62

Draft of March 24, 2004

Chapter 4

Focused Derivations

The sequent calculus as presented in the previous chapter is an excellent founda-
tion for proof search strategies, but it is not yet practical. For a typical sequent
there are many choices, such as which left or right rule to use to reduce the goal
in the bottom-up construction of a proof. After one step, similar choices arise
again, and so on. Without techniques to eliminate some of this non-determinism
one would be quickly overwhelmed with multiple choices.

In this chapter we present two techniques to reduce the amount of non-
determinism in search. The first are inversion properties which hold when the
premises of an inference rule are derivable if and only if the conclusion is. This
means that we do not lose completeness when applying an invertible rule as soon
as it is applicable. The second are focusing properties which allow us to chain
together non-invertible inference rules with consecutive principal formulas, once
again without losing completeness.

While inversion and focusing are motivated by bottom-up proof search, they
generally reduce the number of derivations in the search space. For this rea-
son they also apply in top-down search procedures such as the inverse method
introduced in Chapter 5.

4.1 Inversion

The simplest way to avoid non-determinism is to consider those propositions on
the left or right for which there is a unique way to apply a corresponding left
or right rule. For example, to prove A A B we can immediately apply the right
rule without losing completeness. On the other hand, to prove AV B we can not
immediately apply a left rule. As a counterexample consider BV A = AV B,
where we first need to apply a left rule.

On a given sequent, a number of invertible rules may be applicable. However,
the order of this choice does not matter. In other words, we have replaced don’t-
know non-determinism by don’t-care non-determinism.

Determining the invertibility of left rules in order to support this strategy

Draft of March 24, 2004

64 Focused Derivations

requires some additional considerations. The pure inversion property states that
the premises should be derivable if and only if the conclusion is. However, in
left rule the principal formula is still present in the premises, which means we
can continue to apply the same left rule over and over again leading to non-
termination. So we require in addition that the principal formula of a left rule
is no longer needed, thereby guaranteeing the termination of the inversion phase
of the search.

Theorem 4.1 (Inversion)
1. IfT= AAB thenT =— A and I' = B.
IfT'=—= AD B then')A = B.
IfT' = Vz. A then T = [a/z]A for a new individual parameter a.
IfT'= —A then I'; A = p for a new propositional parameter p.
IfT ANB=— C thenT'A,B = C.
IfI, T = C then T = C.
IfT,AVvB=C thenT A= C and I',B = C.

© RS & L

IfT,32. A= C thenT,[a/z]A = C for a new individual parameter a.

Proof: By induction over the structure of the given derivations. Parts (5) and
(6) are somewhat different in that they extract an inversion property from two
and zero left rules, respectively. The proof is nonetheless routine.

Alternatively, we can take advantage of the admissibility of cut to avoid
another inductive proof. For example, to show the first property, we can reason
as follows:

I'= AAB Assumption
INMAANB, A= A By rule init
IMAANB=— A By rule ALy
r=4A By admissibility of cut (Theorem 3.11)
See also Exercise 4.1. O

The rules TR and LL are a special case: they can be applied eagerly without
losing completeness, but these rules have no premises and therefore do not
admit a theorem of the form above. None of the other rules permit an inversion
property, as the following counterexamples show. These counterexamples can
easily be modifed so that they are not initial sequents.

1. AV B= AV B (both VR; or VR lead to an unprovable sequent).
2. 1L = 1 (no right rule applicable).

3. Jz. A= Jx. A (3R leads to an unprovable sequent).

Draft of March 24, 2004

4.1 Inversion 65

4. AD B= AD B (DL leads to an unprovable sequent).
5. =A = —A (—L leads to an unprovable sequent).

6. Vo. A = Vz. A (VL leads to an unprovable sequent if we erase the original
copy of Vz. A).

Now we can write out a pure inversion strategy in the form of an inference
system. One difficulty with such a system is that the don’t-care non-determinism
is not directly visible and has to be remarked on separately. We also refer to
don’t-care non-determinism as conjunctive non-determinism: eventually, all ap-
plicable rules have to be applied, but their order is irrelevant as far as provability
is concerned.

First, we distinguish those kinds of propositions for which either the left or
the right rule is not invertible. We call them synchronous propositions (either on
the left or on the right).! The remaining propositions are called asynchronous.
This terminology comes from the study of concurrency where an asynchronously
computing processes proceed independently of all other processes, while a syn-
chronously computing process may have to wait for other processes.

Left synchronous propositions L == P|A; DAy |Va. A
Right synchronous propositions R P|A VA |L]|3z. A

Passive antecedents A == -|A,L

Note that we will revise this classification in Section 4.3. Sequents are com-
posed of four judgments: left and right propositions, each of which may be
active or passive. In order to simplify the notation, we collect like judgments
into zones, keeping in mind that there can only be one proposition on the right.
The active propositions that are decomposed asynchronously will be written in
the center, the synchronous ones move to the outside for later consideration.

Sequents are written as

A;Q= A;- and A; Q= <R

where the outer zones containing A or R are passive and the inner zones con-
taining Q or A are active. We still think of A as unordered, but it is important
that €2 is ordered in order to avoid spurious non-deterministic choices. We must
always work on its right end. We break down the principal connectives of asyn-
chronous propositions eagerly, moving synchronous propositions into the passive
zones, until all asynchronous connectives have been decomposed. At that point
we have to choose one of the passive (synchronous) propositions. If this attempt
fails we have to backtrack and try other choices.

In order to prove a sequent I' = A, we initialize our inversion-based proce-
dure with the sequent ;' = A; -, where the order we choose for the elements
of T is irrelevant.

1For the moment, we do not consider negation explicitly—think of it as defined.

Draft of March 24, 2004

66 Focused Derivations

Right Asynchronous Propositions. First, we decompose the right asyn-
chronous connectives.

AQ= A;- A Q= B;-
AR —F—F TR
A Q= ANB;- AQ=T
A QA= B;- A;Q = [a/z]A;-
DR VYR
A; Q= ADB;- A; Q= V. A;-
AQQ=— R
—— RR
A; Q) — R;-

The last rule moves the right synchronous proposition into the passive zone.

Left Asynchronous Propositions. When the proposition on the right is
passive, we break down the left asynchronous connectives in the active zone on
the left. Recall that) is considered in order, so there is no non-determinism.

AQ A B=— R AQ=— R

AL ——F 1L
AQANB = R A;QT = R
AQUA= R A;QB=— R
VL —— 1L
AQAVB= R A;Q 1L = R
A Q la/z]A = R
JLe
A;Q,dr. A= R
AL;QY=— R
— LL
A;QL— R

The last rule allows us to move synchronous propositions into the passive zone.

Right Synchronous Propositions. The active rules always terminate when
applied in a bottom-up fashion during proof search (see Lemma 4.7). Now a
don’t-know non-deterministic choice arises: either we apply a right rule to infer
R or a left rule to one of the passive assumptions in A. We also refer to don’t-
know non-determinism as disjunctive non-determinism since we have to pick
one of several possibilities.

—— VR, —— VRy
A= AVB A= AV B
A= [t/x]A4;-

—F R
no right rule for L A= dx. A

In the last case we would have to guess the ¢, but in practice the t is deter-
mined by unification as indicated in Section 4.4.

