Chapter 6

Labeled Deduction

Starting from a system of natural deduction for the definition of intuitionistic
logic, we have made a remarkable journey, including the sequent calculus, fo-
cusing, and the inverse method. Many, if not all of the idea are shared between
many reasonable and useful logics: intuitionistic logic, classical logic, linear
logic, modal logic, temporal logic, and probably many more. In this chapter we
see another surprisingly robust idea: labeled deduction. There are many views
of labeled deduction. One of the most general is that we relativize our notion of
truth. While intuistionistic logic is based on a single unary judgment, namely
A true, labeled deduction is based on binary judgments of the form A true[p],
where p is a label or world. We may read A true[p| as “A is true at world p.”

The uses of a relativized notions of truth are many; we concentrate here
only on a single one. The motivation comes from developing a sequent calculus
for intuitionistic logic in which all rules are invertible. Alternatively, it can be
seen as a means of interpreting intuitionistic logic in classical logic (we have
already seen the opposite). Wallen’s book [Wal90] is the seminal work in this
area with respect to automated deduction and is still fresh after more than
a decade. A newer reference is Waaler’s article in Handbook of Automated
Reasoning [Waa01]. Often cited is also Fitting’s book [Fit83], but it seems to
be difficult to obtain.

6.1 Multiple Conclusions

One of the problems with focusing is that disjunction on the right-hand side
is opaque: if we have a conclusion A V B may have to try to prove A or B
and then backtrack to prove the other without sharing of information between
the attempts. Moreover, while focusing on a left synchronous formula, we com-
pletely ignore the shape of the succedent. An idea to remedy this situation is
to replace AV B by A, B on the right-hand side, postponing the choice between
A and B. It is difficult to give a satisfactory judgmental reading of multiple
propositions on the right, but let us suspend this issue and simply read A, B on
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the right as a postponed choice between A and B.
Our basic judgment form is now

r=A

to be read as “Under assumptions I' prove one of A,” although it will not be the
case that there is always one element in A that we can actually prove. Initial
sequents, conjunction, and disjunction are as in the judgment for classical logic,
I' # A, in which T' are assumptions about truth and A assumptions about
falsehood.
——  init
IP= PA

I'A,B= A I = A A I = B,A
— AL AR
IMAANB = A I = AAB,A

A= A I'B= A I = A, B,A
VL ——— VR
I'AVB = A I'= AVB,A

Since we have already observed that conjunction and disjunction are really
the same for intuitionistic and classical logic, perhaps the rules above do not
come as a suprise. But how to we salvage the intuitionistic nature of the logic?
Consider the problem of (A D B) V A, which is classically true for all A and B,
but not intuitionistically. The classical proof is
init

A4 B, A
—  DF
A (A>BvA

If we try to interpret this proof intuitionistically, replacing # by ==, we see
that the right rule for implication looks very suspicious: the scope of the as-
sumption A should be B (since we say: A D B), and yet it appears to include
the other disjunct, A. In this way we avoid ever producing evidence for one of
the propositions on the right: we exploit one to prove the other.

To avoid this counterexample, we have to change the implication right rule
to be the following:

I'NA>DB= A A IB= A A= B
oL —— SR
IMADB= A I'= AD>B,A

The crucial point is that before we can use DR we have to commit a choice
to preserve the scope of the new assumption A. This sequent calculus admits
weakening and contraction on both sides and a cut elimination theorem. It is
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6.1 Multiple Conclusions 119

also sound and complete, although a theorem to that effect must be formulated
carefully.

Before that, we can add the logical constants for truth and falsehood.

= A

——— TL —— TR

IT=A = T,A
= A

— 1L —— 1R

L= A r= 1, A

Negation can be derived from implication and falsehood.

A= A4A [A =
— L —— R
I-A= A I = -4,A

Note that =R makes a commitment, erasing A, as for implication.

The first, natural idea at soundness would state that if I' == A, then there
is a proposition C' in A such that I' = C. This, unfortunately, is false, as
can be seen from AV B == B, A is is provable and, yet, neither B or A by
itself follows from AV B. We write \/(A41,...,A4,) for A; V---V A, which is
interpreted as L if n = 0.

Theorem 6.1 (Soundness of Multiple-Conclusion Sequent Calculus) If
I =% A thenT = \/ A,

Proof: By induction on the given derivation. Most cases are immediate. We
show only the implication cases.

