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If the work entailed amounts to a virtual rewriting,
the resulting typescript or manuscript is a re-write.

|Eric Partridge, Slang To-day & Yesterday (1933)

1. Introduction

Equations lie at the foundation of mathematics and the sciences. Sometimes one
needs to determine if an identity follows logically from axioms; other times, one
seeks solutions to an equation; oftentimes one wishes to compute an equivalent,
simpler form for a given expression. These equational reasoning abilities are indis-
pensable in many computer applications, including symbolic algebraic computa-
tion, automated deduction, program speci�cation and veri�cation, and high-level
programming languages and environments.
Rewriting is a very powerful method for dealing computationally with equations.

Oriented equations, called rewrite rules, are used to replace equals by equals, but
only in one direction. The theory of rewriting centers around the concept of normal
form, an expression that cannot be rewritten any further. Computation consists
of rewriting to a normal form; when the normal form is unique, it is taken as the
value of the initial expression. When rewriting equal terms always leads to the
same normal form, the set of rules is said to be convergent and rewriting can be
used to decide validity of identities in the equational theory. Rewriting has the
computational power of Markov algorithms|and of recursive functions and Turing
machines. The basic ideas hark back to Axel Thue [1914].
Within automated theorem provers, derived equations can be used freely for

simpli�cation provided progress toward normal forms is guaranteed. This process
is sometimes called demodulation. The trick is to ensure that one can delete pre-
simpli�ed formul� without compromising completeness of the prover.
We begin with several motivating examples.

1.1. Example (Hercules and Hydra). Hydra is a bush-like creature with multiple
heads attached by stems to the ends of branches. Branches have nodes with buds
along their length, and may ramify at any node. Each time Hercules hacks o� a
head of Hydra's, one of the nodes along the branch leading to that head sprouts
some number of new branches identical to|and adjacent to|the weakened branch
that previously supported the severed head, together with all its remaining heads
and nodes. Furthermore, when any node loses all its branches and stems, its bud
ripens into a new head. But when the root loses a stem with a head, nothing is
regenerated.
Suppose Hydra starts o� as a lone stalk with 10 buds along its length and one

head at the apex. Chopping that head results in the original stalk topped by the
stump of a head, which ripens, leaving a stalk of length 9 with 1 head. Then one
of the buds along the stalk sprouts many copies of the branch above it, together
with its fresh head. Chopping o� one of these new heads again causes a bud below
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the chopped head to regenerate a number of copies of the branch supporting the
severed head, together with its heads, buds, and branches.
If ever Hercules eliminates all of Hydra's heads, Hydra loses. The question is:

How can Hercules defeat Hydra?
Establishing termination of rewriting processes is the topic of Section 4.

1.2. Example (Grecian Urn). An urn holds 150 black beans and 75 white. Two
beans are removed at a time: if they're the same color, a black one is placed in the
urn; if they're di�erent, the white one is returned. The process is repeated as long
as possible. This problem may be expressed as the following system of replacement
rules:

B B ! B W W ! B

W B ! W B W ! W

B W ! W B W B ! B W

the bottom two of which indicate that beans shift around in the urn. Is the color
of the last bean in the urn predetermined and, if so, what is it?
Determinism of output is covered in Section 5. How to handle permutative rules

such as the last two is the subject of Section 7. In Section 6, ordered rewriting, using
rewrite relations that are de�ned in terms of a set of unordered equations plus a
well-founded partial ordering, is considered.

1.3. Example (Chameleon Island). The chameleons on this strange island come
in three colors, red, yellow, and green, and meander about continuously. Whenever
two chameleons of di�ering colors confront each other, they both change to the
neutral third color. This setup can be expressed by six rules:

R Y ! G G Y R ! G G

G Y ! R R Y G ! R R

R G ! Y Y G R ! Y Y

Suppose there are initially 15 red chameleons, 14 yellow, and 13 green. Can their
haphazard meetings lead to a stable, monochromatic state?
Analyzing the interaction of rules is the topic of Section 6.

1.4. Example (Insertion Sort). As a more prosaic example of rewrite system, con-
sider the following program to rearrange a list of natural numbers in non-increasing
order by inserting elements one-by-one into position:

max (0; x) ! x

max (x; 0) ! x max (s(x); s(y)) ! s(max (x; y))

min(0; x) ! 0

min(x; 0) ! 0 min(s(x); s(y)) ! s(min(x; y))

sort(�) ! � sort(x : y) ! insert(x; sort(y))

insert(x; �) ! x : � insert(x; y : z) ! max(x; y) : insert(min(x; y); z))
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Lists are represented as nested pairs [e.g. h3; 1; 4; 1i as 3 : (1 : (4 : (1 : �)))] and
numbers in tally (unary) notation [e.g. 4 is short for s(s(s(s(0))))]. Computation
proceeds by computing the normal form of an input term of the form sort(3 : 1 : 4 :
1 : �). We would like to ascertain that every well-sorted ground term constructed
from sort , :, �, s, and 0 is equal to a unique term not containing sort , nor the
auxiliary symbols, insert , max , and min. In addition, one might wish to prove
inductive properties of the program, such as sort(sort(`)) = sort(`) for all lists ` of
natural numbers.
This is an example of an orthogonal rewrite system, de�ned in Section 5 and

studied in Section 10. For computation, rewrite rules are usually applied nondeter-
ministically, since, in general, more than one rule can be applied, and any one rule
may apply at more than one position within a term. Regarding proofs of inductive
properties, see [Comon 2001] (Chapter 14 of this Handbook).

1.5. Example (Loops). Consider the following dozen rules:

xnx ! e x � (xny) ! y

x=x ! e (y=x) � x ! y

e � x ! x xn(x � y) ! y

x � e ! x (y � x)=x ! y

enx ! x x=(ynx) ! y

x=e ! x (x=y)nx ! y

Each rule follows by algebraic manipulation from some combination of the follow-
ing seven axioms for algebraic structures called loops, which are groups without
associativity:

x � (xny) = y (y=x) � x = y

xn(x � y) = y (x=y)nx = y

xn(x � y) = y (y � x)=x = y

y=y = xnx

along with the de�ning equation
y=y = e

Rewrite systems were designed to be used as decision procedures for truth of an
equation in all models of the theory. To decide whether an arbitrary equation is
a valid identity for all loops|in which case it can be proved by purely equational
reasoning, we need to ascertain that any two terms equal in the theory have the
same normal forms. Section 3 deals with deciding validity by rewriting. Constructing
such systems is the subject of Section 6.

1.6. Example (Interpreter). Rewrite systems can be used to interpret other pro-
gramming languages. The machine state of a Turing-equivalent two-counter device
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eval (zap0; hx; yi) ! h0; yi eval(zap1; hx; yi) ! hx; 0i

eval (inc0; hx; yi) ! hs(x); yi eval(inc1; hx; yi) ! hx; s(y)i

eval (dec0; h0; yi) ! h0; yi eval(dec1; hx; 0i) ! hx; 0i

eval(dec0; hs(x); yi) ! hx; yi eval (dec1; hx; s(y)i) ! hx; yi

eval (ifpos0 p; h0; yi) ! h0; yi eval(ifpos1 p; hx; 0i) ! hx; 0i

eval (ifpos0 p; hs(x); yi) ! eval (p; hs(x); yi)

eval(ifpos1 p; hx; s(y)i) ! eval(p; hx; s(y)i)

whilepos0 p ! (ifpos0 p; whilepos0 p)

whilepos1 p ! (ifpos1 p; whilepos1 p)

eval((p; q); u) ! eval(q; eval (p; u))

Figure 1: Two-counter machine interpreter.

can be represented as a pair hx; yi. The semantics of its instruction set can be
de�ned by the rules for an interpreter, shown in Fig. 1. To simulate a machine
computation, one rewrites a term of the form

eval(program; hinput; 0i)

until a normal form is reached. The penultimate rule, for example, can clearly be
applied ad in�nitum. A speci�c strategy of rule application is needed to guarantee
that a normal form is attained whenever one exists.
Programming issues are discussed in Section 10.

1.7. Example (Stack). In some cases, it is convenient to attach conditions to rules.
For example, stack operations can be implemented as follows:

top(push(x; y)) ! x pop(push(x; y)) ! y

empty?(�) ! T empty?(push(x; y)) ! F

empty?(x) = F j push(top(x); pop(x)) ! x

The condition of the last rule ensures that only nonempty stacks are popped. Con-
ditional rewriting and related inference techniques are the subject of Chapter 9.

Semi-Thue systems, or string-rewriting systems, are a related formalism of equiv-
alent computational strength. They originated historically in an attempt to investi-
gate computability and can be simulated by rewrite systems in which every function
symbol is monadic (has arity 1). Such systems have an implicit variable at the right
end; for example, f(g(f(f(g(x))))), though written as fg�g, rewrites any suÆx fg�gx
having pre�x fg�g. For such systems, rewriting corresponds to substring replace-
ment. Another way of viewing such systems is as presentations of monoids, where
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there are a �nite number of individual constants and an associative concatenation
operator. Semi-Thue systems will not be further considered here. The monographs
[Benninghofen, Kemmerich and Richter 1987, Book and Otto 1993] describe meth-
ods and results for strings.
Several other important topics in rewriting are only touched upon (modularity,

for example), or not covered at all (higher-order rewriting and \sequentiality", for
example), in this chapter, which concentrates on the use of rewriting techniques in
the context of automated deduction. Other surveys of rewriting include [Avenhaus
and Madlener 1990, Dershowitz and Jouannaud 1990, Klop 1992, Plaisted 1993,
Avenhaus and Madlener 1989, Baader and Nipkow 1998].

2. Terminology

The central idea of rewriting is to impose directionality on the use of equations
in proofs. A rewrite rule is an ordered pair, written l ! r, of terms l and r. Like
equations, rules are used to replace instances of l by corresponding instances of r;
unlike equations, rules are not used to replace instances of the right-hand side r.
A (free, �rst-order) term over symbols F , constants C, and variables X is either

a variable x 2 X , an individual constant c 2 C, or an expression of the form
f(t1; t2; : : : ; tn), where f 2 F is a function symbol of arity (number of arguments)
n and the ti are terms.

1 Each function symbol has one or more arities, which are
nonnegative integers indicating how many arguments it can take. A symbol allowing
an arbitrary number of arguments is called varyadic. For example, f(a; g(x; y)) is
a term, with outermost function symbol f . Terms can be seen as labeled rooted
ordered trees. Let the set of all such terms be denoted T . A term t is linear if each
variable appears at most once in t. Thus the term f(x; x; z) is not linear. A ground
term is a term containing no variables. To avoid confusion, we will use the symbol
� for syntactic identity of terms.
A (strict) partial ordering > is an irreexive transitive relation. A quasi-ordering

�
� is a reexive transitive relation. We try to use the sign > for partial orderings
and �

� for quasi-orderings, where convenient. As usual, y < x means the same as
x > y, x � y means either x > y or x = y, and x � y means x �

� y but not y �
� x.

The relation � is called the strict part of �� and is a partial ordering. If both x �
� y

and y �
� x, we say that x and y are equivalent (though they may be distinct) and

write x � y.
We say that a term u is a subterm of t and write t �sub u if either t � u or

if t � f(t1; : : : ; tn) and u is a subterm of ti for some i. We write t >sub u to
indicate that u is a proper subterm of t. When needed, it is customary to specify
positions of subterms as sequences of integers indicating the path to the subterm
in the tree representation of the term. If � is a position and t is a term, we would
write tj� for the subterm of t at position �, de�ned by tj� � t for the empty
sequence (top position) �; otherwise, f(t1; : : : ; tn)ji:� � tij�. A context is a term
with some subterms replaced by holes, here signi�ed by �. A lone � is thus the

1In this chapter, we consider only unsorted terms, for simplicity.
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simplest context. If t is a context with m holes (an m-context) and s1; : : : ; sm
are terms, then t[s1; : : : ; sm] indicates t with the �'s replaced by s1; : : : ; sm in a
predetermined order. At the same time, t[s] indicates that the term t contains an
occurrence of the subterm s. Two occurrences of subterms are disjoint if neither is
a subterm of the other.
A substitution is a partial mapping from variables to terms (or contexts) denoted

by fx1 7! s1; x2 7! s2; : : : ; xn 7! sng, indicating that the variable xi maps to the
term si. (Though traditional, there is usually no need to restrict the domain of a
substitution to be a �nite subset of the variables.) Substitutions � : X ! T are
extended to a total mapping � : T ! T of (�rst-order) contexts; if t is a term
or a context and � is a substitution, we use post�x notation t� for the image of t
under �. This is de�ned as follows: If � : xi 7! si, then xi� � si; if x is a variable
not in the domain of �, then x� � x; if f(t1; : : : ; tk) is a nonvariable term then
f(t1; : : : ; tk)� � f(t1�; : : : ; tk�). Also, �� � �. The image of an equation, rewrite
rule, or formula under a substitution is de�ned similarly. If t is a term, t� is called
an instance of t. Note that t[u]� � (t�)[u�]. A term r is a (renamed) variant of
s if they are instances of each other. If t� is a ground term, we call � a ground
substitution for t and t�, a ground instance of t. Similar terminology applies to
instances of equations, rewrite rules, and formul�.
A term-rewriting or rewrite system R is a set of rewrite rules, l! r, where l and r

are each terms, both of which may contain variables which refer to arbitrary terms.
A rewrite system R de�nes a rewrite relation!R (or just!) on terms, which is the
smallest relation such that for all contexts t[�], rules l! r in R, and substitutions
�, t[l�] !R t[r�]. That is, if t[l�] has a subterm l� which is an instance of the
left-hand side of a rule l ! r, then the R-redex l� in t is contracted by replacing
that subterm with the corresponding instance r� of the right-hand side of the rule,
thereby rewriting t[l�] to t[r�]. A redex u is innermost for R if it is an R-redex
but no proper subterms of u are R-redexes. An occurrence of a redex u in a term
t is outermost for R if the occurrence of u is not a proper subterm of any other
R-redexes of t. We often use R as an abbreviation for the binary relation !R. A
rewrite rule l ! r is left-linear if l is linear, and right-linear if r is. A rewrite system
is left- (right-) linear if all its rules are. If function symbol f is not the outermost
function symbol of the left-hand side of any rule in R, f is called a constructor for
R.
As is commonplace, the reexive-transitive closure of a binary relation ! is

indicated by !�, its transitive closure is indicated by !+, and its reexive closure
by !=. We write s r if r ! s and r $ s if either r ! s or r  s. Composition
of two relations is indicated by Æ. Thus r  � Æ !� s if there is an element t such
that r  � t and t!� s.
An equation is a formula of the form r = s where r and s are terms. An equational