Draft of March 24, 2004

4.1 Inversion 67

Left Synchronous Propositions. Left synchronous propositions may be
needed more than once, so they are duplicated in the application of the left
rules.

AADB;- = A;- AADB;B=— R
AJADB;-= R

DL

A Vx. A;[t/r]A = R
VL
A Vx. A;- = R

Initial Sequents. This leaves the question of initial sequents, which is easily
handled by allowing an passive atomic proposition on the left to match a passive
atomic proposition on the right.

init

AP, = P

The judgments A; Q) = A;- and A;Q) = -; R are hypothetical in A, but
not hypothetical in {2 in the usual sense. This is because proposition in 2 do
not persist, because they have to be empty in the initial sequents, and because
they must be considered in order. In other words, contraction, weakening, and
exchange are not available for 2. These turn out to be admissible, but the
structure of the proof is changed globally. Therefore we consider it an ordered
hypothetical judgment where each hypothesis must be used exactly once in a
derivation, in the given order. We do not formalize this notion any further,
but just remark that appropriate versions of the substitution property can be
devised to explain its meaning.

First, the soundness theorem is straightforward, since inversion proofs merely
eliminate some disjunctive non-determinism.

Theorem 4.2 (Soundness of Inversion Proofs)
IfA Q= A; or A;Q = ; A then A,Q = A.

Proof: By astraightforward induction over the given derivation, applying weak-
ening in some cases. O

The completeness theorem requires a number of inversion lemmas. For a
possible alternative path, see Exercise 4.2. The first set of results expresses the
invertibility of the rules concerning the active propositions. That is, we can
immediately apply any invertible rule witout losing completeness. The second
set of results expresses the opposite: we can always postpone the non-invertible
rules until all invertible rules have been applied.

We use the notation A;Q = p to stand for A;Q = A;- or A;Q = - R.

Lemma 4.3 (Inversion on Asynchronous Connectives)

1. AsQ = AANB; - iff A;Q = A;- and A;Q) = B;-.

Draft of March 24, 2004

68 Focused Derivations

2. A;Q= ADB; - iff A;Q, A= B;-.

3. A Q = Va. A;- iff A;Q = [a/z]A;- for any new parameter a.

4. Q= R;- iff A;QQ = ;R for R right synchronous.

5 A, ANB, Qs = p iff A;Q, A, B,Qy = p.

6. A;Q1,T,Q = p iff A;01,Q0 = p.

7. A;Q1,AV B, Qo = p iff A;Q1,A,Q0 = p and A;Qq, B,Qy = p.

8. A;Qq,3x.A, Qs = p iff A;Q,[a/z]A, Qe = p for any new param. a.
9. A;Qq, L, Qo = p iff A, L;Q4,Q0 = p for L left synchronous.

Proof: In each direction the result is either immediate by a rule, by inversion, or
follows by a straightforward induction on the structure of the given derivation.
O

The dual lemma shows that rules acting on synchronous propositions can
be postponed until after the asynchronous rules. We define the active size of
a sequent A; Q) = A;- or A;Q = -; R as the number of logical quantifiers,
connectives, constants, and atomic propositions in 2 and A. Note that the
active size of a sequent is 0 if and only if it has the form A;- = -; R.

Lemma 4.4 (Postponement of Synchronous Connectives)
1. If A;Q = A;- or A;Q = -5 A then A;Q = -; AV B.
2. If A;QQ = B;- or A;Q = ;B then A;Q = AV B.
3. If A;Q = [t/z]A;- or A;Q = [t/x]A then A;Q = ;3. A.

4. If (A,AD B); (21,Q2) = A;- and (A, AD B); (21,B,Q) = p
then (A, AD B); (Q1,Q:) = p.

5. If (A, Vx. A); (Qq, [t/z]A, Q) = p then (A, V. A); (21,Q2) = p.

Proof: By induction on the active size of the given sequent. For the right rules
(parts (1), (2), and (3)), the base cases are) = -, in which case the conclusion
follows directly by a rule. For the left rules, the base case is Q = - and p = -} R,
in which case the conclusion follows directly by a rule. In all other case we
apply inversion to an element of 2 (Lemma 4.3) or C' (if p = C;-) and appeal to
the induction hypothesis. Since the right-hand sides of the inversion principles
have smaller active size than the left-hand sides, we are correct in applying the
induction hypothesis. We show two cases in the proof of part (4).

Case: 2 ="-and p=-R.

Draft of March 24, 2004

4.1 Inversion 69

(A,ADB);B= R Assumption
(A,ADB);- = A;- Assumption
(A,ADB);- = 4R By rule DL

(AJADB);;QV,CVD,B=p Assumption

(AJAD B);Q,C,B= p and

(A,ADB);Q,D,B=p By inversion

(A,ADB);QY,CV D= A4;- Assumption

(A,ADB);Q,C = A;- and

(AJAD B);QV,D = A;- By inversion

(AJADB);QV,C=p By i.h. on ', C

(AJADB;;QV,D=p By i.h. on ', D

(A,ADB);QY,CVD=p By rule VL
O

For the proof of completeness, and also to permit some optimizations in the
search procedure, we need to show that weakening and contraction for propo-
sitions in 2 are admissible, at the price of possibly lengthening the derivation.
Note that weakening and contraction for A is trivial, since inversion sequents
are hypothetical in A.

Lemma 4.5 (Structural Properties of Inversion Sequents)
1. If A;Q = p then (A, A);Q = p.
2. If (ALA A);Q = p then (A, A);Q = p.
3. If A; (Q21,Q0) = p then A; (Q1, A, Qy) = p.
4. If A (Q1, A, A, Qo) = p then A; (1, A, Qo) = p.

Proof: Parts (1) and (2) follow as usual by straightforward structural induc-
tions over the given derivations. Parts (3) and (4) follow by induction on the
structure of A, taking advantage of the inversion properties for asynchronous
propositions (Lemma 4.3) and parts (1) and (2) for synchronous propositions.
O

Theorem 4.6 (Completeness of Inversion Proofs)
If Q = A then -;Q = A;-.

Proof: By induction on the structure of the given sequent derivation S, taking
advantage of the inversion, postponement, and structural properties proven in
this section. We think of the ordinary left rules of the sequent calculus as
operating on some proposition in the middle of 2, rather than explicitly dealing
with exchange. We consider in turn: invertible right rules, invertible left rules,
initial sequents, non-invertible right rules and non-invertible left rules.

Draft of March 24, 2004

70 Focused Derivations

Case:
81 82
=N Al === A2
S = AR
Q= A1 AN A2
Q= Ay;- By i.h. on &7
5 Q= Ag;- By i.h. on &
Q= A1 A Ay;- By Lemma 4.3(1)

Cases: The right invertible rules DR and VR and also the case for TR are
similar to the case for AR.