Case:
Dy
A= B
D=——————DR
= ADB,A
I'NA— B By i.h.
I'= ADB By rule DR
I'=(AD>B)VVA By repeated VR
Case:
Dy D,
IADB = A A IB= A
D= DL

IMADB = A
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NADB= AvCforC=\A By i.h.
IB=~C By i.h.
'=BD>C By rule DR
I'NA>B,BODC,AvC =C Direct proof
INA>B,B>C=C By admissibility of cut
NNA>B=~C By admissibility of cut

O

Theorem 6.2 (Completness of Multiple-Conclusion Sequent Calculus)
IfT = A thenT =% A

Proof: By induction on the given derivation. Most cases are immediate. In
the case of VR we need to apply weakening after the induction hypothesis. 0O

6.2 Propositional Labeled Deduction

The next problem is to avoid or at least postpone the choice associated with
the DR rule. However, it is clear we cannot simply leave A around, since this
would yield classical logic, as the example in the previous section demonstrates.
Instead we label assumptions and conclusion in such a way that the new as-
sumption A will be prohibited from being used in the proof of any proposition
in the conclusion except for its natural scope, B. In other words, we enforce
scoping by labeling. We need label parameters a,b, ... and labels, where a label
is simply a sequence of label parameters.

Labels p,q == ajas...a,

We use € to denote the empty sequence of labels. An assumption A true[p| is
supposed to be available to prove any conclusion B true[pq], that is, the scope
of any label includes any extension of that label. We abbreviate A true[p] as
Alp]. Initial sequents then have the form

init
L', Alp] = Alpql, A

In the implication right rule we create a new scope, by introducing a new label

parameter.
I, Alpa] = Blpa], A

I — (A B)p.A

Important is that the parameter a must be new. Therefore, for no conlusion
Clq] in A could ¢ be an extension of pa. Effectively, the scope of Alpa] excludes
A.

Revisiting an earlier example (and anticipating that V propagates its labels
to both subformulas), we see that it is not provable because € is not an extension
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of a.
o

Ala) = Bla), Al

= (AD B)[d, Ale]
VR

= (AD B)V Al

The implication left rule incorporates the fact that an assumption (A D B)[p]
is available in any extension of p. When we apply DL we have to choose the
world in which we can show A[pg|. It is in this world that we can assume B]pq].

DR?

', (AD B)[p] = Alpq] [, Blpg] = A
I'(ADB)jpl = A

DL

As an example, consider the beginning of the proof of transitivity.
A D Bla], B D C[ab], Alabc] = C[abc]
A D Bla], B> Clab] = A D Clab]
A5 Bla) — (B5C)>A>Cla]
= (ADB)D(BD>C)D(ADCO)e -

At this point we have to apply implication left to either A D Bla] or B D C/[ab].
The difficulty is to guess at which extended label to apply it. If we apply the
DL rule to A D Bla] we can we see we must be able to prove Aag] for some q.
But we have available only A[abc], so ¢ must be an extension of bc.

init

A D Bla], B D C[ab], Alabc] = Alabc] B D Clab], A[abc], Blabc] = Clabc]
A D Blal], B D C[ab], Alabc] = Cabc]

DL

We continue in the right premise with another implication left rule, this time
choosing ¢ = ¢ so we can prove Blabg].

init init
B D Cl[ab], Alabc], Blabc] = Blabc] Alabc], Blabc], Clabc] = Clabc]
DL

B D Clab], Alabc], Blabc] = Clabc]

In the rules for remaining propositional connectives, the labels do not change
because no new scope is introduced.

T, Alp), Blp] = A I = Alp], A I = B[p),A

F,(A/\B)[p]:>AAL I = (AAB)[p|, A M

T, Alp] = A T, Blp) = A I = Alp], Blp], A
I,(AV B)jp) = A vk I — (AVB)p.A

Truth and falsehood are also straightforward.
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I'—=A
—— T TL —— TR
I,Thpl = A I = T[p,A
I'= A
I, lp = A = 1[p,A

A way to think about the LL rule is to consider that L [p] entails the empty
right-hand side from which we can generate A by weakening. So it makes sense
even if all the worlds in A are out of the scope defined by p. We can determine
the laws for negation from considerations for implication and falsehood.

I, (=A)[p] = Alpql, A I, Alpa] = A
T, (-A)p — A T — (-A)p],A

The —R rule is subject to the proviso that a does not appear in the conclusion.

Showing the soundness and completeness of labeled deduction is not a triv-
ial enterprise; we show here only completeness. A critical notion is that of a
monotone sequent. We write p < ¢ if there exists a p’ such that pp’ = ¢ and say
p is a prefiz of g. We say a sequent Aq[p1],..., Anlpn] = Cila1],- .., Cmlgm]
is monotone at q if ¢; = ¢q for all 1 < j < m and every p; is a prefix of ¢, that
is, p; S gforalll <i<m.

a

Theorem 6.3 (Completeness of Labeled Deduction) IfT' == A is deriv-
able then for any monotone labeling I' = A’ of T == A, we have that
I = A’ is derivable.

