15-462 Computer Graphics I
Lecture 7

## Lighting and Shading

Light Sources
Phong Illumination Model
Normal Vectors
[Angel, Ch. 6.1-6.4]
February 4, 2003
Frank Pfenning
Carnegie Mellon University
http://www.cs.cmu.edu/~fp/courses/graphics/

## Remarks About Assignment 2

- Remember that object transformations are applied in the reverse order in which they appear in the code!
- Remember that transformation matrices are multiplied on the right and executed from right to left: (R S T) v = R (S (T v))!
- Look at the model solution (when it is out) and make sure you understand it before the midterm


## Outline

- Light Sources
- Phong Illumination Model
- Normal Vectors


## Lighting and Shading

- Approximate physical reality
- Ray tracing:
- Follow light rays through a scene
- Accurate, but expensive (off-line)
- Radiosity:
- Calculate surface inter-reflection approximately
- Accurate, especially interiors, but expensive (off-line)
- Phong Illumination model (this lecture):
- Approximate only interaction light, surface, viewer
- Relatively fast (on-line), supported in OpenGL


## Radiosity Example



Restaurant Interior. Guillermo Leal, Evolucion Visual

Raytracing Example


Martin Moeck, Siemens Lighting

## Light Sources and Material Properties

- Appearance depends on
- Light sources, their locations and properties
- Material (surface) properties
- Viewer position
- Ray tracing: from viewer into scene
- Radiosity: between surface patches
- Phong Model: at material, from light to viewer


## Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
- Cut-off angle defines a cone of light
- Attenuation function (brighter in center)
- Light source described by a luminance
- Each color is described separately
$-I=\left[\begin{array}{lll}I_{r} & I_{g} & I_{b}\end{array}\right]^{\top} \quad$ (I for intensity)
- Sometimes calculate generically (applies to r, g, b)


## Ambient Light

- Global ambient light
- Independent of light source
- Lights entire scene
- Local ambient light
- Contributed by additional light sources
- Can be different for each light and primary color
- Computationally inexpensive

$$
\mathbf{I}_{a}=\left[\begin{array}{c}
I_{a r} \\
I_{a g} \\
I_{a b}
\end{array}\right]
$$

## Point Source

- Given by a point $p_{0}$
- Light emitted equally in all directions

$$
\mathbf{I}\left(\mathbf{p}_{0}\right)=\left[\begin{array}{l}
I_{r}\left(\mathbf{p}_{0}\right) \\
I_{g}\left(\mathbf{p}_{0}\right) \\
I_{b}\left(\mathbf{p}_{0}\right)
\end{array}\right]
$$

- Intensity decreases with square of distance

$$
\mathbf{I}\left(\mathbf{p}, \mathbf{p}_{0}\right)=\frac{1}{\left|\mathbf{p - p _ { 0 }}\right|^{2}} \mathbf{I}\left(\mathbf{p}_{0}\right)
$$

## Limitations of Point Sources

- Shading and shadows inaccurate
- Example: penumbra (partial "soft" shadow)
- Similar problems with highlights
- Compensate with attenuation



## Distant Light Source

- Given by a vector v
- Simplifies some calculations
- In OpenGL:
- Point source $\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}$
- Distant source $\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}$



## Spotlight

- Most complex light source in OpenGL
- Light still emanates from point
- Cut-off by cone determined by angle $\theta$



## Spotlight Attenuation

- Spotlight is brightest along $\mathrm{I}_{\mathrm{s}}$
- Vector $v$ with angle $\phi$ from $p$ to point on surface
- Intensity determined by cos $\phi$
- Corresponds to projection of $v$ onto $I_{s}$
- Spotlight exponent e determines rate $I=\cos ^{e}(\phi)=\left(\mathrm{v} \cdot \mathrm{l}_{s}\right)^{e}$



## Outline

- Light Sources
- Phong Illumination Model
- Normal Vectors


## Phong Illumination Model

- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and I, n, v:

I = vector to light source
n = surface normal
$\mathrm{v}=$ vector to viewer
$r=$ reflection of $I$ at $p$
(determined by I and n)


## Basic Calculation

- Calculate each primary color separately
- Start with global ambient light
- Add reflections from each light source
- Clamp to [0, 1]
- Reflection decomposed into
- Ambient reflection
- Diffuse reflection
- Specular reflection
- Based on ambient, diffuse, and specular lighting and material properties


## Ambient Reflection

- Intensity of ambient light uniform at every point
- Ambient reflection coefficient $\mathrm{k}_{\mathrm{a}}, 0 \leq \mathrm{k}_{\mathrm{a}} \leq 1$
- May be different for every surface and $\mathrm{r}, \mathrm{g}, \mathrm{b}$
- Determines reflected fraction of ambient light
- $\mathrm{L}_{\mathrm{a}}=$ ambient component of light source
- Ambient intensity $\mathrm{I}_{\mathrm{a}}=\mathrm{k}_{\mathrm{a}} \mathrm{L}_{\mathrm{a}}$
- Note: $\mathrm{L}_{\mathrm{a}}$ is not a physically meaningful quantity


## Diffuse Reflection

- Diffuse reflector scatters light
- Assume equally all direction
- Called Lambertian surface
- Diffuse reflection coefficient $\mathrm{k}_{\mathrm{d}}, 0 \leq \mathrm{k}_{\mathrm{d}} \leq 1$
- Angle of incoming light still critical



## Lambert's Law

- Intensity depends on angle of incoming light
- Recall

I = unit vector to light
$\mathrm{n}=$ unit surface normal
$\theta=$ angle to normal