Case:
S1 Sa
QhBl \/BQ,Bl,QQZ>A QlaBl \/BQ,BQ,92:>A
S = VL
QlaBl \/BQ,QQ = A
';Ql,Bl\/BQ,Bl,QQ:>A;' By i.h. on &
‘;Ql,BlvBQ,BQ,QQ:A;' By i.h. on 82
Q1,B1V By, BV By, Q9 — A;- By Lemma 43(7)
Q1,B1V By, Qs = A;- By contraction (Lemma 4.5)

Cases: The left invertible rule JL and also the case for 1L are similar to the
case for VL.

Case:

S1
Ql,Bl A BQ,Bl,QQ — A
Ql,Bl /\32792 — A

~;Ql,Bl/\Bg,Bl,QQZ>A;' By i.h. on &y
Q1,B1 A By, By, By, = A;- By weakening (Lemma 4.5)
';Ql,Bl /\BQ,Bl /\BQ,QQ — A By Lemma 43(5)
5, By ANBy, Q= A By contraction (Lemma 4.5)

Case: The case for ALs is symmetric to AL;. Note that there is no left rule
for T in the sequent calculus, so the TL rule on inversion sequents arises
only from weakening (see the following case).

Case:

S=——init
Ql,P792:>P

Draft of March 24, 2004

4.1 Inversion 71

P;-—=— P By rule init

P =P By rule LL

wP= P;- By rule RR

5y, P,Qy = P;- By weakening (Lemma 4.5)
Case:

Sy
0= Al
S=—— VRq
Q= A1 \Y A2

50 = Ay;- By i.h. on &;

Q= ALV Ay By postponement (Lemma 4.4)

Q= A1V Ay;- By rule RR
Cases: The cases for the non-invertible right rules VRy and 3R are similar to

VR;.
Case:

81 82
Q1,B1 D B2,§y = B Q1,B1 D By, By, {2y = A
§= DL
Ql,Bl D BQ,QQ == A

';Ql,BlDBQ,QQZ>Bl;' By i.h. on &;

B1 D By;4,Q5 — By;- By inversion (Lemma 4.3(9))

1, By D Ba, By, Q2 = A;- By i.h. on S,

By D By;Qq,By,05 — A;- By inversion (Lemma 4.3(9))

By D By; Q1,00 = A;- By postponement (Lemma 4.4)

5 Ql, B1D BQ, Oy — A, . By Lemma 43(9)

Case: The cases for the non-invertible left rule VL is similar to DL.

O

We can also show that the active rules always terminate, which is important
for the algorithm.

Lemma 4.7 (Termination of Active Rules)
Given a goal A;Q = p. Any sequence of applications of active rules termi-
nates.

Proof: By induction on the active size of the given sequent. O

Next we describe a non-deterministic algorithm for proof search. There are a
number of ways to eliminate the remaining disjunctive non-determinism. Typ-
ical is depth-first search, made complete by iterative deepening. The choice
of the term ¢ in the rules 3R and VL is later solved by introducing free vari-
ables and equational constraints into the search procedures which are solved by
unification (see Section 4.4). Many futher refinements and improvements are
possible on this procedures, but not discussed here.

Draft of March 24, 2004

72 Focused Derivations

Given a goal A; Q) = p.
1. If Q =- and p = -; P succeed if P is in A.

2. If @ = - and p = -; R, but the previous case does not apply, guess an
inference rule to reduce the goal. In the cases of IR and VL we also have to
guess a term t. Solve each subgoal by recursively applying the procedure.
This case represents a disjunctive choice (don’t know non-determinism).
If no rule applies, we fail.

3. If Q is non-empty or p = A;-, use the unique applicable active rule and
solve each of the subgoals by recursively applying the procedure.

This search procedure is clearly sound, because the inversion proof system
is sound (Theorem 4.2). Furthermore, if there is a derivation the procedure will
(in principle) always terminate and find some derivation if it guesses correctly
in step (2).

4.2 Backchaining

While the inversion properties from the previous section are critical for con-
structing efficient theorem provers, they far from sufficient. The difficulty is
that many non-deterministic choices remain. In this section we discuss a par-
ticular strategy called backchaining which has applications outside of theorem
proving, for example, in logic programming. We restrict ourselves to Horn
logic, a particularly simple logic that is useful in many circumstances. In the
next section we describe focusing, which is the generalization of backchaining to
full intuitionistic logic.

In many theorem proving problems we are in a situation where we have a
number of propositions describing a theory and then a proposition we would
like to prove with respect to that theory. Theories are often given in the form of
propositions Vz; ...Vx,. P, A... N\ Py D P. These hypotheses are synchronous
(in the sense of the previous section), that is, we have to choose between them
when trying to prove some atomic proposition). Backchaining rests on two
observations. The first is that search remains complete if we only try to use those
assumptions where P and) can be made equal by instantiating z1, ..., z, with
appropriate terms. The second is that once we decide which assumption to
use, we can apply a whole sequence of left rules (here VL and DL) without
considering any other synchronous assumption.

Both of these observation are of crucial importance. The first cuts down
on the number of assumptions we may use. The second drastically reduces the
non-determinism. To see the latter, consider a theory with m clauses defining a
predicate p and that ach clause has n universal quantifiers. With backchaining
(and unification, see Section 4.4) we create one choice with m alternatives.
With just the inversion strategy, we have m choices in the first step, then m +1
choices in the second step after instantiating one quantifier, and so on, yielding

Draft of March 24, 2004

4.2 Backchaining 73

m(m—+1)---(m+p) choices. As the main theorem of this section and the next
shows, these choices are redundant.

We first define Horn clauses in a form that is slightly more general than what
is usually given in the literature.

Horn clauses D P|GD>D|Vz. D
Horn goals G P|GiNGL| T

Horn theories A == -|A,D

Some further generalizations are possible; important for us is the absence of im-
plications and universal quantification in goals as well as existential, disjunction,
and falsehood in clauses.

A theorem proving problem in Horn logic is stated as

A— G

where A is a Horn theory and G is a Horn goal, that is, a conjunction of atomic
propositions.

As two simple examples of Horn theories we consider even and odd numbers,
and graph reachability.

For even/odd number we have constants 0 and s to represent the natural
numbers in unary form. As usual, we abbreviate 0() with just 0.

even(0),
V. even(z) D odd(s(z)),
Vz. odd(x) D even(s(x))

For reachability in a directed graph we assume we have a constant for each
node in the graph and an assumption edge(a,b) for each edge from node a to
node b. In addition we assume

V. Vy. edge(x, y) D reach(z, y),
V. Vy. Vz. reach(x, y) A reach(y, z) D reach(z, 2)

In the even/odd example, we would like for backchaining to reduce the goal
even(s(s(0))) to the subgoal odd(s(0)). In this case this reduction should be
essentially deterministic, because only the last clause could match the goal. We
formalize backchaining with the following two judgments.

A= G Horn theory A proves G uniformly
A;D == P Backchaining on Horn clause D proves P

First the rules of uniform proof, which are rather simple. The critical one is
the last, which selects a Horn clause from A for backchaining.

A= G A= G,
AR —— TR
A:u>G1/\GQ A:u>T

A;D=5P (DinA)

select
A= P

Draft of March 24, 2004

74 Focused Derivations

The rules for backchaining consider the possible forms of the Horn clause,
decomposing it by a left rule. When using this as a proof search procedure
by interpreting it bottom-up, we imagine using unification variables instead of
guessing terms, and solving left-most premises first.