system is any set of equations. If E is a set of equations let E! be fr ! s : r = s 2
Eg. We write r $E s if s !E r or r !E s, where u!E v is de�ned as u!E! v.
We may write!E when we actually mean$E , viewing the equations as unordered
pairs|as long as no confusion is likely to arise. If E is a set of equations and >
is an ordering on terms, we de�ne the ordered rewriting relation of E as the pairs
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of terms fhr; si : r $E s and r > sg. This relation may also be simply denoted by
!E when the ordering in question is understood.
A derivation for a binary relation ! (for instance, a rewrite relation !R) is a

sequence of the form t0 ! t1 ! t2 � � �. An element t is reducible (with respect to a
given binary relation !) if there is an element u such that t ! u; otherwise, t is
irreducible. We say that u is an !-normal form of t if t !� u and u is irreducible
via!. We write t!! u if t!� u and u is a normal form. We also write R-reducible
instead of !R-reducible and R-normal form instead of !R-normal form, et cetera.
The normalizability relation !! de�nes a partial function when normal forms are
unique and a total function when it is always uniquely normalizing.
A binary relation! is terminating (or strongly normalizing) if there are no in�nite

derivations t0 ! t1 ! t2 � � �. It is terminating for a set T of elements if there are
no in�nite derivations with t0 2 T . A relation ! is conuent if there is an element
v such that s !� v and t !� v whenever u !� s and u !� t for some elements
s, t, and u. Conuence is equivalent to the Church-Rosser property that s !� v
and t !� v for some v whenever s $� t. By extension, the terms \terminating"
and \conuent" are also applied to rewrite systems R whose rewrite relation !R

has those qualities. We say that a relation !, or rewrite system R, is convergent
(or complete) if it is terminating and conuent.2 Convergent rewrite system are
especially interesting, because all derivations lead to a unique normal form; such
systems are used to decide equational theories (which describe varieties).
Suppose M is a �rst-order structure, with domain D, assigning meaning (seman-

tics) to each individual constant, function symbol, and variable in the vocabulary.
The meaning [[t]]M of a term t is an element of D and is de�ned inductively: [[x]]M =
xM for variable x with meaning xM ; [[f(t1; : : : ; tn)]]M = fM ([[t1]]M ; : : : ; [[tn]]M ), if
the meaning of f with arity n is fM . If M1 and M2 are two structures and X is
a set of variables, then M1 � M2 (mod X) if M1 and M2 agree on all function
and constant symbols and on all variables not in X . If s = t is an equation and
all variables in s or t appear in a set X of variables, and M is a structure, then
M satis�es s = t, written M j= s = t, if for all structures M 0 such that M � M 0

(mod X), [[s]]M 0 = [[t]]M 0 . One says that equation s = t is valid in M , in this case.
This corresponds to the intention that variables are implicitly universally quanti-
�ed. A structure M is a model of E, written M j= E, if M satis�es each element
of E. If E and E0 are two equational systems, we write E j= E0 if all structures M
that satisfy E also satisfy E0, that is, all models of E are also models of E0. In this
case, if E j= E0, we call E0 a logical consequence of E. The equational theory of E
is the set of equations that are logical consequences of E.
De�ne R= to be the set of equations l = r for each rule l ! r in a system

R. When R is convergent, R= j= s = t (R= logically implies s = t) i� s and t
have the same normal form with respect to R-rewriting. Thus we can use R for
theorem proving in the equational theory R=. If R is not convergent, we may want
to complete it, that is, �nd another system S such that their theories are the same

2The term canonical is sometimes used as a synonym for \convergent", but will not be so used
here.
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but S is convergent; then S may be used to decide the equational theory R= of R.
General rewriting logics have been devised [Goguen, Kirchner and Meseguer 1987,

Cirstea and Kirchner 1999]. Such logics can be used to express many other logics
in terms of the rewriting relation of a rewrite system.

3. Normal Forms and Validity

Rewriting methods have turned out to be among the more successful approaches
to equational theorem proving. One main question of interest is to determine when
E j= s = t for various equation sets E and equations s = t. Intuitively, this means
that the equation is necessarily true whenever all the equations in E are true.
In order to answer this question, many proof systems have been developed, and
recently many have been adapted for computer implementation. Rewriting can be
used for this purpose:

3.1. Theorem. Suppose E is an equational system and ! is a binary relation.
Then the equational theory E is decidable if the following conditions are satis�ed:

1. If s! t then E j= s = t.

2. It is decidable whether a term is !-reducible.

3. If r is !-reducible, then one can compute a term s such that r !+ s.

4. The relation ! is terminating.

5. If r and s are irreducible for !, then it is decidable whether E j= r = s.

When the conditions are satis�ed, one can reduce two given terms r and s to normal
form using! and test if they are E-equivalent. Presumably, testing if r and s are E-
equivalent is easier when they are both irreducible. This theorem is used implicitly
in the discussion of relativized (equational) rewriting in Section 7.
Rewrite systems are used in this way to check for validity. The simplest applica-

tion of the above theorem is in the case when there is exactly one irreducible term in
each E-equivalence class. Hence, one of the most essential properties a rewrite sys-
tem can enjoy is unique normalization. In particular, convergent systems compute
unique normal forms and serve as decision procedures for validity in the equational
theory of E. For a convergent system R to determine provability in its underlying
equational theory R=, the test for reducibility must be recursive. Then, to decide
if s$�

R t, one can check if the R-normal forms of s and t are identical.
A rewrite (\valley") proof of an equation s = t for rewrite system R is a sequence

s1; s2; : : : ; sn; tm; tm�1; : : : ; t1 where s1 � s and t1 � t and sn � tm and for all i,
1 � i < n, si !R si+1 and for all i, 1 � i < m, ti !R ti+1. This establishes the
relation s !� Æ  � t between s and t, indicating that the same term can reached
by rewriting s and t some number of times. The Church-Rosser property means
that $�, as a relation, is equal to !� Æ  �; termination ensures that !� Æ  �

= !! Æ  !; Church-Rosser implies that !! de�nes a function; recursiveness of
reducibility makes that function computable. Though the Church-Rosser property
is undecidable, Knuth and Bendix [1970] devised an e�ective superposition test,
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based on \critical overlaps", to decide whether a terminating system is convergent.
But termination itself is undecidable. Termination is further discussed in Section 4
and the Church-Rosser property in Section 5.
The (ground) word problem is to decide the truth of ground equations in equa-

tional theories (whose classes of models are called varieties); the uniform word
problem is to decide validity of (universally quanti�ed) equations. Of course, not
all word problems can be solved by rewriting: some theories are not �nitely based,
and some �nitely-based equational theories are undecidable.
Many rewrite-system decision procedures are known; perhaps the �rst such pro-

cedure for a word problem was Trevor Evans' for loops [Evans 1951]; see Ex-
ample 1.5. In their seminal paper, Knuth and Bendix [1970] (building on the
work of Evans) demonstrated how failure of the superposition test suggests ad-
ditional rules that can be used to help complete a nonconvergent system. Com-
pletion utilizes an ordering on terms to provide guidance in the generation of new
rules and to direct the simpli�cation of equations. Ordered completion, �rst sug-
gested in [Brown 1975, Lankford 1975], and later developed further in [Hsiang
and Rusinowitch 1987, Bachmair, Dershowitz and Plaisted 1989, Bachmair and
Dershowitz 1994], is a powerful extension of Knuth's method. Ordered completion
permits unorientable equations to be used together with rewrite rules in the com-
pletion process.
Under weaker conditions, one can still use rewrite systems for theorem proving.

A binary relation R is normalizing (or weakly terminating) if every term has an
R-normal form, that is, for all r there is an s such that r !!

R s. A binary relation is
uniquely normalizing if every term has exactly one normal form, though it need not
necessarily be terminating. If a rewrite system R is �nite and uniquely normalizing,
one can test whether R j= s = t by enumerating (in some breadth-�rst fashion) all
derivations from s and t until their normal forms u and v are found, that is, s!!

R u
and t !!

R v. Then R j= s = t i� u and v are identical. But this approach is often
impractical, and we do not pursue it further.
In addition to its use for generating convergent systems to serve as decision

procedures for the given axioms, ordered completion may also be used as an equa-
tional theorem prover. Classical forward reasoning systems work from the axioms,
\expanding" the set of established formul� by inferring new ones from old ones.
Completion may be viewed as an inference engine that also \contracts" formul�
by constantly rewriting them, making forward reasoning practical. The potentially
in�nite set of rules and equations generated by completion are used to simplify the
two sides of the equation in question. Even if a convergent system is not generated,
it may be possible to generate enough rewrite rules to prove the theorem in ques-
tion. Rules are used in the direction of the arrow only, while equations are used
in whichever direction reduces the term it is applied to in the given ordering. An
identity is proved when both sides reduce via rules and equations to the identical
term. This is the subject of Section 8.
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4. Termination Properties

One of the most important properties of a rewrite system, especially in the context
of automated deduction, is termination.
The rules for the Chameleon Puzzle (1.3) are not terminating; to wit RYY !

GGY ! GRR ! YYR, which rearranges to RYY , from which point the same
three steps may be repeated over and over again. On the other hand, each step in
the Grecian Urn Puzzle (1.2) decreases the number of beans, except for the last
two which shift beans around; so it always terminates if there is no in�nite cycle of
shifts. The Loop system also terminates, since it always shortens the length of the
expression. Our Interpreter (1.6) is nonterminating.
The standard fundamental tool for termination proofs is the well-founded partial

ordering. A partial ordering > of a set W is well-founded if there are no in�nite
descending chains x0 > x1 > x2 > � � � of elements xi 2 W . A total well-founded
ordering is a well-ordering. (As a consequence of Zorn's Lemma, every well-founded
ordering is contained|as a set of pairs|in some well-ordering.) To make convenient
use of well-founded orderings, we need several additional properties.

4.1. Definition (Monotonicity). A binary relation! on a set T of terms satis�es
the monotonicity property if s! t implies u[s]! u[t] for all terms s, t in T and all
contexts u over T .

We will use the term \monotonic" in this sense only.

4.2. Definition (Stable Extension). The stable extension of a binary relation !
on ground terms (over some vocabulary) to a relation on terms T containing vari-
ables is de�ned so that s! t i� s� ! t� for all s; t 2 T and all ground substitutions
�.

The stable extension of a well-founded ordering is also well-founded. In practice,
this extension is approximated in implementations by weaker orderings on free
terms.
Stable extensions enjoy the following slightly more general property:

4.3. Definition (Full Invariance). A binary relation ! on a set T of free terms
satis�es the full invariance property if for all terms s; t 2 T and all substitutions �
over T , s! t implies s� ! t�.

Length-based comparison of terms is a monotonic but not fully invariant ordering.
The rewrite step !R is by de�nition monotonic and fully invariant. So we are

led to de�ne:

4.4. Definition (Rewrite Relation). A binary relation on terms is a rewrite rela-
tion if it is monotonic and fully invariant.
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4.5. Definition (Reduction Ordering). A well-founded partial ordering on terms
is a reduction ordering if it is monotonic and fully invariant.

If s > t under a reduction ordering >, then all variables in t must appear also in
s. For example, if f(x) > g(x; y), then by de�nition we also have f(x) > g(x; f(x)),
and by monotonicity g(x; f(x)) > g(x; g(x; f(x))), etc., giving an in�nite descending
sequence of terms. It follows that:

4.6. Theorem (Lankford 1977). A rewrite system R is terminating if for some
reduction ordering >, l > r for all rules l! r 2 R (symbolically: R �>).

The Loop system can be proved terminating using the fully-invariant subterm
ordering >sub de�ned by r >sub s if s is a proper subterm of r.
In fact, whenever (�nite or in�nite) R is terminating, there is such a reduction

ordering, viz. the derivability relation!+
R. Thus, reduction orderings are (in theory)

necessary and suÆcient to prove termination of any terminating system R. But to
be useful, reduction orderings for proving termination should be computable, or at
least given to computable approximation, so that one can test whether l > r for
each rule.
If R is a �nite rewrite system over a set of terms T and t is a term in T , de�ne

R#(t) to be the length of the longest derivation beginning with t, and 1 if there
is an in�nite derivation beginning with t. Now, R is terminating if for all t in T ,
R#(t) is �nite. When R#(t) is �nite, the set of terms u such that t!�

R u is �nite,
by K�onig's Lemma.

4.7. Theorem (Huet and Lankford 1978). The following problem is semi-deci-
dable but not decidable: Given a �nite rewrite system R and a term t, does R
terminate for t?

The construction is standard [Yasuhara 1971].
In general, termination of even one rule systems is undecidable [Dauchet 1992].

For systems in which right-hand sides are ground, termination is decidable [Huet
and Lankford 1978, Dershowitz 1981]. The concept of fair termination was de�ned
in [Porat and Francez 1985]; the idea is that one only considers derivations in
which no redex remains forever in the derivation without being contracted. Fair
termination is decidable for ground systems [Tison 1989].
Since termination of all derivations initiated by a given term is undecidable, and

termination for all terms is not even partially decidable, all one can hope for is
practically useful termination tools.
Quasi-orderings are often more convenient than partial orderings for termination

arguments. We will say that a quasi-ordering is well-founded, or is a reduction
ordering, whenever its strict part is.

4.8. Definition (Sequence Ordering). If ��i are quasi-orderings of sets of elements
Si, then the lexicographic extension �

�lex of the ��i to arbitrary-length sequences in
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[n(S1 � S2 � � � � � Sn) is de�ned as follows:3

h i �lex h i

hs1; : : : ; smi ��lex ht1; : : : ; tni

hs1; : : : ; sm; sm+1i �lex ht1; : : : ; tni

hs1; : : : ; sni �lex ht1; : : : ; tni sn+1 �n+1 tn+1
hs1; : : : ; sn+1i �lex ht1; : : : ; tn+1i

hs1; : : : ; smi �lex ht1; : : : ; tmi sm+1 �m+1 tm+1

hs1; : : : ; sm+1i �lex ht1; : : : ; tm+1; : : : ; tni

where �
�lex is the union of the equivalence relation �lex and the partial ordering

�lex.

It is not hard to see that the relation �
�lex is reexive and transitive. When each

of the element orderings is well-founded, the sequence ordering is also well-founded
for bounded-length tuples (only).
Bags (a.k.a.multisets) are unordered collections of elements, in which multiplicity

of elements matters, and for which we will use square brackets. Informally, a bag
(e.g. [2; 1; 1; 2; 3]) is a set in which an element can occur more than once. Formally,
a bag B is a function from some underlying domain to the nonnegative integers.
Thus, x 2 B if B(x) > 0. A bag is �nite if fx : B(x) > 0g is �nite.