- $\cos \theta=\mathrm{l} \cdot \mathrm{n}$
- $I_{d}=k_{n}(I \cdot n) L_{d}$

- With attenuation:

$$
\begin{aligned}
& I_{d}=\frac{k_{d}}{a+b q+c q^{2}}(\mathbf{l} \cdot \mathbf{n}) L_{d} \\
& \mathrm{q}=\text { distance to light source }, \\
& \mathrm{L}_{\mathrm{d}}=\text { diffuse component of light }
\end{aligned}
$$

## Specular Reflection

- Specular reflection coefficient $\mathrm{k}_{\mathrm{s}}, 0 \leq \mathrm{k}_{\mathrm{s}} \leq 1$
- Shiny surfaces have high specular coefficient
- Used to model specular highlights
- Do not get mirror effect (need other techniques)

specular reflection

specular highlights


## Shininess Coefficient

- $\mathrm{L}_{\mathrm{s}}$ is specular component of light
- $r$ is vector of perfect reflection of $I$ about $n$
- $v$ is vector to viewer
- $\phi$ is angle between $v$ and $r$
- $\mathrm{I}_{\mathrm{s}}=\mathrm{k}_{\mathrm{s}} \mathrm{L}_{\mathrm{s}} \cos ^{\alpha} \phi$
- $\alpha$ is shininess coefficient
- Compute $\cos \phi=r \cdot v$
- Requires $|\mathrm{r}|=|\mathrm{v}|=1$
- Multiply distance term


Higher $\alpha$ is narrower

## Summary of Phong Model

- Light components for each color:
- Ambient (L_a), diffuse (L_d), specular (L_s)
- Material coefficients for each color:
- Ambient (k_a), diffuse (k_d), specular (k_s)
- Distance q for surface point from light source

$$
\begin{aligned}
& I=\frac{1}{a+b q+c q^{2}}\left(k_{d} L_{d}(\mathbf{l} \cdot \mathbf{n})+k_{s} L_{s}(\mathbf{r} \cdot \mathbf{v})^{\alpha}\right)+k_{a} L_{a} \\
& I=\text { vector from light } r=I \text { reflected about } n \\
& \mathrm{n}=\text { surface normal } \\
& \mathrm{v}=\text { vector to viewer }
\end{aligned}
$$

## BRDF

- Bidirectional Reflection Distribution Function
- Measure for materials
- Isotropic vs. anisotropic
- Mathematically complex
- Programmable pixel shading?



## Outline

- Light Sources
- Phong Illumination Model
- Normal Vectors

Normal Vectors

- Summarize Phong
$I=\frac{1}{a+b q+c q^{2}}\left(k_{d} L_{d}(\mathbf{l} \cdot \mathbf{n})+k_{s} L_{s}(\mathbf{r} \cdot \mathbf{v})^{\alpha}\right)+k_{a} L_{a}$
- Surface normal n is critical
- Calculate I.n
- Calculate $r$ and then $r \cdot v$
- Must calculate and specify the normal vector
- Even in OpenGL!
- Two examples: plane and sphere


## Normals of a Plane, Method I

- Method I: given by ax + by +cz + d = 0
- Let $p_{0}$ be a known point on the plane
- Let $p$ be an arbitrary point on the plane
- Recall: u v $=0$ iff $u$ orthogonal $v$
- $n \cdot\left(p-p_{0}\right)=n \cdot p-n \cdot p_{0}=0$
- Consequently $n_{0}=\left[\begin{array}{lll}a & b & c\end{array}\right]^{\top}$
- Normalize to $\mathrm{n}=\mathrm{n}_{0} /\left|\mathrm{n}_{0}\right|$


## Normals of a Plane, Method II

- Method II: plane given by $p_{0}, p_{1}, p_{2}$
- Points must not be collinear
- Recall: $u \times v$ orthogonal to $u$ and $v$
- $\mathrm{n}_{0}=\left(\mathrm{p}_{1}-\mathrm{p}_{0}\right) \times\left(\mathrm{p}_{2}-\mathrm{p}_{0}\right)$
- Order of cross product determines orientation
- Normalize to $\mathrm{n}=\mathrm{n}_{0} /\left|\mathrm{n}_{0}\right|$


## Normals of Sphere

- Implicit Equation $f(x, y, z)=x^{2}+y^{2}+z^{2}-1=0$
- Vector form: $f(p)=p \cdot p-1=0$
- Normal given by gradient vector

$$
\mathbf{n}_{0}=\left[\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right]=\left[\begin{array}{c}
2 x \\
2 y \\
2 z
\end{array}\right]=2 \mathbf{p}
$$

- Normalize $\mathrm{n}_{0} /\left|\mathrm{n}_{0}\right|=2 \mathrm{p} / 2=\mathrm{p}$


## Angle of Reflection

- Perfect reflection: angle of incident equals angle of reflection
- Also: I, n, and r lie in the same plane
- Assume $|\||=|n|=1$, guarantee $| r|=1$

$\mathbf{l} \cdot \mathbf{n}=\cos \theta=\mathbf{n} \cdot \mathbf{r}$
$\mathbf{r}=\alpha \mathbf{l}+\beta \mathbf{n}$ Solution: $\alpha=-1$ and $\beta=2(1 \cdot n)$
$\mathbf{r}=2(\mathbf{l} \cdot \mathbf{n}) \mathbf{n}-\mathbf{l}$
Perhaps easier geometrically


## Summary: Normal Vectors

- Critical for Phong model (diffuse and specular)
- Must calculate accurately (even in OpenGL)
- Pitfalls
- Not unit length
- How to set at surface boundary?
- Omitted
- Refraction of transmitted light (Snell's law)
- Halfway vector (yet another optimization)


## Summary

- Light Sources
- Phong Illumination Model
- Normal Vectors


## Preview

- Polygonal shading
- Lighting and shading in OpenGL


## Announcements

- Assignment 2 due Thursday
- Assignment 3 out Thursday, due in 2 weeks