———— init
A;P=P (A; P =% Q fails for P # Q)
A;D =% P A= G A;t/x]D == P
OL —— VL
A;GDOD =P A;Vz. D = P

It is not difficult to see that this indeed captures the intended proof search
strategy for backchaining. It is also rather straightforward to prove it sound
and complete.

Theorem 4.8 (Soundness of Uniform Proofs in Horn Theories)
1. If A == G then A = G.
2. If A\;D = G then A,D = G.

Proof: By straightforward induction over the given derivations. In the case
of the select rule, we require the admissibility of contraction in the sequent
calculus. O

For the completeness direction we need a postponement lemma, similar to
the case of inversion proofs. This lemma demonstrates that the left rules of the
sequent calculus are admissible for the passive propositions of uniform sequents.

Lemma 4.9 (Postponement for Uniform Proofs)
1. If A\GD>D,D;D' = P and A,G D> D = G then A,G D> D;D' == P
2. If A,GD>D,D==G" and A,G > D == G then A,G>D == G
3. If A,Vx. D, [t/x]D; D' = P then A,Vx. D; D' = P
4. If A\Vz. D,[t/z]D == G’ then A,Vz. D == G’
Proof: By straightforward inductions over the first given derivation. O
Theorem 4.10 (Completness of Uniform Proofs in Horn Theories)
1. If A = G then A == G.
2. If A = P then there is a D in A such that A; D == P.

Proof: Part (1) follows by inversion properties of the sequent calculus. We
show one case of Part (2).

Draft of March 24, 2004

4.2 Backchaining 75

Case:
S 82
AGDD =G A'GD>D,D=— P
S = DL
AN GoD=—P

A'.G > D,D; D' = P for some D' in A',G > D,D By i.h. on S,
AN .GO>D=G By i.h. on S;
AN .G>D;D = P By Lemma 4.9
If D' in A’,G D D we are done

If D' = D:

AN .GO>D;GODD=P By rule DL

O

Horn theories have a number of important properties. Some of these stem
from the fact that during proof search, the collection of assumptions A never
changes, nor will there ever be any new parameters introduced. This allows us
to give an inductive interpretation to the set of clauses. For example, we could
reason inductively about properties of even numbers, rather than just reason in
first-order logic.

A related property is that Horn clauses can be seen to define inference rules.
For example, we can translate the theory defining the even and odd numbers
into the rules

even(t) odd(t)
even(0) odd(s(t)) even(s(t))

In fact, one can see the uniform proof system and backchaining as implementing
precisely these rules. In other words, we can also compile a Horn theory into a
set of inference rules and then prove Horn goals from no assumptions, but using
the additional rules.

This view is also interesting in that it provides the basis for a forward-
reasoning procedure for Horn logic that resembles the inverse method. However,
all sequents we ever consider have an empty left-hand side! That is, from some
atomic facts, using unary inference rules (possibly with multiple premises), we
derive further facts. We illustrate this way of proceeding using our second Horn
theory which implements a particular graph. First, we turning the theory

V. Vy. edge(x, y) D reach(z,y),
V. Vy. Vz. reach(z,y) A reach(y, z) D reach(z, 2)

into the inference rules

edge(s, t) reach(s, t) reach(t, u)

reach(s, t) reach(s, u)

Draft of March 24, 2004

76 Focused Derivations

Second, assume we start with facts
edge(a,b), edge(b, ¢)
Applying all possible rules we obtain

edge(a, b), edge(b, c),
reach(a, b), reach(b, ¢)

After one more step we have

edge(a,b), edge(b, ¢),
reach(a,), reach(b, ¢),
reach(a, ¢)

Now applying any more rules does not add any more facts: the set of facts is
saturated. We can now see if the goal (e.g., reach(c,a)) is in the saturated set
or not. If yes it is true, if not it cannot be derived from the given facts.

The above strategy can be generalized to the case of facts with free vari-
ables (which are universally interpreted) and is known under the name of unit
resolution.

It is interesting that the forward chaining strategy works particularly well
for Horn theories such as for reach which can easily be seen to be terminating.
This is because no new terms are constructed during the inferences. On the
other hand, the backward chaining strategy we exemplified using even and odd
can easily be seen to be terminating in the backward directions because the
term involved get smaller.

As far as I know, it is still an open research problem how backward chaining
and forward chaining (here illustrated with unit resolution) can be profitably
combined. Also, the relationship between the inverse method and unit (or gen-
eral) resolution is unclear in the sense that we do not know of a proposal that
effectively combines these strategies.

4.3 Focusing

The search procedure based on inversion developed in Section 4.1 still has an un-
acceptable amount of don’t know non-determinism. For the Horn fragment, we
addressed this issue in Section 4.2; here we combine backchaining with inversion
in order to obtain a method that works for full intuitionistic logic.

We first recall the problem with the inversion strategy. The problem lies
in the undisciplined use and proliferation of assumptions whose left rule is not
invertible.

In a typical situation we have some universally quantified implications as
assumptions. For example, A could be

Vry. Yy1. Va1, Pi(z1,91,21) D Q1(21, 91, 21) D Ra(z1, 91, 21),
Vl‘g. Vyg. VZQ. PQ(J?Q, Y2, 22) D Qg(iﬁg,yg, 22) D R2(I2,y2, 22)

Draft of March 24, 2004

4.3 Focusing (s

If the right-hand side is passive, we now have to apply VL to one of the
two assumptions. We assume we guess the first one and that we can guess an
appropriate term t1. After the VL rule and a left transition, we are left with

Vai. Vyi. Va1, Pr(z1,y1, 21) D Q1(21,91,21) D Ri(21, 41, 21),
Vao. Yyo. Vza. Pa(xa, Y2, 22) D Q2(2, Y2, 22) D Ra(wa,y2, 22),
Vyi. Va1, Pi(ti,y1, 21) D Q1(t1,y1,21) D Ri(t, y1, 21)-

Again, we are confronted with a don’t know non-deterministic choice, now
between 3 possibilities. One can see that the number of possible choices quickly
explodes. We can observe that the pattern above does not coincide with mathe-
matical practice. Usually one applies an assumption or lemma of the form above
by instantiating all the quantifiers and all preconditions at once. This strategy
called focusing is a refinement of the inversion strategy.

Roughly, when all propositions in a sequent are synchronous, we focus either
on an assumption or the proposition we are trying to prove and then apply a
sequence of non-invertible rules to the chosen proposition. This phase stops
when either an invertible connective or an atomic proposition is reached.

The focusing strategy is defined by four judgments

A; Q== A;- Decompose right asynchronous proposition
A;Q == R Decompose left asynchronous propositions
A; A== ;R Focus on left synchronous proposition

A;- == A;- Focus on right synchronous proposition

The first two judgment are very similar to the inversion strategy. When we have
the situation A;- == -: R where A consists of left synchronous propositions and
R is right synchronous, we focus either on R or on some proposition L in A and
chain together inferences on the those propositions.

As in the inversion judgment, the proposition on the outside of the four
zones are passive, while the ones on the inside are actively decomposed.