4.9. Definition (Bag Ordering [Dershowitz and Manna 1979]). The bag (multi-
set) extension �

�bag of a quasi-ordering �� of elements is de�ned as follows:

[ ] �bag [ ]

[s1; : : : ; sn] �bag [t1; : : : ; tn] s � t

[s1; : : : ; sn; s] �bag [t1; : : : ; tn; t]

[s1; : : : ; sm] ��bag [t1; : : : ; tn] s � u1; : : : ; uk
[s1; : : : ; sm; s] �bag [t1; : : : ; tn; u1; : : : ; uk]

where s � u1; : : : ; uk (for k � 0) means that s is greater than each of the ui and
�
�bag is the union of the equivalence relation �bag and the partial ordering �bag.

The idea of this ordering is that a bag becomes smaller if an element is replaced
by any number of smaller elements. Thus [3; 4; 4] >bag [2; 2; 2; 1; 2; 4; 4], since 3 has
been replaced by a single 1 and four 2's. This operation can be repeated any number
of times, still yielding a smaller bag; in fact, the relation >bag can be de�ned in
this way as the smallest transitive relation having this property [Dershowitz 1987].
This relation can be computed reasonably quickly. It can be shown that the relation
�
�bag is transitive [Dershowitz and Manna 1979].
For a totally ordered underlying set, the elements of bags may be sorted in

non-ascending order, then compared lexicographically; thus, the bag of ordinals

3An inference rule of the form A1A2 : : : An
A

indicates that if A1; A2; : : : ; An have been derived,
then we may also derive A by using this rule. Such rules can also be used in a backward direction,
meaning that if we are trying to derive A, or an instance of A, we attempt to derive all of
A1; A2; : : : ; An (or their instances).
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[�0; : : : ; �n] is of order type
P

!�i , summed naturally [Dershowitz and Manna
1979]. The bag ordering extends this e�ect to element orderings that are partial.
For comparisons with alternative orderings on bags, see [Jouannaud and Lescanne
1982, Martin 1989].

4.10. Theorem (Dershowitz and Manna 1979). The bag (multiset) ordering is
well-founded (for �nite bags) i� the element ordering is.

Term orderings used for proving termination of rewriting or completeness of
rewrite-based theorem provers usually have the following properties:

4.11. Definition (Simpli�cation Ordering [Dershowitz 1982]). A monotonic qua-
si-ordering �

� on terms is a (quasi-) simpli�cation ordering if, for every function
symbol f and index i,

f(: : : ; xi; : : :) �� xi

If f is varyadic, we also require

f(: : : ; xi; : : :) �� f(: : : ; xi�1; xi+1; : : :)

A monotonic partial ordering > on terms is a strict simpli�cation ordering if for
every function symbol f and index i,

f(: : : ; xi; : : :) > xi

If f is varyadic, we also require

f(: : : ; xi; : : :) > f(: : : ; xi�1; xi+1; : : :)

For �xed-arity symbols, if a partial ordering is a rewrite relation and includes
the subterm relation >sub, then it is a fully-invariant simpli�cation ordering. Sim-
pli�cation orderings are like the \divisibility order" of [Higman 1952], but apply
to variable-arity function symbols. We will say that a simpli�cation ordering is
well-founded if its strict counterpart is.

4.12. Definition (Homeomorphic Embedding). The homeomorphic embedding re-
lation �emb on a set T of �xed-arity terms is the derivability relation of the rewrite
rules

f(x1; : : : ; xi; : : : ; xn)! xi

where x1; : : : ; xn are distinct variables, for every f in the vocabulary and for each
i. For variable-arity symbols f , we also have rules

f(: : : ; xi; : : :)! f(: : : ; xi�1; xi+1; : : :)

If t �emb s, that is, if s!� t in this system, we say that t is embedded in s. If t is
embedded in s but they are not identical, then we write t <emb s. Homeomorphic
embedding is a monotonic quasi-ordering.
The crucial point is that simpli�cation orderings �� contain the homeomorphic

embedding relation �emb. Strict simpli�cation orderings � contain the strict em-
bedding >sub.
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4.13. Theorem (Dershowitz 1982). For terms over a �nite set of function symbols
and constants, any (quasi-) simpli�cation ordering is well-founded.

This follows directly from Kruskal's Tree Theorem:

4.14. Theorem (Tree Theorem [Kruskal 1960]). Any in�nite sequence t1; t2; : : : of
terms in a set T with �nitely many function symbols and constants contains two
terms tj and tk (j < k) such that tj �emb tk.

Kruskal extended Higman's [1952] work to varyadic function symbols; for �xed-
arity terms, this is \Higman's Lemma".4

Since fully-invariant strict simpli�cation orderings (for �nite vocabularies) are
reduction orderings, they can be used to show termination, as per Theorem 4.6.

4.15. Definition (Self-Embedding). A derivation t1 ! t2 ! � � � ! tj ! � � � !
tk ! � � � of terms is self-embedding if tj �emb tk for some j < k. A rewrite system
is self-embedding if it allows a self-embedding derivation. A rewrite system R is
self-embedding on t if there is a self-embedding R-derivation initiated by t.

4.16. Corollary ([Dershowitz 1982]). If a �nite rewrite system is nonterminat-
ing, then it must be self-embedding.

4.17. Definition (Simple Termination [Ferreira and Zantema 1993]). A rewrite
system R is simply terminating if there is a fully-invariant strict simpli�cation
ordering > containing R.

We have seen (Theorem 4.13) that a rewrite system is terminating in this case.
There are, however, terminating systems that are not simply terminating, such as
the lone rule f(f(x))! f(g(f(x))).

4.18. Theorem (Dershowitz 1982). Suppose R is a �nite rewrite system and �
� is

a fully-invariant simpli�cation ordering. If R ��, then R is terminating.

Proof. Suppose s1 !R s2 !R � � � !R sn !R � � �. Then s1 �
� s2 �

� s3 � � � because
the quasi-ordering �� is monotonic. Let B(si) be the bag of subterms of si. One can
show that B(s1) �bag B(s2) �bag B(s3) � � �, since some subterm t of si has been
replaced by a strictly smaller rewritten term t0 to obtain si+1, and all subterms of
t0 are smaller than, or equivalent to, si in the simpli�cation ordering. Since R is
�nite, only �nitely many function symbols appear in the derivation sequence. Since
� is well-founded for terms over a �nite vocabulary, �bag is also. Therefore, the
derivation must be �nite and R terminates.

4Both Higman's Lemma and Kruskal's Theorem also apply to in�nite vocabularies, with an
underlying well-quasi-ordering of the symbols, extended to a homeomorphic embedding on terms.
A beautiful, non-constructive proof may be found in [Nash-Williams 1963].
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Instead of working directly with an ordering on terms, one can compare measures
of terms in some well-founded ordering. For this purpose we have the following
de�nition:

4.19. Definition (Termination Function). A (quasi-) termination function � is a
function from a set of terms T to a set W , supplied with a well-founded (quasi-)
ordering �

� that has the monotonicity property, such that for all terms in T ,

�(f(s1; : : : ; sn)) �� �(s1); : : : ; �(sn)

For variable-arity symbols f , we also require

�(f(: : : ; xi; : : :)) �� �(f(: : : ; xi�1; xi+1; : : :))

4.20. Theorem. Suppose R is a rewrite system over a set T of terms and � is a
termination function, then R is terminating if for all rules r ! s in R and for all
substitutions � over T ,

�(r�) � �(s�)

This is the method of [Manna and Ness 1970], adapted to quasi-orderings by
analogy to Theorem 4.18.
Typically, termination functions � : T ! W are de�ned as a set of homomor-

phisms �f :W
n !W , one for each f 2 F of arity n:

�(f(s1; : : : ; sn)) = �f (�(s1); : : : ; �(sn))

Each variable x is mapped by � to a distinct variable overW . When the termination
function is de�ned by a convergent rewrite system, its necessary properties can be
established using techniques similar to those of the next section; see [Bachmair and
Dershowitz 1986, Bellegarde and Lescanne 1990].
As examples of termination functions, let W be the natural numbers and obtain

�(t) equal to the size (number of symbols) of t by de�ning �f (x1; : : : ; xn) = 1 +
x1 + � � � + xn for all symbols f 2 F [ C. This permits us to prove termination
if all rules of R are of the form r ! s where the size of all instances of r is
larger than the size of corresponding instances of s, as in the Loop example. We
can let W be the nonnegative reals and di�erentially weigh symbols by letting
�f (x1; : : : ; xn) = cf + x1 + � � �+ xn, where cf is a positive real number depending
on f . Or we can obtain a quasi-termination function to the naturals by letting
�f (x1; : : : ; xn) = 1 + maxfxig, which computes the depth of a term and shows
termination when all rules are depth-reducing. Loops (Example 1.5) may be also
be shown terminating by the depth measure.
More generally, one can devise termination functions by letting �f be an arbi-

trary multivariate polynomial in �x with integer coeÆcients, but then it is neces-
sary to verify monotonicity for each such polynomial separately. Theorem proving
techniques can be applied to this problem; implementations include [Ben Cher-
ifa and Lescanne 1987, Steinbach 1994, Giesl 1995]. One must also show that
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�f (x1 : : : xn) � 0 if xi � 0 for all i, 1 � i � n. It is necessary to restrict W to
the natural numbers so that the ordering > on integers is well-founded. Of course,
if all the coeÆcients are positive integers, these conditions hold. This technique
has the advantage of exibility, since di�erent polynomials can be designed for
di�erent systems; however, there are some systems for which no such polynomial
ordering will work. It is known that if the termination of R can be shown using such
polynomials, then the length of the reduction sequences from a term t is at most
doubly-exponential in the size of t [Hofbauer and Lautemann 1989]. This limits
the kind of functions that can be computed by systems whose termination can be
shown with these orderings. Also, it is not easy to devise appropriate polynomials
for given rewrite systems.
Applying Theorem 4.13, we can extend polynomial orderings to the real numbers.

Though the range of the polynomials is not well-ordered, termination is guaranteed
by the theorem; see [Dershowitz 1982]. An interesting sidelight is that it is then
possible to use a decision procedure for quanti�ed inequalities involving polyno-
mials over the reals, such as Tarski's original method [Tarski 1951] or the \rea-
sonably practical" cylindrical algebraic decomposition algorithm [Arnon, Collins
and McCallum 1984], to decide if polynomials of given degree exist that prove
termination [Dershowitz 1979], not just to check that given polynomials over the
integers show a decrease with each rewrite [Lankford 1975]. This can automate
the method, but at a considerable cost, since the best upper bounds for the 98
fragment of reals (with addition, multiplication, and inequalities) are quite large
(multiply-exponential in the number of variables) [Renegar 1992]. Some heuristics
for obtaining such polynomials are given in [Steinbach 1994].
One can obtain evidence that a system R is terminating by demonstrating that

R#(t) is �nite for \convincingly" many terms t, which is necessarily the case if R
is terminating. (Recall that R#(t) is the length of the longest derivation beginning
with t.) Indeed, if R is terminating, then s ! t implies R#(s) > R#(t). However,
R# need not be monotonic. In addition, it cannot be de�ned as a homomorphism,
since R#(f(t1; : : : ; tn)) depends not only on R#(ti), but also on the structure of
the ti.
We can also secure evidence that a system R is not simply terminating, as follows:

4.21. Theorem. Given a �nite rewrite system R and a term t, it is decidable
whether R is self-embedding on t.

Proof. If there is a self-embedding of R, one can be found by enumerating deriva-
tions from t until a self-embedding is found. If no such self-embedding exists, then
by Theorem 4.16 no derivation from t can be in�nite, and thus there are only �nitely
many such derivations, by K�onig's Lemma. These can be listed exhaustively, demon-
strating that R is not self-embedding on t. In either case, it is decidable whether a
given system R is self-embedding on t.

It is undecidable if there exists some term for which a given system is self-
embedding [Plaisted 1985]. If R is self-embedding for some t, then R cannot be
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simply terminating. On the other hand, if R is simply terminating, then this can
often be demonstrated, since many computable simpli�cation orderings are known
(as we will see below). Combining these approaches, one may be able to determine
automatically whether a system is simply terminating.
There are also techniques which can show nontermination of rewrite systems;

for example, a rewrite system R is nonterminating if there is a term r, context u,
and substitution � such that r !+

R u[r�]. By using methods for proving termi-
nation together with this technique for establishing nontermination, one may be
able to decide automatically for many naturally arising systems whether they are
terminating.
The recursive path ordering [Dershowitz 1982] and its many variants have proved

to be very useful for proving termination of rewrite system. These orderings can,
for example, easily handle the distributive rule x � (y + z) ! x � y + x � z. In
addition, for many common systems, it is easy to �nd a recursive path ordering that
suÆces for termination proofs, in contrast to polynomial orderings. These orderings
are de�ned in terms of a precedence on function symbols, which is a quasi-ordering
on the symbols.
There are two main versions of the recursive path ordering, one based on bags of

subterms (the multiset path ordering) and the other on sequences (the lexicographic
path ordering). We begin with the sequence version:

4.22. Definition (Lexicographic Path Ordering [Kamin and L�evy 1980]). The le-
xicographic path ordering �

�lpo induced by a quasi-ordering �
� on function symbols

is de�ned as follows:
si ��lpo t

f(s1; : : : ; sm) �lpo t

f � g f(s1; : : : ; sm) �lpo t1; : : : ; tn
f(s1; : : : ; sm) �lpo g(t1; : : : ; tn)

f � g hs1; : : : ; smi �lex ht1; : : : ; tni

f(s1; : : : ; sm) �lpo g(t1; : : : ; tn)

f � g hs1; : : : ; smi �lex ht1; : : : ; tni f(s1; : : : ; sm) �lpo t2; : : : ; tn
f(s1; : : : ; sm) �lpo g(t1; : : : ; tn)

where ��lpo is the union of the equivalence relation�lpo and the partial ordering�lpo

and �lex and �lex are the lexicographic extensions of �lpo and �lpo, respectively
(see De�nition 4.8).

The lexicographic path ordering is a simpli�cation ordering for systems having
�xed-arity function symbols [Kamin and L�evy 1980]. If the precedence �

� is total,
so is ��lpo.
This ordering has the useful property that f(f(x; y); z) �lpo f(x; f(y; z)); infor-

mally, the reason is that|although the terms have the same size|the �rst subterm
f(x; y) of f(f(x; y); z) is always larger than the �rst subterm x of f(x; f(y; z)). In
this ordering, one can easily prove termination of Ackermann's function, for in-
stance.
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4.23. Example (Distributivity). Suppose � � + in the precedence on function
symbols. Then we can show that x � (y + z) �lpo x � y + x � z (in the stable
extension of the ordering), as follows:

x �lpo x

y �lpo y

y + z �lpo y

hx; y + zi �lex hx; yi

y �lpo y

y + z ��lpo y

x� (y + z)
�lpo y

x� (y + z) �lpo x� y � � +

x �lpo x

z �lpo z

y + z �lpo z

hx; y + zi �lex hx; zi

z �lpo z

y + z ��lpo z

x� (y + z)
�lpo z

x� (y + z) �lpo x� z

x� (y + z) �lpo x� y + x� z

4.24. Definition (Multiset Path Ordering [Dershowitz 1982]). The multiset path
ordering �

�mpo, induced by a quasi-ordering �
� on function symbols, is de�ned as

follows:

si ��mpo t

f(s1; : : : ; sm) �mpo t

f � g f(s1; : : : ; sm) �mpo t1; : : : ; tn
f(s1; : : : ; sm) �mpo g(t1; : : : ; tn)

f � g [s1; : : : ; sm] �bag [t1; : : : ; tn]

f(s1; : : : ; sm) �mpo g(t1; : : : ; tn)

f � g [s1; : : : ; sm] �bag [t1; : : : ; tn]

f(s1; : : : ; sm) �mpo g(t1; : : : ; tn)

where ��mpo is the union of the equivalence relation �mpo and the partial ordering
�mpo and �

�bag is the bag extension of ��mpo, as in De�nition 4.9.

