i-1} + p_i)$
• Condition 2: $p'(0) = q'(1)$
 – Geometry: $p'(0) = q'(1) = 1/2 ((p_i - p_{i-1}) + (p_{i-1} - p_{i-2}))$
 $= 1/2 (p_i - p_{i-2})$
B-Spline Geometry Matrix

- Conditions at $u = 0$
 - $p(0) = c_0 = \frac{1}{6} (p_{i-2} + 4p_{i-1} + p_i)$
 - $p'(0) = c_1 = \frac{1}{2} (p_{i-1} - p_{i-2})$

- Conditions at $u = 1$
 - $p(1) = c_0 + c_1 + c_2 + c_3 = \frac{1}{6} (p_{i-1} + 4p_i + p_{i+1})$
 - $p'(1) = c_1 + 2c_2 + 3c_3 = \frac{1}{2} (p_{i+1} - p_{i-1})$

\[
\begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_3 \\
\end{bmatrix} = M_S \begin{bmatrix}
 p_{i-2} \\
 p_{i-1} \\
 p_i \\
 p_{i+1} \\
\end{bmatrix},
M_S = \frac{1}{6} \begin{bmatrix}
 1 & 4 & 1 & 0 \\
 -3 & 0 & 3 & 0 \\
 3 & -6 & 3 & 0 \\
 -1 & 3 & -3 & 1 \\
\end{bmatrix}
\]

Blending Functions

- Calculate cubic blending polynomials

\[
b(u) = M_S^T u = \frac{1}{6} \begin{bmatrix}
 (1 - u)^3 \\
 4 - 6u^2 + 3u^3 \\
 1 + 3u + 3u^2 - 3u^3 \\
 u^3 \\
\end{bmatrix}
\]

- Note symmetries
Convex Hull

- For $0 \leq u \leq 1$, have $0 \leq b_{k}(u) \leq 1$
- Recall:
 $p(u) = b_{i-2}(u)p_{i-2} + b_{i-1}(u)p_{i-1} + b_{i}(u)p_i + b_{i+1}(u)p_{i+1}$
- So each point $p(u)$ lies in convex hull of p_{k}

Spline Basis Functions

- Total contribution $B_{i}(u)p_{i}$ of p_{i} is given by

\[
B_{i}(u) = \begin{cases}
0 & u < i - 2 \\
b_0(u + 2) & i - 2 \leq u < i - 1 \\
b_1(u + 1) & i - 1 \leq u < i \\
b_2(u) & i \leq u < i + 1 \\
b_3(u - 1) & i + 1 \leq u < i + 2 \\
0 & i + 2 \leq u
\end{cases}
\]
Spline Surface

- As for Bezier patches, use 16 control points
- Start with blending functions
 \[p(u, v) = \sum_{i=0}^{3} \sum_{k=0}^{3} b_i(u) b_k(v) p_{ik} \]
- Need 9 times as many splines as for Bezier

Assessment: Cubic B-Splines

- More expensive than Bezier curves or patches
- Smoother at join points
- Local control
 - How far away does a point change propagate?
- Contained in convex hull of control points
- Preserved under affine transformation
- How to deal with endpoints?
 - Closed curves (uniform periodic B-splines)
 - Non-uniform B-Splines (multiplicities of knots)
General B-Splines

- Generalize from cubic to arbitrary order
- Generalize to different basis functions
- Read: [Angel, Ch 10.8]
- Knot sequence $u_{\text{min}} = u_0 \leq \ldots \leq u_n = u_{\text{max}}$
- Repeated points have higher “gravity”
- Multiplicity 4 means point must be interpolated
- $\{0, 0, 0, 0, 1, 2, \ldots, n-1, n, n, n, n\}$ solves boundary problem

Nonuniform Rational B-Splines (NURBS)