For the strategy to be maximally effective, we slightly generalize our classi-
fication of connectives, permitting conjunction and truth to be viewed as either
synchronous or asynchronous, depending on what is convenient. This allows us
to extend the phases maximally, removing as much non-determinism as possible.

Asynchronous Synchronous
Right A, T,D,V ATV, 1,3
Left A, T,Vv, 1,3 A T,D,V

We now use R for propositions that are not right asynchronous (v, 1,3, P)
and L for propositions that are not left asynchronous (D,V, P).

Except for the special status of conjunction and truth, each connective has
unique and complementary status on the left and on the right. Andreoli’s orig-
inal analysis [And92] was carried out in linear logic, which did not show these
anomalies. This is because there are two forms of conjunction (additive and
multiplicative), each with a unique status.

We first repeat the inversion rules which constitute an asynchronous phase
during search.

Draft of March 24, 2004

78 Focused Derivations

Right Asynchronous Propositions. First, we decompose the right asyn-
chronous connectives.

A== A;. A;Q =% B:;.
AR —FF TR
A;Q = AAB:- AQ=T:.
A;Q A= B;- A;Q == [a/x]A;-
DR VRe
A;Q =% ADB;- A=V, A;-

A;Q=% R (R=AVB,1,3z. A P)

RR
A;Q =% R;-

Left Asynchronous Propositions. Next we break down the left asynchronous
propositions. Recall that € is considered in order, so the rules are deterministic.

A;Q A B== R A;Q== R
AL, —— TL
AQANB= R AQT == R
AQA= R AQ,B=% R
vL —— IL
AQAVB= R AQ L= R

A;Q,a/7]A == R

JLe
A:Q, 3. A== R

ALQY=% R (L=ADB,\Vz. A P)

LL
AQ L= R

Focus. Next we need to decide which proposition among A and R to focus on.
While we allow focusing on an atomic assumption, focusing on the succedent
requires it to be non-atomic. The reason is our handling of initial sequents. For
uniformity we also include |, even though focusing on it will fail in the next
step.

(AL);L = R A;-=R;- (R=AVB,L1,3z. A)
focusL focusR
(A,L);~:a>-;R A= R

Right Synchronous Propositions. The non-invertible rules on the right
maintain the focus on principal formula of the inference. When we have re-
duced the right-hand side to an asynchronous (but not synchronous) or atomic

Draft of March 24, 2004

4.3 Focusing 79

proposition, we blur our focus and initiate an asynchronous phase.

A= A4;. A;- = B:-.
— VR ——VRy
A;- = AV B;- A;- = AV B;-

A;- == [t/2]4;-
— 3R
no right focus rule for L A;- == 3z. A;-
A;-=% A;- (A=B>C,Va. B,P)
blurR

A= A;-

Left Synchronous Propositions. The non-invertible rules on the left also
maintain their focus on the principal formula of the inference. When we have
reached an asynchronous (but not synchronous) proposition, we blur our focus
and initiate an asynchrounous phase.

A;B== R A== A;. A;lt/z]A == 4R
DL VL
A;ADB= R A;Vr. A== R
AA== R A;B = R
ALy ALg
ANANB = 4R A;AANB == R
ANA=% R (A=BVC, 1,3z B)
blurL
no rule for TL AA= R
———— init
A;P= . P no rule for A; P == -;Q for P # Q

Note that the second premise of the DL rule is still a focused sequent. From
a practical point of view it is important to continue with the focusing steps in
the first premise before attempting to prove the second premise, because the
decomposition of B may ultimately fail when an atomic proposition is reached.
Such a failure would render the possibly difficult proof of A useless.

There is a slight, but important asymmetry in the initial sequents: we require
that we have focused on the left proposition.

If one shows only applications of the decision rules in a derivation, the format
is very close to assertion-level proofs as proposed by Huang [Hua94]. His mo-
tivation was the development of a formalism appropriate for the presentation
of mathematical proofs in a human-readable form. This provides independent
evidence for the value of focusing proofs. Focusing derivations themselves were
developed by Andreoli [And92] in the context of classical linear logic. An adap-
tation to intuitionistic linear logic was given by Howe [How98] which is related

Draft of March 24, 2004

80 Focused Derivations

the calculus LJT devised by Herbelin [Her95]. Herbelin’s goal was to devise
a sequent calculus whose derivations are in bijective correspondence to normal
natural deductions. Due to the V, 1 and 3 elimination rules, this is not the
case here.

The search procedure which works with focusing sequents is similar to the
one for inversion. After the detailed development of inversion proofs, we will
not repeat or extend the development here, but refer the interested reader to
the literature. The techniques are very similar to the ones shown in Section 4.1.

4.4 Unification

When proving a proposition of the form Jz. A by its right rule in the sequent
or focusing calculus, we must supply a term ¢ and then prove [t/x]A. The
domain of quantification may include infinitely many terms (such as the natural
numbers), so this choice cannot be resolved simply by trying all possible terms
t. Similarly, when we use a hypothesis of the form Vz. A we must supply a term
t to substitute for . We refer to this a existential non-determinism.

Fortunately, there is a technique called unification which is sound and com-
plete for syntactic equality between terms. The basic idea is quite simple: we
postpone the choice of ¢ and instead substitute a new existential variable (often
called meta-variable or logic variable) X for x and continue with the bottom-up
construction of a derivation. When we reach initial sequents we check if there is
a substitution for the existential variables such that the hypothesis matches the
conclusion. If so, we apply this instantiation globally to the partial derivation
and continue to search for proofs of other subgoals. Finding an instantiation
for existential variables under which two propositions or terms match is called
unification. It is decidable if a unifying substitution or unifier exists, and if so,
we can effectively compute it in linear time. Moreover, we can do so with a
minimal commitment and we do not need to choose between various possible
unifiers.

Because of its central importance in both backward- and forward-directed
search, unification has been thoroughly investigated. Herbrand [Her30] is given
credit for the first description of a unification algorithm in a footnote of his
thesis, but it was not until 1965 that it was introduced into automated deduc-
tion through the seminal work by Alan Robinson [Rob65, Rob71]. The first
algorithms were exponential, and later almost linear [Hue76, MM82] and linear
algorithms [MM76, PW78] were discovered. In the practice of theorem proving,
generally variants of Robinson’s algorithm are still used, due to its low constant
overhead on the kind of problems encountered in practice. For further discussion
and a survey of unification, see [Kni89]. We describe a variant of Robinson’s
algorithm.

Before we describe the unification algorithm itself, we relate it to the problem
of proof search. We use here the sequent calculus with atomic initial sequents,
but it should be clear that precisely the same technique of residuation applies to

focused derivations. We enrich the judgment I' = A by a residual proposition

Draft of March 24, 2004

4.4 Unification 81

F such that

1. if L= Athen ' = A\ F and F is true, and

2. if'= A\ F and F is true then I' = A.

Generally, we cannot prove such properties directly by induction, but we need
to generalize them, exhibiting the close relationship between the derivations of
the sequents and residual formulas F'.