The multiset path ordering is a simpli�cation ordering [Dershowitz 1982]. When
the precedence is total, the ordering is total up to permutations of arguments.
Suppose we want to show that f(g(a; b); d) �mpo f(g(b; a); c) if d � c. (Recall

that the precedence on function symbols is a quasi-ordering.) Using the above in-
ference rules, we have that g(a; b) �mpo g(b; a) hence [g(a; b); d] �mul [g(b; a); c] so
f(g(a; b); d) �mpo f(g(b; a); c).

4.25. Example (Permuted Distributivity). Suppose � � + in the precedence.
Then we can show that x � (y + z) �mpo y � x + z � x (in the stable extension of
the ordering), as follows: we have:

x �mpo x

y �mpo y

y + z �mpo y

[x; y + z] �bag [y; x]

x� (y + z) �mpo y � x

x �mpo x

z �mpo z

y + z �mpo z

[x; y + z] �bag [z; x]

x� (y + z) �mpo z � x � � +

x� (y + z) �mpo y � x+ z � x

To prove that Insertion Sort (Example 1.4) terminates using �mpo, note that �ve
of the rules show a decrease for �mpo by virtue of the subterm case of the de�nition.
For the recursive rules of max and min, we can use the precedence max ;min � s.
For the base case of insert , we let insert � : in the precedence. For the recursive
rule of sort , we let sort � insert . Finally, for the recursive rule of insert , we make
insert � max ;min in the precedence.
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The multiset path ordering can be used to show that Hercules (Example 1.1) is
invincible, considering Hydra as a term, nodes as a varyadic function symbol, and
head as some constant symbol. We need to show that after each chop and regrowth,
Hydra is smaller than before in �mpo. Removing a head makes a branch smaller
in �mpo. Replacing a branch with any number of smaller branches is a decrease in
the multiset path ordering. Thus any sequence of chops and regrowths terminates,
which means Hercules wins as long as he keeps chopping, regardless of what Hydra
does to retaliate.
An advantage of path orderings is that the precedence is often quite natural.

For example, suppose, for some function f , f(s) is de�ned in terms of f(ti) for
ti simpler than s (say, ti are subterms of s). In other words, we have rules like
f(s) ! u[f(t1); : : : ; f(tn)] where u is some multi-hole context containing smaller
recursive calls f(ti). We want to show that this rule is decreasing in the multiset
path ordering. Suppose u can be expressed as a composition of functions that have
previously been de�ned. Then we can choose the precedence so that f is greater
than any previously de�ned symbol. Since s � ti for all i, f(s) � f(ti) for all i.
Also, f(s) � g(f(t1); : : : ; f(tn)) if f(s) � f(ti) for all i. Using this rule repeatedly,
we obtain that f(s) � u[f(t1); : : : ; f(tn)], so the rule f(s) ! u[f(t1); : : : ; f(tn)] is
decreasing.

4.26. Example (Factorial). As an example, consider the following straightforward
rewrite system to compute the factorial function:

0 + x ! x s(x) + y ! s(x+ y)

0� x ! 0 s(x) � y ! y + (x� y)

fact(0) ! s(0) fact(s(x)) ! s(x)� fact(x)

For this system, we choose the precedence fact � � � + � s � 0. This is natural,
since factorial is de�ned in terms of multiplication, multiplication in terms of addi-
tion, and addition in terms of the constructors. Using this precedence with the mul-
tiset path ordering, we have l � r for all rules l ! r. This can be seen by considering
the \dominant" subterm on both sides of each rule, by which we mean the subterm
with the largest outermost function symbol. For the rule fact(s(x)) ! s(x)�fact(x),
the dominant term on the left is fact(s(x)) and on the right is fact(x). Since
s(x) � x, fact(s(x)) � fact(x) so the left-hand side is larger in the ordering. In
general, there may not be a single dominant term, in which case the ordering has
to be examined more carefully. One can show that l � r if some dominant term in
l is larger than all the dominant terms in r.

For any primitive recursive function, there is a rewrite system R computing it
whose termination can be shown using a multiset path ordering [Plaisted 1978].
Primitive recursive de�nitions are encoded in the obvious way (as in Example
4.26) and the precedence is just the hierarchy of de�nitions. Moreover, Hofbauer
[1992] showed conversely that if the termination of R can be shown using a mul-
tiset path ordering, then R computes a primitive recursive function (that is, the
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function from a term to its R-normal form is primitive recursive) and Weiermann
[1995] showed that lexicographic path orderings imply multiply recursive derivation
lengths. Adding certain restrictions to the de�nition of the path orderings guaran-
tees polynomial computations [Cichon and Marion 1999].
Total recursive functions can also be expressed as terminating rewrite systems.

A function f , de�ned by minimization of a predicate t, may be encoded via rules

f(: : : xi : : :) ! �t(0; t(0; : : : xi : : :); : : : xi : : :)

�t(n; s(z); : : : xi : : :) ! n

�t(n; 0; : : : xi : : :) ! �t(s(n); t(s(n); : : : xi : : :); : : : xi : : :)

where t(n; : : : xi : : :) is a predicate, with the added proviso that t(k; : : : xi : : :) implies
t(j; : : : xi : : :) for all j > k. (A nonzero value for t(n; : : : xi : : :) is interpreted as true
and a zero value is interpreted as false.) The normal form of a term f(: : : ai : : :) is
the minimum n such that t(n; : : : ai : : :) 6= 0. We assume that t can also be evaluated
by a collection of rewrite rules.
The multiset and lexicographic path orderings can be directly combined using

the notion of \status" [Lescanne 1990]. The idea is that for some function symbols
f , when f(s1; : : : ; sm) and f(t1; : : : ; tn) are compared, the subterms are compared
recursively using the bag ordering, while for other function symbols, subterms are
compared using the lexicographic ordering (with the subterms arranged from left-
to-right or right-to-left or in any �xed order). The name \recursive path ordering"
will be used to refer to this status-based combination �rpo.
A number of relationships between termination orderings and large ordinals have

been found; this is only natural since any well-ordering corresponds to some or-
dinal. It is nice that the recursive path ordering (for total precedence) and other
term orderings provide intuitive and useful descriptions of large ordinals. For some
relevant discussions, see [Dershowitz 1987, Gallier 1991].
It is useful to be able to de�ne termination orderings that are partial orderings

and to be able to extend them piecemeal to more powerful orderings.5 Therefore, an
important issue is incrementality, which means that a stronger precedence makes a
stronger ordering: An ordering �o based on a precedence � has the incrementality
property if whenever a precedence �0 extends �, the induced ordering �0o extends
�o. The path orderings have this property, which allows one to successively extend
the path ordering, as needed to orient more and more rules. This is one reason why
the use of partial orderings is more exible than the direct use of ordinal notations.
There are many other termination orderings that are similar to the above ones,

such as the path of subterms ordering [Plaisted 1978] and the recursive decom-
position ordering [Jouannaud, Lescanne and Reinig 1982]. These agree when the
precedence is total [Rusinowitch 1987] and they all enjoy the incrementality prop-
erty. This suggests the possibility of computing a \maximal" ordering for this class,
which is as powerful as all of them combined.

5One ordering �0 extends another � if x � y implies x �0 y, that is, if ���0, with orderings
viewed as sets of pairs.
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De�ne the maximal multiset path ordering for a given precedence ��, as follows:

�
�

sup

mpo =
\
�
�
0

���

�
�

0

mpo

Only total extensions �
�
0 of the precedence are considered. See [Detlefs and

Forgaard 1985]. Computing the maximal ordering in this way may be expensive,
since there may be many total extensions. By using the inference rules de�ning the
path ordering in a goal-directed manner, it is possible to construct a reasonably eÆ-
cient decision procedure for term inequalities in this ordering. For example, suppose
the precedence is f > b and a > g. The terms f(a) and g(b) are incomparable in
the multiset path ordering. Nevertheless, we can show that in any total extension
�0 of the precedence, f(a) >0mpo g(b). If f � a then f > g, and f is the maximal
symbol of the two terms and f(a) >0mpo g(b). If a � f then a is the maximal symbol
of the two terms, and f(a) >0mpo g(b). Since one or the other must hold in any total
extension of the precedence, we have f(a) >sup

mpo g(b).
A more eÆcient way of determining if s >sup

mpo t is to construct a constraint
B involving the precedence � and function symbols such that s �mpo t i� the
constraint holds. This can be derived systematically from the rules for the multiset
path ordering. To decide whether s >sup

mpo t, we need to show that all extensions of �
to a total precedence �0 satisfy the constraint. This avoids repeated computations
on the term structures. The precedence � can itself be de�ned by a conjunction of
inequalities of the form f1 > g1, f2 � g2, etc. Call this conjunction of inequalities
on function symbols C and let Q be the axioms of total quasi-orderings, namely,
reexivity, transitivity, and totality. We need to show that C ^ Q ) B. This is a
straightforward theorem-proving problem, and can be approached by a number of
methods that are reasonably eÆcient on small formul�. In addition, one can use
theorem proving to help compute the stable extension.
Determining if a precedence exists that makes two ground terms comparable in

the multiset path ordering is NP-complete [Krishnamoorthy and Narendran 1985],
but an inequality on ground terms can be decided in quadratic time, using a dy-
namic programming algorithm. The �rst-order theory of these orderings is unde-
cidable [Comon and Treinen 1997]. The existential fragment, needed for completion
(see Section 6), of the recursive path ordering|at least for total precedences|was
shown decidable in [Comon 1990, Jouannaud and Okada 1991], and NP-complete
in [Nieuwenhuis 1993, Narendran, Rusinowitch and Verma 1998].
Another important class of orderings, the numeric path orderings, uses homomor-

phic interpretations, perhaps in conjunction with a precedence. The Knuth-Bendix
ordering is an example of such a hybrid ordering. For the Knuth-Bendix order-
ing with variables, an algorithm to decide inequalities was given in [Dick, Kalmus
and Martin 1990]. In [Korovin and Voronkov 2001] a polynomial-time algorithm is
given to decide whether there is a fully-invariant extension of a given Knuth-Bendix
ordering that orients a given rewriting system. If such an ordering exists, the algo-
rithm computes its parameters. The existential fragment is NP-complete [Korovin
and Voronkov 2000].
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Polynomial interpretations, followed by a lexicographic comparison of subterms,
were suggested in [Lankford 1979]. Of course, one can use classes of interpre-
tations other than polynomials, though it may be harder to decide inequali-
ties. More advanced uses of semantics in path orderings have been de�ned; see
[Kamin and L�evy 1980, Dershowitz and Hoot 1995, Zantema 1995, Genet and
Gnaedig 1997, Borralleras, Ferreira and Rubio 2000].
The method of dependency pairs [Arts and Giesl 2000] limits the pairs that need

to be shown decreasing by a reduction ordering to establish termination. Observe
that if a system is nonterminating, then there must be an in�nite derivation with
at least one redex at the top of a term. Also if a system is nonterminating, then
there's an in�nite derivation in which all proper subterms of every redex initiate
only �nite derivations. Thus, to show impossibility of any in�nite rewrite derivation
it suÆces to show the existence of some well-founded (not necessarily monotonic)
order > such that l� > s� for nonvariable subterms s of the right side of a rule
l ! r, and that l� > t for all t derivable from s� without any top-level rewrite.
One way to establish that this termination condition holds is to show that u �0 v
whenever u rewrites to v (using a quasi-simpli�cation ordering), but that l� > s�
for each nonvariable subterm s of the right-hand side using another, related (non-
monotonic) ordering for which u �0 v implies f(: : : u : : :) � f(: : : v : : :), for all f .
Moreover, one can weed out sterile, �nite derivations by using data-ow techniques.
For example, terms s that are headed by a constructor should be minimal in the
ordering.
For right-linear systems one need only show that there are no in�nite forward

closures [Dershowitz 1981]; the same is true for systems with no \critical pairs"
(de�ned in the next section) [Geupel 1989]; for left-linear systems, it is enough to
consider overlap closures [Guttag, Kapur and Musser 1983, Geupel 1989].
As a comparative example, consider the �rst four rules of Example 4.26:

0 + x ! x 0� x ! 0

s(x) + y ! s(x+ y) s(x) � y ! y + (x� y)

We can use the following termination function �0 : T ! N:

�0(0) = 1 �0(s(x)) = �0(x) + 2

�0(x+ y) = 2�0(x) + �0(y) �0(x� y) = �0(y) � 2�0(x)

Or, to avoid exponentials, we could use the lexicographic combination h�1(t); �2(t)i
of two simpler interpretations:

�1(0) = 1 �2(0) = 0

�1(s(x)) = �1(x) + 2 �2(s(x)) = �2(x) + 2

�1(x+ y) = �1(x) + �1(y) �2(x+ y) = 2�2(x) + �2(y)

�1(x� y) = �1(x) � �1(y) �2(x� y) = 0

Rather than pairs of interpretations, one could|interchangeably|interpret every
term as a pair of numbers, and de�ne homomorphisms for each function symbol
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that extracted the appropriate components from the interpretations of subterms
and then put them together again [Zantema 1994].
For the dependency pair method, one can use the \natural" interpretation:

� 0(0) = 0 � 0(s(x)) = � 0(x) + 1

� 0(x + y) = � 0(x) + � 0(y) � 0(x� y) = � 0(x) � � 0(y)

to show that u! t implies u �0 t. Then for > use the termination function:

�(0) = h0; 0i �(s(x)) = h0; 0i

�(x + y) = h1; � 0(x)i �(x � y) = h2; � 0(x)i

which expresses the fact that the recursion is on the �rst argument and that mul-
tiplication is de�ned in terms of addition. We have s(x) + y > s(x + y); x + y and
s(x)� y > y + (x� y); x� y. The top two rules can be ignored.
Of course, either the multiset or the lexicographic path ordering can be used,

simply with the precedence � > + > s. If however the fourth rule were changed to
read s(x)� y ! (y � x) + y, then only the multiset version would work.