Proof: By induction on the structure of the given derivation. We show a few
cases.

Case:
D=——"—""init
I'P= PA
I, P[p] = PJ[q], A’ monotone at ¢ Assumption
p=Xgq By defn. of monotonicity
IV, Plp] = P|q], A’ By rule init
Case:
Dy
A= B
= ADBA
= (A D B)[q], A’ monotone at ¢ Assumption
I‘ A[qa] B[ga] monotone at ga for a new a By defn. of monotonicity
I" , Alga] = Blqa] derivable By i.h.
= (A D B)[q] derivable By rule DR*
(A D B)[q], A’ derivable By weakening
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Case:
D, D,
INADB =5 A A I''B= A
D— oL
IADB=A
IV, A D B[p]| = A’ monotone at ¢ Assumption
I'", A D Blp] = Alql], A’ monotone at ¢ By defn. of monotonicity
IV, AD Bp]| = Alq], A’ derivable By i.h.
I, Blg] = A’ monotone at ¢ By defn. of monotonicity
I, Blq] = A’ derivable By i.h.
I, (AD B)[p] = A/ By rule DL and p < ¢

O

The soundness proof is considerably more difficult. Standard techniques are
via so-called Kripke models or by direct translation from matrix proofs to the
sequent calculus. On of the problems is that the (unlabeled) proof will generally
have to proceed with a different order of the inferences than the labeled proof.
The interested reader is refered to Wallen [Wal90], Waaler [Waa01], and Schmitt
et al. [KS00, SLKNO1].

6.3 First-Order Labeled Deduction

In first-order intuitionistic logic, it is not just the implication that introduces a
new scope, but also universal quantification. This means we have to change both
the multiple-conclusion sequent calculus and the labeled deduction system. The
changes in the multiple-conclusion calculus is quite straightforward; the change
to the labeled calculus are more extensive. We show here only the rules, but
not any proofs. The reader is refered to the literature cited at the beginning of
this chapter for details.

[,Va. A(z), A(t) == A I =2 A(b)
VL VR®
IV, A(z) = A I =& V. A(z), A
I, A(b) = A I = A(t),3z. A(x), A
JrLb R
[, 3z A(z) =% A I == 3z. A(z), A

The side condition on VR? and 3L is the usual: b must not occur in the
conclusion. Note that A is erased in the premise of VR, and that an extra copy
of 3x. A(z) is kept in the IR rule.

The fact that universal quantification creates a new scope means that in
the labeled deductive systems, terms must now also be labeled. We have a
new judgment ¢ term[p] which means ¢ is a well-formed term at p. We may
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abbreviate this as ¢[p]. We introduce a new set of assumptions in order to track
the labels at which they have been introduced.

Labeled Parameter Contexts ¥ == -| X, aterm|p]

We have two principal judgments.

W= A
Ykt term|p)

The first just adds an explicit parameter context to a sequent, the second test
whether terms are well-formed. The latter is defined by the following rules:

a term[p] in ¥ Ykt term[p] foralll<i<mn
_ parm func
Y F a term|pq] S E f(t1,...t,) term[p]

As propositional assumptions, term assumptions remain valid in future worlds
(allowing pg in the parameter rule). In the rules for ;' = A, ¥ is car-
ried through from conclusion to premises in all rules except those containing
quantifiers. The new rules for quantifiers are:

Skt ST Ve AW A)lpg = A
T, Ve, A(x)[p] = A

VL

¥, b[pal; T = A(b)[pa], A
5T = V. A(z)[p], A

VRb’a

0Pl T, Ab)[p] = A
T, 3z A(x)[p) = A

Y Ftp] T = A(t)[p], Fz. A(x)[p], A
;T = Jz. A(x)[p], A

IR

6.4 Matrix Methods

The system of labeled deduction, if propositional or first-order, still has non-
invertible rules. Specifically, implication and universal quantification on the left
are synchronous, as well as existential quantification on right. These proposi-
tions may have to wait for a label or term parameter to be introduced before
they can be decomposed.

In order to postpone these choices we can introduce free variables, standing
both for labels and terms, and employ unification (again, both for labels and
terms) for possibly initial sequents. These kinds of algorithms are usually de-
scribed as so-called matriz methods, connections methods, or mating methods,
originally developed for classical logic.
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6.4 Matrix Methods 125

This is a large subject, and we forego a special treatment here. A good
introduction, with further pointers to the literature, can be found in Waaler’s
article [Waa0l] in the Handbook of Automated Reasoning. Highly recommended
is also Wallen’s book [Wal90], although it does not fully address some of the
more difficult aspects of the implementation such as label unification.
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