Residual formulas F' are amenable to specialized procedures such as unifi-
cation, since they are drawn from a simpler logic or deductive system than the
general propositions A. In practice they are often solved incrementally rather
than collected throughout a derivation and only solved at the end. This is
important for the early detection of failures during proof search. Incremental
solution of residual formulas is the topic of Exercise 77.

What do we need in the residual propositions so that existential choices and
equalities between atomic propositions can be expressed? The basic proposition
is one of equality between atomic propositions, P, = P,. We also have conjunc-
tion Fy A F5, since equalities may be collected from several subgoals, and T if
there are no residual propositions to be proven. Finally, we need the existen-
tial quantifier 3x. F' to express the scope of existential variables, and Vx. F' to
express the scope of parameters introduced in a derivation. We add equality
between terms, since it is required to describe the unification algorithm itself.
We refer to the logic with these connectives as unification logic, defined via a
deductive system.

Formulas F = PL=Py|t1 =ty | i ANFy|T|3x. F |V F
The main judgment “F is valid”, written = F, is defined by the following

rules, which are consistent with, but more specialized than the rules for these
connectives in intuitionistic natural deduction (see Exercise 77).

—P=p =t
= = I

Al — I
': Fi N Fy ': T
= [t/2]F & [a/z]F
—dI —VI¢
E 3z F E Ve F

The VI rule is subject to the usual proviso that a is a new parameter not
occurring in Vx. F. There are no elimination rules, since we do not need to
consider hypotheses about the validity of a formula F' which is the primary
reason for the simplicity of theorem proving in the unification logic.

Draft of March 24, 2004

82 Focused Derivations

We enrich the sequent calculus with residual formulas from the unification
logic, postponing all existential choices. Recall that in practice we merge resid-
uation and solution in order to discover unprovable residual formulas as soon as
possible. This merging of the phases is not represented in our system.

Initial Sequents. Initial sequents residuate an equality between its principal
propositions. Any solution to the equation will unify P’ and P, which means
that this will translate to a correct application of the initial sequent rule in the
original system.

init
F,P'&P\P’iP

Propositional Connectives. We just give a few sample rules for the con-
nectives which do not involve quantifiers, since all of them simply propagate or
combine unification formulas, regardless whether they are additive, multiplica-
tive, or exponential.

A= B\ F
SR — TR
[= A>B\F = T\T
ILA>B= A\ F, I,A>B,B=C\F,
SL

F,ADB:7>C\F1/\F2

Quantifiers. These are the critical rules. Since we residuate the existential
choices entirely, the 3R and VL rules instantiate a quantifier by a new parameter,
which is existentially quantified in the residual formula in both cases. Similarly,
the VR and dL rule introduce a parameter which is universally quantified in the
residual formula.

I' = [a/z]A\ [a/z]F I,Vz. A, [a/2]A = C \ [a/x]F
VYR VL

I = V. A\Vz. F IVe. A= C\ Jz. F

I = [a/x]A\ [a/z|F I,3z. A, [a/r]A = C\ [a/z|F
JR*® JLe

= 3z. A\ Jz. F I3z. A= C\Vz. A

The soundness of residuating equalities and existential choices in this manner
is straightforward.

Theorem 4.11 (Soundness of Equality Residuation)
IfT'—= A\ F and E F then T = A.

Draft of March 24, 2004

4.4 Unification 83

Proof: By induction on the structure of the given derivation R. We show the
critical cases. Note how in the case of the R rule the derivation of = Jz. F
provides the essential witness term t.

Case:
R = init
I,P= P\P =P
EP =P By assumption
P =P By inversion
IPP=rP By rule init
Case:
R
I' = [a/x]A1 \ [a/x]Fy
R = JR*
E Jz. Fy By assumption
E [t/x]F) for some t By inversion
I' = [t/x] A1\ [t/z] Fy By substitution for parameter a
I = [t/z]A; By i.h.
I' = dx. A; By rule 3R
Case:
R
I' = [a/x]A1 \ [a/x]Fy
R VR®
E Ve Fy By assumption
E [b/x]F; for a new parameter b By inversion
E [a/z]Fy By substititution of a for b
I' = [a/x]A; By i.h.
I' = V. A; By rule VR

O

The opposite direction is more difficult. The desired theorem:

IfT = A thenT = A\ F for some F with = F

cannot be proved directly by induction, since the premisses of the two deriva-
tions are different in the IR and VL rules. However, one can be obtained from

Draft of March 24, 2004

84 Focused Derivations

the other by substituting terms for parameters. Since this must be done simul-
taneously, we introduce a new notation.

Parameter Substitution p == -|p,t/a

We assume all the parameters a substituted for by p are distinct to avoid ambi-
guity. We write A[p], F[p], and T'[p], for the result of applying the substitution
p to a proposition, formula, or context, respectively.

Lemma 4.12 IfI' = A where A = A'[p], T = I"[p] then " = A’ \ F for
some F such that = F[p].

Proof: The proof proceeds by induction on the structure of the given derivation
D. We show only two cases, the second of which required the generalization of
the induction hypothesis.

Case:
p_————init
r,P—= P
Iy =TY[p], P = P'[p], and P = P"[p] Assumption
ry,P= P’'\P=P" By rule init
= P'[p] = P"[p] By rule =1
Case:
Dy
I' = [t/z]44
p=—""""-1R

Jx. A = A'[p] Assumption
A’ = 3z. A} for a new parameter a with

[a/x] A1 = ([a/x]A))[p, a/a] By definition of substitution
[t/x]A1 = ([a/z]A))[p,t/a) By substitution for parameter a
r'=T[p] Assumption
I[p] =T[p, t/a] Since a is new
I" = [a/z] A} \ [a/z]Fy, and

= ([a/2]Fy)lp,t/a] By ih.
I'= 3z. A\ \ 3z. F4 By rule 3R
= (3z. F1)lp] By rule 3R and definition of substitution

a

Theorem 4.13 (Completeness of Equality Residuation)
IfT' = A thenT' = A\ F for some F and = F.

Draft of March 24, 2004

4.4 Unification 85

Proof: From Lemma 4.12 with A’ = A, IV =T, and p the identity substitution
on the parameters in I and A. O

Next we describe an algorithm for proving residuated formulas, that is, an
algorithm for unification. We do this in two steps: first we solve the problem in
the fragment without parameters and universal quantifiers and then we extend
the solution to the general case.

There are numerous ways of describing unification algorithsm in the liter-
ature. We view it here as a process of transformation on a collection of con-
straints. In the first instance we consider global unification, where we are given
a single constraint formula (as generated by equality residuation, for example)
and we have to determine if it is true. Later, we will generalize the view in
order just partially transform the constraints to a normal form which is easily
seen to have most general solutions. This latter view will be particularly useful
when constraints are generated incrementally during proof search.

A collection of equational constraints is simply a collection of formulas in
the unification logic or an indication that the constraints are inconsistent (#).

Constraints C == .| F,C|#

We will freely exchange formulas among the constraints, just as we freely
exchange assumptions in the sequent calculus. The empty constraint “-” corre-
sponds to success, a contradiction to failure of proving the unification formula.
Constraints may contain free unification variables X which are interpreted ex-
istentially. They are also known as existential variables or logic variables. Note
that unification variables are never bound. We group the rules into several
classes. The first, breaks down the structure of the formulas in C.