5. Church-Rosser Properties

A key property a rewrite system can enjoy is conuence, because it reduces validity
testing to rewriting. To begin with:

5.1. Theorem (Birkho�'s Theorem [1935]). For any equational system E and
terms t and u, E j= t = u i� t$�

E u.

In other words, t = u holds in all models of the identities E i� there is a �nite
sequence v1; v2; � � � ; vn of terms such that t � v1 and u � vn and for each i,
vi+1 is obtained from vi by replacing a subterm r of vi by a term s, where the
equation r = s or the equation s = r is an instance of an equation in E. This
gives an ineÆcient method for deriving logical consequences of sets of equations.
Paramodulation improves on the na��ve search for proofs; see [Nieuwenhuis and
Rubio 2001] (Chapter 7 of this Handbook).
Let R be a rewrite system fr1 ! s1; r2 ! s2; : : :g and recall that R= is the

associated equational system fr1 = s1; r2 = s2; : : :g. We write t =R u i� R= j= t =
u, that is, the equation t = u is a logical consequence of the associated equational
system. The relation =R is thus the smallest congruence relation generated by
R, in algebraic terms. The relation =R is de�ned semantically, and the relation
!� is de�ned syntactically. We would like to �nd relationships between these two
concepts to be able to compute properties of =R and to �nd complete restrictions
of the inference rules suggested by Birkho�'s Theorem. As we will see, when R has
certain properties, some of them decidable, then t =R u i� some normal form of t
is identical to some normal form of u.
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For any binary relation !, we say that s derives t when s !� t and that s and
t are convertible when s $� t. If there is an element u mutually derivable from s
and t (s!� u and t!� u), we write s # t and say that they are joinable, and that
s = t has a rewrite proof. We write s " t, and say that s and t are meetable, if there
is an r such that r !� s and r !� t.

5.2. Definition (Church-Rosser). A binary relation is Church-Rosser if any two
elements are joinable whenever they are convertible. Symbolically: $��#.

5.3. Definition (Conuence). A binary relation ! is conuent if any two ele-
ments are joinable whenever they are meetable. Symbolically: "�#.

The meaning of this is that diverging derivations can always be \brought together".

5.4. Theorem. A binary relation has the Church-Rosser property i� it is conuent.

Proof. Let "n be the n-fold composition of " and "� its reexive-transitive closure.
We show that "�# (conuence) implies "��# (Church-Rosser, since $�= "�).
Trivially, "0�#. For n > 0, we have

"n = "n�1 Æ "�"n�1 Æ #

by conuence. By de�nition (whether n = 1 or not),

"n�1 Æ #�!� Æ "n�1 Æ  �

and by induction
!� Æ "n�1 Æ  ��!� Æ # Æ  � = #

Since s $�
R t i� s =R t, this theorem connects the equational theory of R with

rewriting. In order to decide if s =R t it is only necessary to see if s and t have a
common normal form.
Often, we are only interested in conuence for ground (variable-free) terms.

5.5. Definition (Ground Conuence). A rewrite system R is ground conuent if
for all ground terms r, if r !�

R s and r !�
R t then s #R t.

In other words, the rewrite relation, restricted to ground terms, is conuent.
Top-down and bottom-up tree automata (see [Thomas 1990]) execute a spe-

cial form of ground rewriting and have been successfully used for proving decision
properties in the ground case. Conuence of ground systems is decidable [Dauchet,
Tison, Heuillard and Lescanne 1987, Oyamaguchi 1987]. The unique normal form
property [Verma, Rusinowitch and Lugiez 2001] is also polynomial for ground sys-
tems. But ground conuence of non-ground systems is undecidable [Kapur, Naren-
dran and Otto 1990]. The latter property is useful for the so-called \inductionless
induction" method invented by Musser [1980]. See [Comon 2001] (Chapter 14 of
this Handbook).
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5.6. Definition (Convergence). Terminating conuent relations are called conver-
gent.

By extension, a rewrite system is called convergent if its rewrite relation is. Many
such systems are known.
Termination means that a rewriting process, applied to a term, will eventually

stop, no matter how the rules are applied. If R is terminating, we can always �nd
a normal form of a term by any rewrite sequence continued long enough. However
there can be more than one normal form. But a convergent relation R de�nes
unique normal forms, and it can be viewed as a function R(x) from elements x
to their normal forms. A convergent rewrite system gives a decision procedure for
its equational theory, since for terms r and s, r =R s i� r $�

R s (by Birkho�'s
theorem) i� r # s (by conuence) i� R(r) = R(s) (by termination). The latter is a
directed form of theorem proving for such an equational theory.
The straightforward encoding of primitive recursive functions as rewrite systems

using the successor notation for natural numbers is convergent.
The next property we de�ne is interesting because it permits a proof of conuence

without assuming termination:

5.7. Definition (Strong Conuence). A binary relation R is strongly conuent if
for all r, s, and t, r ! s and r ! t imply that s $ t, or s and t are identical, or
there is a term u such that s! u and t! u.

5.8. Theorem (Newman 1942). Strongly conuent binary relations are conuent.

The proof is by induction on the length of rewrite sequences. We invite the reader
to construct the proof, which is straightforward.
Huet [1980] de�nes a slightly weaker version of \strong conuence" which also

allows for s!� t together with t!� s, and which still gives conuence.
Rewrite systems are typically not strongly conuent, while ordinary conuence,

as stated, looks like a diÆcult property to demonstrate. However, we will see that
when R is terminating and �nite, conuence is decidable.

5.9. Definition. Binary relations !R and !S (sub-) commute if  R Æ !S�!
=
S

Æ  =
R.

Recall that != is the reexive closure of !, allowing for at most one step.

5.10. Lemma (Hindley-Rosen Lemma [Hindley 1964, Rosen 1973]). If two strong-
ly conuent relations commute, then their union is conuent.

The following widely-applicable criterion for conuence extends the Hindley-
Rosen method by dividing a relation ! into a family of subrelations !i. For any
set K of indices i, we de�ne !K= [i2K !i.

5.11. Theorem (van Oostrom 1994). Let K be a well-founded set of indices, di-
vided into two not-necessarily disjoint sets R and S. Suppose the relation  i Æ !j
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is contained in the relation !�
I0 Æ !

=
j Æ !

�
K0 Æ  �

K0 Æ  =
i Æ  

�
J0 , for all i 2 R and

j 2 S, where I 0 = fk 2 Sjk < ig, J 0 = fk 2 Rjk < jg, and K 0 = I 0 [ J 0. Then !R

and !S commute.

The proof uses a bag ordering that ignores \noise" steps with indices that are
smaller than subsequent steps.

5.12. Definition (Local Conuence). A binary relation ! is locally conuent
(weakly Church-Rosser) if for all terms r, s, and t, if s # t whenever r ! s and
r ! t.

The following result connects local and global conuence:

5.13. Lemma (Diamond Lemma [Newman 1942]). A terminating binary relation
is Church-Rosser i� it is locally conuent.

Proof. Clearly Church-Rosser implies local conuence, even without termination.
Suppose s $� t for a locally conuent and terminating relation !. Then there
is some sequence r1; r2; � � � ; rn of elements such that s � r1 and t � rn and for
all i, ri $ ri+1. For such a conversion, consider the bag S = [r1; : : : ; rn], ordered
by the well-founded bag extension of the well-founded ordering !+ (the relation
is terminating). If for no element ri do we have ri�1  ri ! ri+1 then s # t
immediately. Suppose for some ri we have ri�1  ri ! ri+1. Since the relation is
locally conuent, ri�1 # ri+1. Thus there is another conversion between s and t in
which ri is replaced by all the elements participating in the derivation of ri�1 # ri+1.
These elements are all smaller than ri in the element ordering. Let T be the bag for
this new conversion. Since ri in S has been replaced by smaller elements, S �bag T .
By induction on the well-founded ordering�bag, the derivation for T can be brought
to the desired form, that is, s! s1 ! s2 ! � � �  t2  t1  t, so s # t.

In order to show that a rewrite system is locally conuent, it is necessary to
consider critical pairs, the computation of which requires most general uni�ers. A
substitution � is a uni�er of two terms s and t if s� is identical to t�. In this case
we say that s and t are uni�able. We say that a substitution � is as general as a
substitution � relative to a pair s = t of terms if there is a substitution  such that
s� � s� and t� � t�. A substitution � is a most general uni�er of terms s and
t, denoted mgu(s; t), if � is a uni�er of s and t and � is as general as any other
uni�er of s and t.6

5.14. Definition (Critical Pair [Knuth and Bendix 1970]). If s ! t and l ! r
are two (not necessarily distinct) rewrite rules (but with variables renamed so that
they are distinct) and � is a most general uni�er of l and a nonvariable subterm s0

of s, then the equation s�[r�] = t�, where r� has replaced s0� (= l�) in s�, is a

6If s and t are uni�able then most general uni�ers exist, are essentially unique, and are easy
to compute. Uni�cation is the subject of Chapter 8 of this Handbook [Baader and Snyder 2001].
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critical pair of those rules. We also require either that the two rules are distinct or
that s0 is a proper subterm of s to prohibit the trivial critical pair of a rule with
itself. A critical pair u1 = u2 is joinable if u1 and u2 are joinable. A critical pair is
an overlay if s0 is s (and the two rules s ! t and l ! r are distinct). A rewrite
system is non-overlapping if there are no critical pairs between its rules (disallowing
the trivial one between a rule and itself).

The idea is that the term s�[l�] can rewrite either to t�, applying the �rst rule
at the top, or can rewrite to s�[r�], applying the second rule to the redex l�. So if
u1 = u2 is a critical pair, then u1  Æ ! u2 is a minimalist prototypical non-rewrite
proof. A �nite rewrite system can only have a �nite number of critical pairs.
Insertion Sort has one trivially joinable critical pair, 0 = 0, formed from the base

cases of the max and min functions.

5.15. Lemma (Critical Pair Lemma [Knuth and Bendix 1970, Huet 1980]). A re-
write system is locally conuent i� all its critical pairs are joinable.

5.16. Example (Fragment of Group Theory). Each of the rules

0 + x ! x x+ 0 ! x

(�x) + x ! 0 x+ (�x) ! 0

�0 ! 0 �(�x) ! x

(�x) + (x+ y) ! y x+ ((�x) + y) ! y

follows from some combination of the three axioms: x + 0 ! x, 0 + x ! x, and
(�x) + (x + y) ! y. This system has numerous critical pairs, all of which are
joinable. For example, the rules x + (�x) ! 0 and x + ((�x) + y) ! y form a
critical pair x+ 0 = �(�x), both sides of which reduce, via other rules, to x.

Proof. One direction is trivial. For the other, suppose u is a term and u!R s and
also u !R s0 for rewrite system R . There must be contexts c and c0, rules l ! r
and l0 ! r0 of R and substitutions � and �0 such that u � c[l�] � c0[l0�0], s � c[r�],
and s0 � c0[r0�0]. We need to show that s #R s0.
If the redexes l� and l0�0 are disjoint in u, then u � t[l�; l0�0] s � t[r�; l0�0]

and s0 � t[l�; r0�0], for some context t. Then immediately s #R s0, since s; s0 !R

t[r�; r0�0].
Another possibility is that one redex is \inside a variable" of another; that is,

u � c[l�], with � instantiating some variable x to a term t[l0�0] containing an in-
stance of l0. In this case, we can view l� as l� [l0�0], where � is the same as �,
except that instead of x 7! t[l0�0] it maps x to t[�], with that hole �lled by l0�0. So
u � c[l� ][l0�0], c0 � c[l� ], s � c[r�] � c[r� ][l0�0; : : : ; l0�0], with one occurrence of l0�0

�lling each hole left by � for an x that occurs in r, and s0 � c0[r0�0] � c[l� ][r0�0]!R

c[r� ][r0�0; : : : ; r0�0], while s � c[r� ][l0�0; : : : ; l0�0]!�
R c[r� ][r0�0; : : : ; r0�0] by succes-

sive rewrites. Thus s #R s0.
The only other possibility is that the redexes overlap in a nonvariable subterm.

Then u � c[l�], with l � d[t], and t� � l0�0. In this case, the equation s = s0 must
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contain an instance of a critical pair of R, that is, s = s0 � c[r�] = c[d�[r0�0]] �
c[p� ] = c[q� ], for some critical pair p = q or q = p (which is r� = d�[r0�] for
most general uni�er � of l0 and t), and substitution � (such that �� = �). Since all
critical pairs are joinable, p� #R q� and, hence, s #R s0.

5.17. Corollary. Suppose R is a terminating rewrite system. Then R is conver-
gent i� for all critical pairs s = t of R, arbitrarily computed normal forms s0 of s
and t0 of t are identical.

Proof. The system R is locally conuent by the Critical Pair Lemma 5.15. Since
R is terminating, it is conuent by the Diamond Lemma 5.13.

The implication of this result is that if R is a (�nite) terminating rewrite system,
then its local conuence (and conuence) is decidable, since given a �nite R, there
are only �nitely many critical pairs, and they can be computed (in polynomial
time). However, often we are interested in systems that are not known to terminate
and other methods are needed to establish conuence. Such methods are interesting,
even though it is not possible to decide their equational theory by rewriting, because
conuence still enables one to prove validity of equations between those terms
having normal forms.

5.18. Definition (Encompassment [Huet 1981]). A term s encompasses a term t
if a subterm of s is an instance of t. We write s � t if s encompasses t, but not
vice-versa.

5.19. Definition (Reduced System [Butler and Lankford 1980]). A system R is
reduced (interreduced) if, for each rule l ! r in R, the right-hand side r is irre-
ducible (unrewritable) and if l � l0, then l0 is irreducible (proper subterms of l are
in normal form, as is any term more general than l).

The group theory fragment (Example 5.16) is reduced, but the Interpreter (1.6)
isn't.

5.20. Definition (Reduced Convergent System). A rewrite system is reduced con-
vergent if it is conuent, terminating, and reduced.

It turns out that for a given reduction ordering > and equational theory E, there
is a unique reduced convergent system.

5.21. Theorem (Uniqueness [Butler and Lankford 1980, M�etivier 1983]). Two re-
duced convergent (not necessarily �nite) rewrite systems with the same equational
theory (that is, their convertibility relations are the same) are identical (up to re-
naming variants), if their union is terminating.

See [Dershowitz, Marcus and Tarlecki 1988] for details.
A rewrite system is locally conuent if (but not only if) no left-hand side uni�es

with a nonvariable subterm (except itself) of any left-hand side, taking into account
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that variables appearing in two rules (or in two instances of the same rule) are
always treated as distinct. To get conuence for nonterminating systems we impose
an additional requirement of left-linearity:

5.22. Definition (Orthogonality). A left-linear rewrite system is (weakly) orthog-
onal if all critical pairs are trivial (both sides identical).