- Exploit homogeneous coordinates
 \[p_i = \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} \simeq w_i \begin{bmatrix} x_i \\ y_i \\ z_i \\ 1 \end{bmatrix} = q_i \]
- Use perspective division to renormalize
 \[p(u) = \frac{\sum_{i=0}^{n} B_i(u) w_i p_i}{\sum_{i=0}^{n} B_i(u) w_i} \]
- Each component of $p(u)$ is rational function of u
- Points not necessarily uniform (NURBS)
NURBS Assessment

- Convex-hull and continuity props. of B-splines
- Preserved under perspective transformations
 - Curve with transformed points = transformed curve
- Widely used (including OpenGL)

Outline

- Cubic B-Splines
- Nonuniform Rational B-Splines (NURBS)
- Rendering by Subdivision
- Curves and Surfaces in OpenGL
Rendering by Subdivision

- Divide the curve into smaller subpieces
- Stop when “flat” or at fixed depth
- How do we calculate the sub-curves?
 - Bezier curves and surfaces: easy (next)
 - Other curves: convert to Bezier!

Subdividing Bezier Curves

- Given Bezier curve by \(p_0, p_1, p_2, p_3 \)
- Find \(l_0, l_1, l_2, l_3 \) and \(r_0, r_1, r_2, r_3 \)
- Subcurves should stay the same!
Construction of Bezier Subdivision

- Use algebraic reasoning

\[l(0) = l_0 = p_0 \]
\[l(1) = l_3 = p(1/2) = 1/8(p_0 + 3p_1 + 3p_2 + p_3) \]
\[l'(0) = 3(l_1 - l_0) = p'(0) = 3/2 (p_1 - p_0) \]
\[l'(1) = 3(l_3 - l_2) = p'(1/2) = 3/8(-p_0 - p_1 + p_2 + p_3) \]
- Note parameter substitution \(v = 2u \) so \(dv = 2du \)

Geometric Bezier Subdivision

- Can also calculate geometrically

\[l_1 = \frac{1}{2}(p_0 + p_1), \quad r_2 = \frac{1}{2} (p_2 + p_3) \]
\[l_2 = \frac{1}{2} (l_1 + \frac{1}{2} (p_1 + p_2)), \quad r_1 = \frac{1}{2} (r_2 + \frac{1}{2}(p_1 + p_2)) \]
\[l_3 = r_0 = \frac{1}{2} (l_2 + r_1), \quad l_0 = p_0, \quad r_3 = p_3 \]
Recall: Bezier Curves

• Recall \(u^T = \begin{bmatrix} 1 & u & u^2 & u^3 \end{bmatrix} \)

• Express \(p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 \)

\[
= u^T \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = u^T M_B \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}
\]

\(M_B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & -1 \end{bmatrix} \)

Subdividing Other Curves

• Calculations more complex

• Trick: transform control points to obtain identical curve as Bezier curve!

• Then subdivide the resulting Bezier curve

• Bezier: \(p(u) = u^T M_b \ p \)

• Other curve: \(p(u) = u^T M \ q, M \) geometry matrix

• Solve: \(q = M^{-1} M_b^{-1} M \ q \)
Example Conversion

- From cubic B-splines to Bezier:

\[
M_B^{-1}M_S = \frac{1}{6} \begin{bmatrix}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1
\end{bmatrix}
\]

- Calculate Bezier points \(p \) from \(q \)
- Subdivide as Bezier curve

Subdivision of Bezier Surfaces

- Slightly more complicated
- Need to calculate interior point
- Cracks may show with uneven subdivision
- See [Angel, Ch 10.9.4]
Outline

• Cubic B-Splines
• Nonuniform Rational B-Splines (NURBS)
• Rendering by Subdivision
• Curves and Surfaces in OpenGL

Curves and Surface in OpenGL

• Central mechanism is evaluator
• Defined by array of control points
• Evaluate coordinates at u (or u and v) to generate vertex
• Define Bezier curve: \(\text{type} = \text{GL}_\text{MAP_VERTEX_3} \)

 \[
 \text{glMap1f(type, u_0, u_1, stride, order, point_array)}
 \]
• Enable evaluator

 \[
 \text{glEnable(type)}
 \]
• Evaluate Bezier curve

 \[
 \text{glEvalCoord1f(u)}
 \]
Example: Drawing a Bezier Curve

• 4 control points

```c
GLfloat ctrlpoints[4][3] = {
    {-4.0, -4.0, 0.0}, {-2.0, 4.0, 0.0},
    {2.0, -4.0, 0.0}, {4.0, 4.0, 0.0}};
```