P ANFRC - P, FC
T,C — C
dx. F,C +— [X/z]F,C where X not free in F or C

The second group of rules breaks down equalities into simpler equalities.

Pty stn) =p(si...,80),C = t1=s1,...t, =5,,C
flt, . tn) = f(s1---,80),C = t1 =81,...,tp =5p,C
Pty . ytn) =q(s1...,8,),C +— # where p # ¢
fl,. o tn) =9g(s1...,8,),C +— # where f # g

Note that equations of predicate or function symbols without arguments (n = 0)
will either be simply removed or be inconsistent.

Finally, we will be left with equations where one of the two sides is a unifi-
cation variable (we are not yet considering parameters). In that case, we must
consider the right-hand side and distinguish several cases:

X=X, — C

X=tC ~ [t/X]C provided X not freein ¢
t=X,C +— [t/X]C provided X not free in ¢
X=tC — # if t # X and X freein ¢
t=X,C — # ift # X and X free in ¢

Draft of March 24, 2004

86 Focused Derivations

The conditions on these rules are necessary in order to recognize cases such as
X = f(X), which has no solution: No matter which term we substitute for X,
the right-hand side will always have one more function symbol than the left-
hand side, so the equation cannot be satisfied. We refer to the condition “X
not free in t” as the occurs-check.

Note that the whole algorithm depends critically on the function symbols
being uninterpreted. As a trivial example, consider +(3,4) = 4(2,5) on which
the above algorithm would fail. Slighly trickier is something like X = —(—(X))
which is true for any integer X, but violates the occurs-check.

As a first step in the correctness proof we can verify that a unification will
always terminate.

Lemma 4.14 (Termination of Unification) Any sequence of reductions C' +—
C' — C" ... must terminate and yield either # or the empty set of constraints

()

Proof: By nested induction, first on the number of variables (unification vari-
ables X or bound variables 3x) in C, second on the total size of the constraint,
counting quantifiers, logical connectives, and variables occurrences.

The first set of rules for structural decomposition and the rule for eliminat-
ing X = X decreases the size of the constraints, without increasing the number
of variables. The set of rules for variables (except for X = X) reduces the num-
ber of variables in C' by substitution for all occurrences of a variable (possibly
increasing the total size of the constraint). O

In order to show the correctness of the unification algorithm, we would like
to show that each step preserves provability. That is, if C' +— C’ then C is
provable iff C” is provable. However, a difficulty arises in the case of existential
quantification, since we step from Jx. F to [X/z]F and we have not defined
what it means for a formula with a unification variable to be provable. Intu-
itively, it should mean that not the formula itself, but some instance of it is
provable. Hence we define that a constraint is satisfiable to mean that there is
an instance that is provable. In order to define the concept of an instance we
define simultaneous substitution for the unification variables of a term.

The second concept we need is that of a substitution for existential variables.
We use a new notation, because this form of substitution is quite different from
substitutions for bound variables x or parameters a.

Substitutions 0 = -|0,t/X

We require that all variables X defined by a substitution are distinct. We write
dom(0) for the variables defined by a substitution and cod(6) for all the variables
occuring in the terms ¢. For a ground substitution cod(#) is empty. For the tech-
nical development it is convenient to assume that the domain and co-domain of
a substitution share no variables. This rules out “circular” substitutions such
as f(X)/X and it also disallows identity substitutions X/X. The latter restric-
tion can be dropped, but it does no harm and is closer to the implementation.

Draft of March 24, 2004

4.4 Unification 87

As for contexts, we consider the order of the definitions in a substitution to be
irrelevant.

We write t[0], A[f], and T'[0] for the application of a substitution to a term,
proposition, or context. This is defined to be the identity on existential variables
that are not explicitly defined in the substitution.

We also need an operation of composition, written as 6; o 65 with the prop-
erty that t[fy o 03] = (¢[f1])[f2] and similarly for propositions and contexts.
Composition is defined by

(1) 00y =0
(Gl,t/X) o 92 = (91 © 92)at[92]/X

In order for composition to be well-defined and have the desired properties we
require that dom(6;), dom(fy) and cod(fs) are disjoint, but of course variables
in the co-domain of #; can be defined by 6.

Now we define that constraint C' = Fy,..., F,, is satisfiable if there exists a
substitution @ for unification variables in C' such that = F;[f] for all 1 <i <n.
We write C' sat if C' is satisfiable.

Theorem 4.15 (Preservation of Satisfiability)
If C — C' then C sat iff C" sat

Proof: In both directions, the proof is by cases on the definition of C' — C".
We show a three cases from left-to-right. The other cases and opposite direction
are similar.

Assume C' — C’ and C sat. We have to show the C’ sat.

Case: Jx. F,C, — [X/z|F,C}.

dx. F,Cy sat

For some 0, |= (3x. F)[6]

and = F1[0] for every Fy in Cy
= 3o (Fl6))

= [t/2](F[0])

= ([t/]F)[6)]

= ([X/a)F)[0,t/X]

E F1]0,t/X] for any Fy in C;
[X/x]F,Cy sat

Case: X =t,Cy — [t/X]Cy where X not in ¢.

X =t,C4 sat

For some 6, = (X = t)[0]

and = F1[0] for every Fy in Cy
= X[6] = t[0]

X[0] = t[6]

0= (0',1[6]/X)

Draft of March 24, 2004

Assumption

By defn. of sat

By defn. of substitution
By inversion

By props. of substitution
Since X not in F or ¢
Since X not in C4

By defn. of sat

Assumption

By defn. of sat

By defn. of substitution
By inversion

By defn. of substitution

88 Focused Derivations

te]/ X =t[0"]/ X Since X not in ¢
= F1[¢,¢0']/X] for any F; in C} From above
= ([t/X]F1)[0'] By props. of substitution
[t/ X]C1 sat By defn. of sat

Case: X =t,C1 — # where X int, X #t.

X =1t,Cq sat Assumption
= (X =t)[6] for some 6 By defn. of sat
= X[0] = ¢[0) By defn. of substitution
X[0] = t]0) By inversion
X0 =f(...X..)[0] Since X int, X #t
X0 =f(...X[0]...) By defn. of substitution
Contradiction Right-hand side has more function symbols

than left-hand side
This case is impossible

d

The argument above requires some elementary reasoning about substitution.
Those proofs are usually straightforward by induction on the structure of the
term we substitute in, as long as the right condition on occurrences of variables
are known.

Termination of unification together with preservation of satisfiability gives
us the correctness of unification as a procedure.

4.5 Unification with Parameters

The generalization of the algorithm above to account for universal quanti-
fiers and parameters is not completely straightforward. The difficulty is that
V. Jy. y = z is valid, while Jy. Vx. y = = is not. In unification logic, the fact
that the second cannot be derived is due to the parameter restriction.

Edy. Ve.y==x

In this derivation, the application of VI* is incorrect. However, if we had a way
to postpone choosing the instantiation for y, say, by supplying an existential
variable instead, then the situation is far less clear.