In particular, all critical pairs are trivial if all of the following hold:

1. no left-hand side is just a variable;

2. there are no variables on the right side of a rule that do not appear also on the
left;

3. no left-hand side uni�es with a (not necessarily proper) non-variable subterm
of another left side (renamed apart);

4. no left-hand side uni�es with a proper non-variable subterm of a renamed
variant of itself.

Orthogonality is usually de�ned in this particular sense, but the weaker notion suf-
�ces for most purposes. (Conditions 1 and 2 are often included in the very de�nition
of rewrite system, but that is ill-advised.)
The importance of orthogonal systems stems from the following:

5.23. Theorem (Rosen 1973). Every orthogonal system is conuent.

In particular, our erstwhile interpreter (1.6) is conuent.

Proof. The idea is to show that a parallel rewriting relation !
k
R associated with

R is strongly conuent (since the system may be assumed nonterminating). Parallel
rewriting is rewriting at one or more disjoint redexes at the same time. We need to
consider parallel rewriting because if s rewrites to t and s rewrites to t0, at positions
that are not disjoint, then a subterm of s may appear many times in t or t0, and
all of these occurrences may have to be rewritten in parallel to obtain a v to which
both t and t0 rewrite in one (parallel) step. For example, if s � f(a) and R is
fa ! b; f(x) ! g(f(x); f(x))g then f(a) rewrites to both f(b) and g(f(a); f(a)).
Both of these terms parallel-rewrite to g(f(b); f(b)), by replacing both occurrences
of a in g(f(a); f(a)). Similar techniques are used to show the conuence of lambda
calculus and combinatory logic, which do not terminate.

The following well-known example [Klop 1980] shows up the essentiality of left-
linearity:

d(x; x) ! e

c(x) ! d(x; c(x))

a ! c(a)

The system is non-overlapping because the outermost function symbols of each
left-hand side are distinct, and there are no nonvariable proper subterms. Note
that c(a)!� e and c(a)!� c(e), but we do not have e # c(e).
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Even though non-left-linearity removes the conuence guarantee, Chew [1981]
suggested that some limited conuence properties still apply to some non-
overlapping non-left-linear systems, in terms of the uniqueness of normal forms.
For example, his methods imply that the above system has unique normal forms,
despite its lack of conuence.

5.24. Example (Combinatory Logic). Combinatory Logic is a prime example of a
(nonterminating) orthogonal system:

I Æ x ! x

(K Æ x) Æ y ! x

((S Æ x) Æ y) Æ z ! (x Æ z) Æ (y Æ z)

The combinators K and S were dubbed \kestrel" and \starling" by Smullyan
[Smullyan 1968]; I is the identity combinator; Æ is composition. This system can be
used to implement any recursive function.

5.25. Example (Cartesian Closed Categories). The following non-orthogonal, non-
conuent system [Huet 1985] is used in the compilation of functional languages
(juxtaposition and pairing h�; �i are binary operators):

Ix ! x (xy)z ! x(yz)

xI ! x hx; yiz ! hxz; yzi

F hx; yi ! x EhCx; yi ! xhI; yi

Shx; yi ! y (Cx)y ! C(xhyF; Si)

The combinators E and C stand for \evaluation" and \Currying", respectively; I
is the identity morphism; F and S project the components of pairs.

There are redex-choosing strategies for orthogonal systems that compute the
unique (but not necessarily existent) normal form of a term; see Section 10. There
are also some results about termination of orthogonal systems; for example, it is
known that an orthogonal system is weakly innermost normalizing (every term has
a normal form obtainable by some innermost rewriting sequence) i� it is terminating
[Gramlich 1995].
Since the factorial example (4.26) is orthogonal, innermost termination implies

(strong) termination. This allows one to prove termination by a straightforward
natural interpretation and ordinary induction on the value of the �rst argument.
For orthogonal systems that are non-erasing (the left and right-hand sides of

rules have the same variables appearing), a system is weakly normalizing (every
term has a normal form) i� it is terminating [O'Donnell 1977], as is the case for
the �I calculus. Left-linearity is not actually required for these results [Dershowitz
and Hoot 1995, Gramlich 1995].
See [Raoult and Vuillemin 1980, Naoi and Inagaki 1989] for studies of denota-

tional semantics and conuent systems. Though most research in term rewriting
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has concentrated on conuent systems, there is some interest in systems that model
nondeterminism [Kaplan 1988]. For such systems, we may introduce a nondetermin-
istic choice operator with rules [xjy]! x and [xjy]! y.

6. Completion

The impractical, \British Museum" approach to constructing a convergent system
for a given equational theory E would be to generate all possible sets of equational
consequences of E, orient as many as possible according to some given reduction
ordering, and check each subset of the rules for completeness (all E follows) and
conuence (all critical pairs between the resultant rules resolve). As a practical
matter, a method, called completion, is used, which converts unresolved critical
pairs into rewrite rules. Completion uses a reduction ordering to orient equations,
rewriting to simplify rules and equations, and the encompassment ordering to de-
termine which of two rules is more general, and hence preferred. Knuth and Bendix
[1970] used their completion program (written in Fortran) to construct convergent
systems for free groups, loops (Example 1.5 shown earlier was found manually by
Evans [1951]), left and right groups, and central groupoids.
In general, inference systems have rules for combining theorems in a database of

proved theorems to obtain new theorems which can be added to the database. The
generic version of that process is

Expand:
E

E; C
if E j= C

meaning that E is a collection of theorems that have been proved and are in the
database and C is one or more consequences of E that can be added to the database.
Completion procedures, which are inference systems, incorporate another schema

for deleting redundant entries in the database, ones that cannot contribute to min-
imal proofs. For that purpose, one employs a proof ordering � in conjunction with
the inference rule:

Contract:
E; C

E

if for every proof p of E [ C ` e,
there is a proof q of E ` e, such
that p�q

For such a theorem-proving method to be complete, every non-minimal proof must
contain a subproof that can be reduced with the help of consequences that will
eventually be added by the expansion rule.
To get the avor of the general approach, consider �rst how rewriting can be used

to transform a (�nite) set E of ground equations into a simple decision procedure
for E [Lankford 1975]. This transformation is expressed as a set of rules that use a
total strict simpli�cation ordering to replace equations with simpler ones, without
changing the theory:

u = u; E

E

e[l]; l = r; E

e[r]; l = r; E
if l > r
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The left rule deletes trivial equations and is the simplest contraction rule. The other
simpli�es an existing equation e using another equation, it being understood that
e is distinct from l = r. This simpli�cation is a combination of an expansion step
that adds e[r] and a contraction that removes e[l].
In a completion procedure, these two rules are applied repeatedly as long as

possible, assuming totality of the simpli�cation ordering. Regardless of the order in
which things are done, this inference process terminates. Done right, it completes a
ground system E in time proportional to n logn, where n is the number of symbols
in E [Snyder 1989]. This process is also known as congruence closure (see, for
example, [Nelson and Oppen 1980]). The �nal system of equations, call it R, reduces
any term t to normal form in no more steps than symbols in t. An equation s = t
holds in E i� R reduces s = t to a trivial equation of the form u = u.
For example, if terms are compared by length, then these rules can have the

following e�ect:

sss0 = 0; ss0 = 0; ssss0 = s0 ` sss0 = 0; ss0 = 0; ss0 = s0

` ss0 = 0; ss0 = s0

` ss0 = 0; 0 = s0

` s0 = 0

We are using E ` E0 to indicate one application of an inference rule. The result is
the one-rule rewrite system, s0! 0, which reduces all terms si0 to normal form 0.
Turning to the general case, when the axioms in E have variables, the question

is how one constructs an equivalent convergent system R, which can be used to
check validity by the same method, viz. reducing to normal form. In the version
of completion we present, rules and equations are used for simpli�cation. A term
u[l�] containing an instance of l of an equation l = r or r = l may be rewritten,
via ordered rewriting, to u[r�] whenever u[l�] > u[r�] in a given reduction ordering
>. If reducibility is recursive, a set of equations E for which ordered rewriting !E

is conuent computes unique normal forms. So, to prove an identity s = t, one
Skolemizes its variables (treating its variables as constants), and uses the evolving
!!

E to reduce both its sides. A trivial equation s0 = t0 is obtained eventually i�
E j= s = t.

6.1. Example (Groupoid). Consider the following system for a subvariety of en-
tropic groupoids [Hsiang and Rusinowitch 1987]:

(xy)x ! x x(yz) ! xz

(xy)z $ (xw)z ((xy)w)z ! xz

We are using the symbol! for equations such that all instances of the left-hand side
are greater than corresponding instances of the right-hand side, and $, when the
direction of application depends on the instance. Thus, the double-headed rule is
used to rewrite any product of the form (xy)z to the same term with the occurrence
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of y replaced by a suÆciently small term in the ordering >, as though it were

y > w j (xy)z ! (xw)z

(In this example, it matters little which reduction ordering is used.) To prove va-
lidity of the identity (xy)(wz) = (xw)(yz), both sides are rewritten. Applying the
upper-right rule to both sides, we get (xy)z = (xw)z. Suppose a is smaller than
any other term. Then the identity reduces to the trivial equation (xa)z = (xa)z.
By adding to the vocabulary a new constant a smaller than any term in the

ordering >, one can reformulate the system as

(xa)x ! x x(yz) ! xz

y 6= a j (xy)z ! (xa)z ((xa)a)z ! xz

The condition y 6= a insures that (xy)z > (xa)z. There is no need to consider other
instances of the original rules, since terms to which they would apply can �rst be
rewritten by the conditional rule.

Ordered rewriting always terminates, since the rewrite relation is contained in
a reduction ordering. For conuence, we require a broader notion of critical pair
than 5.14:

6.2. Definition (Ordered Critical Pair [Lankford 1975]). Given a reduction or-
dering >, if s = t (or t = s) and l = r (or r = l) are two (not necessarily distinct)
equations (but with variables made distinct) and � is a most general uni�er of l and
a nonvariable subterm s0 of s, and for some substitution �, we have s�� 6� t�� and
s�� 6� s�[r�]� in the ordering, then the equation s�[r�] = t� (with r� replacing
s0� in s�) is a (ordered) critical pair.

Let cp(E) denote the set of all (ordered) critical pairs between equations l = r
in a set E. When l > r, then by de�nition its instances are also ordered thus.
So overlapping r on either side of another equation does not contribute a critical
pair to cp(E). Also, if R is a set of rewrite rules, then cp(E [ R) = cp(E [ R=),
permitting critical pairs between rules and equations.

6.3. Theorem (Ordered Critical Pair [Lankford 1975]). Let the ordered rewrite
relation !E be de�ned by an equational system E and reduction ordering >. If
all ground instances l� = r� of critical pairs l = r 2 cp(E) have ordered rewriting
proofs, l� #E r�, then !E is ground conuent.

Proof. As in Lemma 5.15, for any peak s  E Æ !E t between ground terms
s; t, there either exists a rewrite proof s #E t or a critical-pair proof s $cp(E) t.
In the latter event, s � u[l�] and t � u[r�] for some critical pair l = r, and by
assumption u[l�] #E u[r�]E. So the relation !E is locally conuent, and by the
Diamond Lemma the rewrite relation !E is conuent for ground terms.
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Though there are only a �nite number of critical pairs for �nitely many equations,
the question is how, in general, one can check whether all instances have rewrite
proofs. In the previous example (6.1), the critical pair x = (xw)x (one of several
between the �rst two rules) always reduces by another application of the �rst rule
to x = x. On the other hand, the pair ((xx0)y)z = ((xx)w)z can be rewritten to
((xx0)w)z = ((xx0)w)z by the third rule, but only because we must have x > x0

and y > w for the critical pair to arise in the �rst place. In this case, it is actually
no problem at all, since the third rule can be used instead to show that both sides
have normal form xz.
In general, conuence of ordered rewriting is decidable for the wide class

of precedence-based path orderings described in Section 4 [Comon, Narendran,
Nieuwenhuis and Rusinowitch 1998].
Completion is used to construct convergent systems for a given set of equational

axioms. The procedure maintains a set E of equations and a set R of rules, oriented
according to a given reduction ordering >. Equations are only used to rewrite when
they cause a decrease under>. These sets are manipulated by the following inference
rules:

Deduce: Add a critical pair formed from left-sides of rules in R and both sides
of equations in E:

E; R

E; R; s = t
if s = t 2 cp(E [ R)

Orient: Orient an equation l = r (or r = l) for which l > r:

E; R; l = r

E; R; l! r
if l > r

Delete: Remove an equation whose sides are identical:

E; R; r = r

E; R

Simplify: Use a rule to rewrite either side of an equation (all equations are
treated as unordered pairs) or use either a rule or equation to rewrite the right side
of a rule (all rules are treated as ordered pairs):

E; R; l = r

E; R; l = r0
if r !R r0

E; R; l ! r

E; R; l! r0
if r !E[R r0

Collapse: Use equations or rules to rewrite a less general term:

E; R; s[l�] = t

E; R; s[r�] = t
if l = r 2 E; l not a variant of s

E; R; s[l�]! t

E; R; s[r�] ! t
if l! r 2 R or l = r 2 E; l not a variant of s
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We begin with a �nite set E of equations and no rules in R. The set of equations
is expanded by deduction of critical pairs (the rule deduce). Simplify, in essence,
�rst expands the set of rules to include l ! r0, since l = r = r0 and l > r > r0, and
then contracts the rules by deleting l ! r which, given l ! r0 and the fact that
r ! r0, is redundant.
There is room for exibility in how the inference rules are applied. One simple

version of completion mixes the above inference steps according to the following
strategy:

Completion = (((Simplify + Delete)�; (Orient; Collapse�))�; Deduce)�

In words: Simplify and delete equations as much as possible before orienting. Then
use the newly oriented equation to collapse left-hand sides of all nonreduced existing
rules; then, go back and simplify over again. When there are no equations left to
orient, generate one new critical pair, and repeat the whole process.
Di�erent versions of completion di�er in which equations they orient �rst and in

how they keep track of critical pairs that still need to be deduced.
For guaranteed success of completion, the ordering should be total on ground

terms:

6.4. Definition (Complete Simpli�cation Ordering [Hsiang and Rusinowitch 1987]).

A reduction ordering > of a set of terms T is called a complete simpli�cation
ordering if it totally orders all the ground terms in T . A reduction ordering is
completable if it can be extended to a complete simpli�cation ordering.

Completable simpli�cation orderings of necessity have the subterm property,
which states that terms are larger than their proper subterms. Examples include
the empty ordering, the lexicographic path ordering with a partial precedence, and
the numeric path ordering. Orderings, such as the recursive path ordering, enjoying
the incremental property can be gradually extended to cover new rules as they are
generated. This is why precedences that are partial orderings are of importance
even though total precedences yield more powerful termination orderings.
An implementation of completion is fair if it does not altogether avoid processing

any relevant, nonredundant critical pair. Running completion with a fair strategy
can have one of three outcomes: It might converge on a �nite system of only rules
that is a decision procedure for the initial set of equations; it might reach a point in
which all (ordered) critical pairs have been considered and all have rewrite proofs|
using rules and equations; or it might loop and generate an in�nite number of
rules and equations. The uniqueness of reduced convergent systems (Theorem 5.21)
implies that the choice of ordering determines the �nal result of completion.