• Initialize

```c
void init()
{
    ... ;
    glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, &ctrlpoints[0][0]);
    glEnable(GL_MAP1_VERTEX_3);
}
```

Evaluating Coordinates

• Use a fixed number of points, `num_points`

```c
void display()
{
    ... ;
    glBegin(GL_LINE_STRIP);
    for (i = 0; i <= num_points; i++)
    {
        glEvalCoord1f((GLfloat)i/(GLfloat)num_points);
    }
    glEnd();
    ...;
}
```
Drawing the Control Points

• To illustrate Bezier curve

```c
void display()
{
    glPointSize(5.0);
    glColor3f(1.0, 1.0, 0.0);
    glBegin(GL_POINTS);
        for (i = 0; i < 4; i++)
            glVertex3fv(&ctrlpoints[i][0]);
    glEnd();
    glFlush();
}
```

Resulting Images

- For $n = 5$
- For $n = 20$
Beziersurfaces

• Create evaluator in two parameters u and v

```c
glMap2f(GL_MAP2_VERTEX_3,
u_0, u_1, ustride, uorder,
v_0, v_1, vstride, vorder, point_array);
```

• Enable, also automatic calculation of normal

```c
glEnable(GL_MAP2_VERTEX_3);
glEnable(GL_AUTO_NORMAL);
```

• Evaluate at parameters u and v

```c
glEvalCoord2f(u, v);
```

Grids

• Convenience for uniform evaluators
• Define grid (nu = number of u division)

```c
gMapGrid2f(nu, u_0, u_1, nv, v_0, v_1);
```

• Evaluate grid

```c
glEvalMesh2(mode, i_0, i_1, k_0, k_1);
```

• `mode` = GL_POINT, GL_LINE, or GL_FILL
• i and k define subrange
Example: Bezier Surface Patch

- Use 16 control points

 GLfloat ctrlpoints[4][4][3] = {...};

- Initialize 2-dimensional evaluator

 void init(void)
 {
 ...
 glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,
 0, 1, 12, 4, &ctrlpoints[0][0][0]);
 glEnable(GL_MAP2_VERTEX_3);
 glEnable(GL_AUTO_NORMAL);
 glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
 }

Evaluating the Grid

- Use full range

 void display(void)
 {
 ...
 glPushMatrix();
 glRotatef(85.0, 1.0, 1.0, 1.0);
 glEvalMesh2(GL_FILL, 0, 20, 0, 20);
 glPopMatrix();
 glFlush();
 }
NURBS Functions

- Higher-level interface
- Implemented in GLU using evaluators
- Create a NURBS renderer
  ```c
  theNurb = gluNewNurbsRenderer();
  ```
- Set NURBS properties
  ```c
  gluNurbsProperty(theNurb, GLU_DISPLAY_MODE, GLU_FILL);
  gluNurbsCallback(theNurb, GLU_ERROR, nurbsError);
  ```
Displaying NURBS Surfaces

• Specify knot arrays for splines

 GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
 gluBeginSurface(theNurb);
 gluNurbsSurface(theNurb,
 8, knots, 8, knots,
 4 * 3, 3, &ctlpoints[0][0][0],
 4, 4, GL_MAP2_VERTEX_3);
 gluEndSurface(theNurb);

• For more see [Red Book, Ch. 12]

Summary

• Cubic B-Splines
• Nonuniform Rational B-Splines (NURBS)
• Rendering by Subdivision
• Curves and Surfaces in OpenGL
Reminders

• Assignment 3 due Thursday
• Assignment 4 out Thursday
• Midterm will cover curves and surfaces
• Thursday: Pixel Shading (Nvidia guest lecture)