“a/Y777
I
EY =a
—VI*??
EVeY ==z
=l
Edy.Ve.y=x

Draft of March 24, 2004

4.5 Unification with Parameters 89

In this derivation, it is the substitution of a for Y which will invalidate the
derivation at the VI® rule application. Up to that point we could not really fail.
Written in our transformation notation:

Jy. Ve.y=x
— V.Y =2
— Y=a
77

From this very simple example it seems clear that we need to prohibit fi-
nal step: Y may not be instantiated with a term that mentions parameter a.
There are two approaches to encoding this restriction. More or less standard
in theorem proving is Skolemization which we pursue in Exercise 4.3. The dual
solution notes for each existential variable which parameters may occur in its
substitution term. In the example above, Y was introduced at a point where a
did not yet occur, so the substitution of a for Y should be rejected.

In order to describe this concisely, we add a parameter context ¥ to the
judgment which lists distinct parameters.

Parameter Context ¥ == -|U,a

We annotate each judgment with the parameter context and introduce the new
judgment “t is closed with respect to ¥”, written as ¥ |= ¢ term. It is defined
by the following rules.

UEt term --- Ukt, term
parm root
Wi,a,%s Fa term Uk f(tr,...,tn) term

We modify the validity judgment for unification formulas to guarantee this con-
dition.

Ukt term U = [t/z]F U,a = [a/z]F
I vI¢
U3 F U Ve F

Now the state of the unification algorithm (that is, the current set of con-
straints) must record the parameter context. We write this as ¥ > C. ¥ is
simply carried along from left to right in most transformations.

(\I’\>F1/\F2,C) — (‘1/\>F1,F2,C)

(T>T,0) — (I>0)

(\I/[>f(t1, ,tn):f(sl ,Sn),C) = (\If[>t1i817...,tni8n,C)
(U f(tr,. .. tn) = g(s1 vsn), C) = (V> #) where f # g
(¥>a=a,QC) —~ (I>0)

(I>a=00C) — (U #) where a # b
(W a flh, . 1)) - (U)

(U f(tr,... tn) =a) = (V> #)

The notion of an existential variable must now be generalized to track the set
of parameters its substituend may depend on. We write X for a unification

Draft of March 24, 2004

90 Focused Derivations

variable X that may depend on all the parameters in A, but no others. All
occurrences of a variable X must be annotated with the same A—we think of
A as an intrinsic property of X.

(U >V F,C)
(U >3z F,C)

— (¥,ar> [a/z]F,C) where anotin U, F, or C
— (U [Xyg/2]F,C) where X not free in F' or C

An equation Xy = t could now be solved immediately, if all parameters of
t are contained in ¥ and X does not occur in ¢. A first attempt at such a rule
would be

(> Xa=tC) — (I [t/X]C) where AF ¢ term and X not free in ¢

However, in general ¢ will not be closed so we cannot prove that A F t term.
For example, consider the constraint

a>X. =fY)ANY,=a

where X cannot depend on any parameters and Y can depend on a. This
should have no solution, since X. would have to be equal to f(a), which is not
permissible. On the other hand,

a>X. = fY,)ANY,=c

for a constant ¢ has a solution where Y, is ¢ and X. is f(c¢). So when we process
an equation Xa =t we need to restrict any variable in ¢ so it can depend only
on the parameters in A. In the example above, we would substitute Y for Y.

In order to describe this restriction, we introduce a new form of constraints
which expresses the judgment A - ¢ term in the presence of unification variables.
We write it as t |a, thinking of it as the restriction of ¢ to A. It is implemented
by the following transformations.

(U ft1, -y tn) |a,C) — (D>t |a,.--stn|a,C)
(I>ala,C) — (I>C) ifaeA
(Yrala,C) — (U #) ifag A
(¥ >Yar|a, C) = (P> [Yana/Y]O)

the collection of the above four rules implement a process called pruning. Now
we can finally write down the correct rule for existential variables.

(> Xa=tC) — (¥t [t/X]C) provided X not free in t

From an implementation point of view, it makes sense to first solve ¢ |o before
substitution ¢ for X. In fact, it is probably beneficial to combine it with the
occurs-check to the term ¢ need only be traversed once.

The soundness and completeness theorems from above extend to the problem
with parameters, but become more difficult. The principal new notion we need
is an admissible substitution @ which has the property that for every existential
variable X we have A F X[0] term (see Exercise 4.4).

Draft of March 24, 2004

4.6 Exercises 91

The ML implementation takes advantage of the fact that whenever a vari-
able must be restricted, one of the two contexts is a prefix of the other. This
is because every equation in a formula F' lies beneath a path of possibly al-
ternating quantifiers, a so-called mized quantifier prefic. When we apply the
rules above algorithmically, we instantiate each existentially quantified variable
with a new free existential variable which depends on all parameters which were
introduced for the universally quantified variables to its left. Clearly, then, for
any two variables in the same equation, one context is a prefix of the other. Our
ML implementation does take advantage of this observation by simplifying the
intersection operation.

We can take this optimization a step further and only record with an integer
(a kind of time stamp), which parameters an existential variable may depend on.
This improves the efficiency of the algorithm even further, since we only need
to calculate the minimum of two integers instead of intersecting two contexts
during restriction. In the ML code for this class, we did not optimize to this
extent.

4.6 Exercises

Exercise 4.1 Give an alternative proof of the inversion properties (Theorem 4.1)
which does not use induction, but instead relies on admissibility of cut in the
sequent calculus (Theorem 3.11).

Exercise 4.2 Formulate one or several cut rules directly on inversion sequents
as presented in Section 4.1 and prove that they are admissible. Does this simplify
the development of the completeness result for inversion proofs? Show how
admissibility might be used, or illustrate why it is not much help.

Exercise 4.3 An alternative to indexing unification variables with the param-
eters they may depend on is Skolemization. Instead of changing the notion
of unification variable, we change the notion of parameter, replacing it by a
so-called Skolem function. The two quantifier rules become

V. F,C — [f(X1,...,X,)/2]F,C where f not in F, or C, and Xq,..., X,
are all free unification variables in F
Jz. F,C +— [X/z]F,C where X not free in F or C

Now, incorrect dependencies are avoided due to the occurs-check. Reconsider
our simple example:

Jy.Ve.y ==z
— V.Y =z
Y ()
- #

Skolemization is attractive because it allows us to use a simpler algorithm for
unification. Moreover, in some logics such as classical logic it can be applied

Draft of March 24, 2004

92 Focused Derivations

statically, before we ever attempt to prove the proposition, completely elim-
inating parameters from consideration. On the other hand, Skolemization is
unsound in some higher-order logics. Also, it is more difficult to recover a proof
of proposition if we Skolemize during search.

Prove the correctness of the unification algorithm for the full unification logic
(including universal quantifiers) which employs Skolemization.

Exercise 4.4 Extend the proofs of termination and preservation of satisfiabil-
ity from the purely existential case in Section 4.4 to allow for the presence of
parameters as sketched in Section 4.5. An important concept will likely be that
of admissible substitution 6 which has the property that for every existential
variable XA we have A b X[f] term. You should be careful to make a precise
connection between the constraint ¢ o and the judgment A b ¢ term (where
the latter is not defined for unification variables).

Draft of March 24, 2004