6.5. Definition (Fairness [Bachmair and Dershowitz 1994]). An inference seque-
nce E0 ` E1 ` � � � is fair with respect to completion if

cp(E1) � E0 [ E1 [ � � �

where E1 = lim infj Ej (= [i�0 \j�i Ej) is the set of persisting equations.
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The following can be shown by induction with respect to a suitable proof ordering
�:

6.6. Theorem (Completeness of Completion [Bachmair and Dershowitz 1994]).
For any fair completion strategy and complete simpli�cation ordering, ordered
rewriting with (�nite or in�nite) E1 is convergent.

This means that eventually both sides of any identity in the theory of the initial set
of equations E0 will become joinable. Thus, fair completion is a complete equational
theorem prover.

6.7. Example (Abelian Groups I). Completion, given

x � 1 = x x � y = y � x

x � (y � z) = (x � y) � z x � x� = 1

and a lexicographic path ordering (in which � > � > 1 and left arguments are
looked at �rst) will generate the following set of rules which constitute a decision
procedure for free Abelian (commutative) groups under ordered rewriting:

1� ! 1 x � y $ y � x

x � 1 ! x x � (y � z) $ y � (x � z)

1 � x ! x (x � y) � z ! x � (y � z)

(x�)� ! x x � (x� � z) ! z

x � x� ! 1 (y � x)� ! x� � y�

Those equations used in both directions have a two-headed arrow. To decide va-
lidity of an equation s = t, the variables in s and t are replaced by distinct new
(Skolem) constants, obtaining a ground instance s0 = t0 of the equation s = t. The
lexicographic path ordering is extended to a total ordering that includes any con-
stants appearing in s0 or t0. Double-headed rules are then used only in a direction
that reduces in this ordering. The equation is valid i� both s0 and t0 have the same
normal form. The reason is that ordered rewriting using the above rules causes
ground terms to associate to the left and sorts any ground terms so that small
terms occur leftmost and constants and their inverses appear together.

6.8. Theorem (Bachmair et al. 1989). Suppose R is a �nite convergent system for
axioms E and > is a completable simpli�cation ordering for which all rules in R
decrease. Any fair completion strategy for > will generate a �nite convergent system
for E (not necessarily identical to R).

See also [Devie 1990, Bachmair and Dershowitz 1994].
If R is a reduced convergent system and the strategy performs all compositions

and collapses, then, by Theorem 5.21, completion will actually produce R.
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By adding the following rule, a system will always be found if one exists for
any given reduction ordering, even if the ordering is not completable to a strict
monotonic well-ordering of ground terms:

Double: Create one rule to take two steps:

E; R; s! t[u]; l ! r

E; R; s! t[u]; l ! r; s�! t[r]�
� = mgu(l; u), nonvariable u

6.9. Theorem (Bo�ll, Godoy, Nieuwenhuis and Rubio 1999). Suppose R is a ca-
nonical system for axioms E and > is a reduction ordering for which R �>. With
any fair strategy, using the rules deduce, double, orient, and delete, the set of
persisting rules will include R.

The eÆciency of completion depends on the number of critical pairs deduced.
Simpli�cation (rewriting to normal form), as employed in the above procedure, is
one very e�ective mechanism for eliminating superuous equations: if an equation
or rule can be rewritten to something previously generated, then it is not needed.
We have not speci�ed how to choose which critical pair to consider at any given

time in completion, except that it should be done fairly. Generating them in age-
order is one possibility. Another idea is to overlap the two smallest equations that
have not been tried together so far. This is good because it tends to produce small
rules, and small rules tend to be more useful since they are likely to apply more
often. It might also be useful to look for equations with relatively many (linear)
variables. Using small equations is fair since there are only �nitely many equations
of a given size or smaller. Lescanne [1984] suggested running completion for a
while, then �ltering out the most interesting equations (typically small equations),
adding them to the original set R, and repeating the process. \Filter and reuse"
tends to focus attention on the more interesting equations, and can produce good
results.
In order to perform completion, it is necessary to choose a reduction ordering.

Since such orderings abound, this can be diÆcult. In [Plaisted 1986], a method
is proposed to circumvent this problem. There, nondeterministic versions of com-
pletion are given; the nondeterminism has to do with how a critical pair s = t is
converted into a rule, whether s! t or t! s is chosen. The idea is to rely on The-
orem 4.16 to give a simple criterion for nontermination; for any system R satisfying
this criterion, there is no simpli�cation ordering > such that for all rules l ! r in
R, l > r. When this happens, some nondeterministic choice has to be redone, and
completion is again attempted. This method is guaranteed to be able to generate
any system that could be generated using a simpli�cation ordering to orient the
critical pairs. Another approach is to test whether a member of a particular class of
simpli�cation orderings orients a given set of rules, using algorithms for existential
fragments of fully-invariant orderings, mentioned in Section 4.
Various techniques have been used in practice to check for redundancy of equa-

tions, so as to limit the critical pairs that are required for completeness of com-
pletion. Suppose the proof ordering � has the property that a proof decreases
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by replacing a subproof with one involving terms that are all smaller vis-�a-vis the
reduction ordering > supplied to completion. Then a critical pair s = t is redundant
if there exists an equational proof s $ u1 $ � � � $ un $ t, n � 1, such that term
from which the critical pair was formed is greater than each of the intermediate ui.
For the Group Fragment (5.16), the critical pair (�0)+y = y, obtained by rewriting
(�0)+(0+y) with 0+x! x and (�x)+(x+y)! y, is redundant since (�0)+(0+y)
is greater than each of the terms in the alternative proof (�0)+ y ! 0+ y ! y. In
particular, a critical pair can be ignored if the variable part of either of the rules
involved becomes reducible. Some such redundancy criteria have been suggested
in [Winkler and Buchberger 1983, Bachmair and Dershowitz 1988, Kapur, Musser
and Narendran 1988, Zhang and Kapur 1990]. These criteria can save some work,
but experimental results suggest that most do not improve running times signi�-
cantly, except in the associative-commutative case of Section 7, where it can make
a dramatic di�erence.
We illustrate another phenomenon with the following single axiom for group

theory [Higman and Neumann 1952]:

x=((((x=x)=y)=z)=(((x=x)=x)=z)) ! y

Here x=y is analogous to xy�1. During completion, the unorientable equation x=x =
y=y is obtained, but it is clear that the value of x=x does not depend on x, since x
does not appear on the right-hand side. So, rather than using this equation wildly,
we can introduce a new constant e and the de�nitional rule x=x ! e. The same
situation occurs when completing the Loop axioms. In general, if an equation r = s
is derived, and at least one variable appears on only one side of this equation,
then we can add rules r ! f(x1; : : : ; xn) and s ! f(x1; : : : ; xn) where the xi are
all the variables in common to r and s and f is a new function symbol. Knuth
and Bendix [1970] suggested treating unorientable equations by introducing such
new operators, but the technique often degenerates by coming up with in�nitely
many new operators. In some cases when completion does not terminate, patterns
in the in�nite set of rules generated may be observed and used to generate \meta-
rules" that encode these patterns. This may permit construction of a convergent
\meta-term" rewriting system; see [Kirchner and Hermann 1990].
In principle, any theory with decidable word problem can be solved by rewriting

with an ordered system for some conservative extension of the theory [Dershowitz,
Marcus and Tarlecki 1988]. This is not, however, true for ordinary rewriting [Kapur
and Narendran 1985b].
Completion can be applied to program generation [Dershowitz and Reddy 1993].

This entails obtaining a program in the form of a set of equations by completing
an axiomatic speci�cation.

7. Relativized Rewriting

Many axioms are diÆcult to handle by rewriting. One example is the commutative
axiom x + y = y + x which is nonterminating no matter how it is oriented as a
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rewrite rule. We can use ordered rewriting, as in Section 6, and restrict application
of the rule to commute only in the direction that decreases the term in some given
ordering. For example, we might allow 2 + 1 to be replaced by 1 + 2, but not vice-
versa. However, if an operator like + is associative and commutative, then there
are many equivalent ways to represent terms like a + b + c + d, which imposes a
burden in storage and time on completion.
In the previous section, we saw (Example 6.7) how to use ordered rewriting to

decide validity in free Abelian groups. An alternative approach is to apply commu-
tativity only to enable the application of other rules. For example, we would apply
a rule x �1! x to a �1, as well as to 1 �a. This \relativized" rewriting permits one to
treat such axioms in a special way, without explicitly representing many equivalent
forms of a term. The cost is a more complicated rewriting relation, more diÆcult
termination proofs, and a more complicated completion procedure.
The general idea is to let individual terms stand for their E-equivalence classes,

for some equational theory E. For example, if E includes associative and commu-
tative (AC) axioms for ?, then the terms (a ? b) ? a�, a� ? (a ? b), a ? (b ? a�),
etc., will all be rewritable by x ? x� ! 1. Usually some representation of the whole
equivalence class is used; thus it is not necessary to store all the di�erent terms in
the class.
To de�ne a rewriting relation on E-equivalence classes, we use the equivalence

relation s =E t, de�ned as E j= s = t. If s is a term, let [s]E be its E-equivalence
class, containing all terms E-equivalent to s. The simplest approach would be to
say that [s]E ! [t]E if s! t. Retracting this back to individual terms, we say that
u !R=E v if there are terms s and t such that u =E s, s !R t, and v =E t. This
relationR=E is called a class rewriting system; however,R=E rewriting is diÆcult to
compute, even when equivalence classes are �nite, since it requires searching through
all of [u]E for potential redexes. Note that E-equivalent rules are redundant, in this
approach.
A computationally simpler idea is to consider the equivalence classes of instances

of left-hand sides and rewrite u ! v if u has a subterm s such that s =E l� and
l ! r 2 R and v � u with s replaced by r�. In this case, we write u !EnR v
and call the relation EnR the extended rewrite system for R modulo E. In the
associative-commutative case, this means that u[s] rewrites to u[r�] whenever s is
equal under AC to an instance l� of the left-hand side of some rule l ! r (that
is, s and l� may have arguments to AC symbols permuted). Thus, AC-matching
must be used to detect applicability of extended AC rewriting rules. (Matching
a left-hand side l to a term s is essentially uni�cation of the two terms in the
theory of E, with the variables of s regarded as new constants that may not be
instantiated.) Consider the systems R=E and EnR, where R has a? b! d and E is
associativity and commutativity of the operator. Then (a ? c) ? b!R=E c ? d, since
(a ? c) ? b =E c ? (a ? b). However, it is not true that (a ? c) ? b !EnR c ? d since
there is no subterm of (a ? c) ? b that is E-equivalent to a ? b. On the other hand,
(b ? a) ? c!EnR d ? c, since b ? a =E a ? b.
The extended rewrite relation only requires using the equational theory on the

chosen redex s instead of the whole term to \semantically" match s with the left-
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hand side of some rule. Such E-matching is often easy enough computationally
to make EnR rewriting much more eÆcient than R=E rewriting, but semantic
matching is undecidable in general (Hilbert's Tenth Problem being a special case).
Construction of convergent systems using this rewriting relation requires semantic
uni�cation algorithms (see [Baader and Snyder 2001], Chapter 8 of this Handbook).
This, very successful approach (to the problem that Knuth left open) was initiated
by Lankford and Ballantyne [1977] and Peterson and Stickel [1981] and generalized
in [Jouannaud and Kirchner 1986, Bachmair and Dershowitz 1989]. It applies to
theories with permutative axioms like commutativity, AC, or AC with idempotence
and/or identity.
It is impossible for class rewriting to be conuent in the traditional sense, if E

equivalence classes are nontrivial, since any term E-equivalent to a normal form
will also be a normal form of a term. Instead, to capture the property that class
rewriting is conuent when considered as a rewrite relation on equivalence classes,
we sat that R=E is (class) conuent if for any term t, if t !�

R=E u and t !�
R=E v

then there are u0 and v0 such that u !�
R=E u0, v !�

R=E v0, and u0 =E v0. If R=E
is class conuent and terminating then a term may have more than one normal
form, but all of them will be E-equivalent. Furthermore, if R=E is class conuent
and terminating, then we can reduce any R= [E-equivalent terms to E equivalent
terms by rewriting. Then an E-equivalence procedure can be used, if there is one.
Though EnR rewriting is much more eÆcient than R=E rewriting, !R=E has

better logical properties for deciding R[E equivalence. So the theory of relativized
rewriting is largely concerned with �nding connections between these two rewriting
relations.

7.1. Definition (Church-Rosser Modulo [Peterson and Stickel 1981]). The rewri-
te relation EnR is Church-Rosser modulo E if any two R= [ E-equivalent terms
can be EnR rewritten to E-equivalent terms.

This is not the same as saying that R=E is Church-Rosser, considered as a rewrite
system on E-equivalence classes.
It follows that

7.2. Theorem (Peterson and Stickel 1981). Let R be a rewrite system and E an
equational system. If all of the following hold:

1. R is �nite,

2. !R=E is terminating,

3. R is Church-Rosser modulo E,

4. E-matching is solvable,

then equivalence in the combined theory of R=[E is decidable, by normalizing with
!EnR.

Note that !EnR is a subset of !R=E , so if R=E is terminating, so is EnR. But
Church-Rosser modulo E is not a local property; as stated, it's not obvious that
the property is decidable.
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Suppose R is a binary relation, E is an equivalence relation, and T is a binary
relation (think of!EnR) lying between R and R=E, that is, R � T � R=E. We say
that T is Church-Rosser modulo E with R if any two R= [ E-equivalent elements
can be rewritten by T into E-equivalent elements.

7.3. Definition (Local Coherence [Jouannaud and Kirchner 1986]). A binary re-
lation !T is locally coherent with a binary relation R modulo a binary relation E
if  T Æ $E is contained in !�

T Æ $
�
E Æ  

�
T .

The idea of coherence is that there should be some similarity in the way di�erent
elements of an E-equivalence class rewrite.

7.4. Lemma (Coherence [Jouannaud and Kirchner 1986]). Let !T be a relation
such that !R�!T �!R=E . Suppose !R=E is terminating. Then !T is Church-
Rosser modulo E with R i� !T is locally coherent modulo E with both !R and
$E.

This lemma reduces the desired Church-Rosser property to local properties that
can be tested, analogous to the Diamond Lemma (5.13). It forms the basis of
methods for completing R and E to obtain systems that are Church-Rosser modulo
E.
Another approach is to add rules toR to obtain a logically equivalent system S=E;

that is, R= [E and S= [E have the same logical consequences (that is, are equiv-
alent), but EnS rewriting is the same as R=E rewriting. Therefore we can use the
computationally simpler EnS rewriting to decide the equality theory of R=E. This is
done for associative-commutative operators by Peterson and Stickel [1981]. In this
case, conuence can be decided by methods simpler than those above. Consider
the special case of rewriting relative to the associative and commutative axioms
E = ff(x; y) = f(y; x); f(f(x; y); z) = f(x; f(y; z))g for a function symbol f . In this
case, one can atten the term structure so that EnR rewriting can be used rather
than R=E rewriting, that is, a term f(s1; f(s2; : : : ; f(sn�1; sn) � � �)), where none
of the si have f as outermost function symbol, is represented as f(s1; s2; : : : ; sn),
where f is now a varyadic symbol, taking a variable number of arguments. For such
attened terms, all permutations of arguments of f are identi�ed. This means that
each AC-equivalence class is represented by one at term. Since now all members
of a given AC-equivalence class have the same term structure, ACnR rewriting is
easier. However, the subterm structure has been changed; f(s1; s2) is a subterm of
f(f(s1; s2); s3) but there is no corresponding subterm of f(s1; s2; s3). Thus, ACnR
rewriting does not simulate R=AC rewriting on the original system. For example,
consider R = fa ? b ! dg with AC axioms for ?. Suppose s � (a ? b) ? c and t is
d ? c. Then s!R=AC t; in fact, s!ACnR t. However, if we atten the terms, then s
becomes ?(a; b; c) and s no longer rewrites to t since the subterm ?(a; b) has disap-
peared. To overcome this, we must add extensions to rewrite rules to simulate their
e�ect on attened terms. The extension of the rule a?b! d is x?a?b! x?d, where
x is a new variable. With this extended rule, we do have that a ? b ? c!ACnR d ? c.
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The general idea, then, is to atten terms, and extend R by adding extensions of
rewrite rules to it. Then, extended rewriting on attened terms using the extended
R is equivalent to class rewriting on the original R. Formally, suppose s and t are
terms and s0 and t0 are their attened forms. Suppose R is a rewrite system and
S is R with the extensions added. Suppose E is associativity and commutativity.
Then s !R=E t i� s0 !SnE t0. The extended R is obtained by adding, for each
rule of the form f(r1; : : : ; rn) ! s where f is AC, an extended rule of the form
f(x; r1; : : : ; rn) ! f(x; s), where x is a new variable. The original rule is also
retained. This idea does not always work on other equational theories, however.
Note that some kind of AC matching is needed for extended rewriting. This can
be fairly expensive, since there are so many permutations to consider, but it is
fairly straightforward to implement. Completion relative to AC can be done with
the attened representation [Peterson and Stickel 1981], using AC matching and
uni�cation. Uni�cation is needed to form critical pairs cpAC(E) modulo AC. This
means that we look at the �nite set of most general substitutions that allow one side
of an equation to be AC-equivalent to a nonvariable subterm of one side of another
equation, and get a critical pair for each such ambiguously rewritable term.
Speci�cally, the completion procedure of Section 6 may be modi�ed in the fol-

lowing ways to handle AC symbols:

1. AC-uni�cation is used to generate critical pairs instead of ordinary uni�cation:

E; R

E; R; s = t
if s = t 2 cpAC(E [R)

2. An additional expansion operation is needed whenever a new equation f(s; t) =
r is formed, where f is an AC symbol:

E; R; f(s; t) = r

E; R; f(s; t) = r; f(s; f(t; z)) = f(r; z)
if f is AC, f(s; t) 6< r

for some new variable z. This extension rule ensures that f(s; t) = r can be
used even when rearrangement is needed to get an instance of its left-hand side.

3. The ordering must be such that s > t only if s0 > t0 for all AC variants s0 of s
and t0 of t. This ensures that each new AC-rule reduces the term it is applied
to:

E; R; l = r

E; R; l ! r
if l > r

4. Any equation between AC-variants is deleted:

E; R; s = t

E; R
if s =AC t

5. AC-rewriting is used for simpli�cation:

E; R; l = r

E; R; l = r0
if r !R=AC r0

E; R; l! r

E; R; l ! r0
if r !E[R=AC r0
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E; R; s[l�] = t

E; R; s[r�] = t
if l !ACnE r; l not a variant of s

E; R; s[l�]! t

E; R; s[r�] ! t
l!ACnE[R r; l not a variant of s

Recall that the Chameleons (Example 1.3) do not terminate. But if we turn any
one of the rules around, they do! Though the result is not conuent, AC completion
can be used to generate a conuent system of rules and equations: Start o� with the
rules as unoriented equations, and use an ordering with R > Y > G . The oriented
equations are:

R Y ! G G

R R ! G Y

R G ! Y Y

Notice how the second rule acts contrary to the \real" chameleons. The attened,
extended rules are:

Y R z ! G G z

R R z ! G Y z

G R z ! Y Y z

and their commutative variants. The GR and extended YR rules produce a critical
pair YYY = GGG , which gets oriented from left to right: YYY ! GGG . The
complete system reduces the initial state and the monochrome states to distinct
normal forms. (Which?) Since the system is Church-Rosser, there is no way to get
from the initial arrangement of chameleons to one in which they are of uniform
color, no matter which way any of the rules are used.7

7.5. Example (Abelian Groups II). The AC-completion procedure, given

x � 1 = x x � x� = 1

where � is AC, and a polynomial ordering in which �(x � y) = �(x) + �(y) + 1,
�(x�) = 2�(x), and �(1) = 1, generates the following decision procedure for Abelian
groups:

1� ! 1 x � 1 ! x

(x�)� ! x (y � x)� ! x� � y�

x � x� ! 1 x � (x� � z) ! z

The last rule is a composed version of the extension x � (x� �z)! 1 �z of x �x� ! 1.
This extended rule, together with (y0 � x0)

� ! x�0 � y
�
0 , forms a critical pair

(x2 � z1)
�(x2 � (x1 � x2)

� � z2)
� = (z1 � z2)

�

7The rewriting solution to the Chameleon puzzle is due to Claude March�e.
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via AC-uni�er fx 7! x1 � x2, z 7! z1 � z2, y0 7! x1 � z1, x0 7! x2 � x� � z2g. Both
sides reduce to z�2 � z

�
1 . With this system, both sides of any identity reduce by

AC-rewriting to AC-equivalent terms.

The Grecian Urn (1.2) may also be viewed as an AC-rewriting system. Beans
are rearranged until the pair of beans to be removed are adjacent. With extended
rules this system is conuent and terminating. For instance, BW ! W and the
extended rule WWz ! Bz , rewrite a BWW bean arrangement to WW and
BB , respectively, both of which rewrite to B . This means that the normal form is
independent of the order in which rules are applied. If there are an even number
of white beans, they can be paired and reduced to black, and then all the black
beans reduce to one; if there are an odd number, the leftover white bean swallows
all remaining blacks. Thus rewriting solves the problem since the color of the last
bean is determined by the normal form of the rewriting relation, which does not
depend on which rewrite rules are chosen.

7.6. Example (Ring Idempotents). The standard ring axioms plus

aa = a bb = b cc = c

(a+ b+ c)(a+ b+ c) = a+ b+ c

can be completed, with an appropriate ordering, to a convergent AC system that
includes the equations

ba = �ab� bc� cb� ac� ca

bca = abc+ acb+ cab+ cac+ cbc+ ab+ ab+ ac+ ac+ cb+ cb+ bc+ ca

The normal forms of this system include (besides inverses and sums) all monomials
not containing aa, bb, cc, ba, or bca (the order of factors matters since multiplication
is not commutative).

Lankford and Ballantyne [1977] extended completion to handle the most impor-
tant nonterminating axioms and found the above associative-commutative systems
for free Abelian groups; Peterson and Stickel [1981] used a similar process to derive
convergent systems for free commutative rings with unit and distributive lattices
(and tried Boolean algebra without success). Hullot [1980] used these procedures
to derive systems for various quasigroups, associative and non-associative rings
(but could not handle anticommutative or Lie rings), left and right A-modules,
A-bimodules, A-rings, and A-algebras.
An alternative approach in which E is only used to check \semantic equality"

of subterms matching di�erent occurrences of the same non-left-linear rule variable
was proposed by Pedersen [1985a]. In general, (in�nitely) many more rules may
be needed to complete the system. The more general issue of deduction modulo a
non-equational theory E is raised in [Dowes, Hardin and Kirchner 1994].
Termination for relativized rewrite systems is tricky to test for; one needs spe-

cial termination orderings. The problem is that E-equivalent terms are identi�ed
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when doing relativized rewriting, so that it pays to make all E-equivalent terms
equivalent in the quasi-ordering. This is problematic for the recursive path order-
ing and similar orderings. For example, we can represent associative-commutative
equivalence classes by attened terms, as mentioned above. However, applying the
multiset path ordering to such terms violates monotonicity. For example, suppose
� > + and � is associative-commutative. Then x�(y+z) > x�y+x�z. By mono-
tonicity, we should have u�x�(y+z) > u�(x�y+x�z). But, in fact, the term on
the right is larger in the multiset path ordering. A number of attempts have been
made to overcome this, starting with the \associative path ordering" of Dershowitz,
Hsiang, Josephson and Plaisted [1983]. This ordering applied to transformed terms,
in which big operators like � were pushed below small operators like +. More re-
cently, better orderings have been devised [Bachmair and Plaisted 1985, Rubio and
Nieuwenhuis 1993, Kapur and Sivakumar 1997, Rubio 1999].

8. Equational Theorem Proving

Huet [1981] showed how the completion procedure serves as a semidecision proce-
dure for validity in equational theories, as long as no unorientable simpli�ed critical
pair is generated. Lankford [1975] proposed that completion-like methods be incor-
porated in resolution-based theorem provers for the �rst-order predicate calculus,
with paramodulation used for unorientable equations.
Indeed, it follows from the completeness of the completion process (Theorem 6.6)

that a rewrite proof between two ground terms will eventually be generated by
ordered completion from a theory i� the terms are equal in the theory. Ordered
completion uses paramodulation to avoid the possibility of failure inherent in the
original [Knuth and Bendix 1970, Huet 1981] procedures. Thus, the uniform word
problem in arbitrary equational theories can always be semidecided by running
ordered completion using a completable simpli�cation ordering:

8.1. Theorem (Hsiang and Rusinowitch 1991, Bachmair and Dershowitz 1994).
Suppose s = t is a theorem of E. For any fair strategy using the completion rules,
starting with E, and a completable simpli�cation ordering, eventually s and t will
rewrite to the identical term using the generated rules and equations.

With an empty ordering, completion amounts to ordinary paramodulation of
unit equations; with more of an ordering, completion can be more e�ective|by
reducing the number of allowed inferences and increasing the amount of simpli-
�cation that may be performed without loss of completeness. The Gr�obner basis
approach to properties of polynomial ideals and solving word problems [Becker and
Weispfenning 1993] is similar to completion.
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8.2. Example (Distributive Lattices). With axioms:

x u x = x x t x = x

x u y = y u x x t y = y t x

(x u y) u z = x u (y u z) (x t y) t z = x t (y t z)

(x t y) u x = x (x u y) t x = x

x t (y u z) = (x u y) t (x u z)

and a lexicographic path ordering that makes meet bigger than join, completion
eventually generates:

x u (y t z) ! (x t y) u (x t z)

Simplifying by ordered rewriting (ordered simpli�cation) has been implemented
(e.g. [McCune 1989]). Its advantage is that it is not necessary to use a special uni�-
cation algorithm for associative and commutative functions. A disadvantage is that
it is often necessary to keep more terms than if an associative-commutative uni�-
cation algorithm were used. The idea of ordered simpli�cation was taken further,
to \constrained completion", in [Kirchner, Kirchner and Rusinowitch 1990, Mar-
tin and Nipkow 1990, Peterson 1990]. The idea is to constrain rewrite rules by
inequalities between (substitution instances of) variables. Thus we can have a rule
x � y ! y � x with the constraint that x > y in the given ordering. They present
methods for showing that such constrained rewriting systems are ground conuent.

8.3. Example (Bags). The following system normalizes any ground term over the
equational theory containing the axioms of associativity and commutativity by
performing ordered simpli�cation with the lexicographic path ordering:

(xy)z ! x(yz)

xy $ yx

x(yz) $ y(xz)

Using this system, the term (bc)a will rewrite to b(ca) using (xy)z ! x(yz), then
to b(ac) using ordered simpli�cation and the equation xy = yx, then to a(bc) using
the equation x(yz) = y(xz) and ordered simpli�cation.

Other systems like this that are convergent with respect to ordered simpli�cation
are given in [Martin and Nipkow 1990].
Lescanne [1984] experimented with various presentations of groups: applying

Knuth's idea of handling unorientable equations by introducing new operators to
Higman and Neumann's one-equation presentation, completion came up with de�-
nitions of identity and inverse. Pedersen [1984a, 1985a] used this technique, plus a
special way of handling permutative axioms, to generate systems for some entropic
groupoids, and also solved some one relation monoid word problems [Pedersen 1989].
Christian [1989] was partially successful in his work on Burnside groups and Grau's
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ternary Boolean algebra. Foret [1988] found rewrite-based decision procedures for
several systems (K, Q, T, S5) of propositional modal logic. Edelson [1990] was able
to rediscover syntactic proofs for properties of regular rings.

8.4. Example (Groupoid II). The entropic groupoid [Pedersen 1984b]

(xy)(zw) = (xz)(yw) (xy)x = x

has the following decision procedure for ordered simpli�cation, where ? is de�ned
by the equation x ? z = (xy)z, cancelling y (on the basis of the inferred equation
(xy)z = (xy0)z):

x ? x ! x x(y ? z) ! xz

(xy)z ! x ? z x ? (yz) ! x ? z

x(yz) ! xz (x ? y) ? z ! x ? z

(x ? y)z ! xz x ? (y ? z) ! x ? z

(xy) ? z ! xz (xy)(zw) $ (xz)(yw)

An absorbing rule is one in which every nonvariable subterm on the left con-
tains all the variables [Pedersen 1985b], ensuring that its critical pairs with ground
equations are still ground. With associative-commutative systems this is essentially
never the case, but sometimes the nonground pairs are certain to reduce to ground
ones. Ballantyne and Lankford [1981] accordingly gave rewriting-based procedures
for the uniform word problem in �nitely-generated commutative semigroups; with
Butler [1984], they did the same for �nitely-generated Abelian groups; and Lank-
ford [1980] used this method to show decidability of the uniform word problem in
�nitely-presented J-algebras. Pedersen [1985b] gave suÆcient syntactic conditions
for decidability of the uniform word problem for some absorbing systems, including
�nitely-presented loops, using a completion procedure that adds new symbols as
needed. Even when the uniform word problem is undecidable, as for non-Abelian
groups, this method frequently �nds decision procedures for speci�c word problems.
In this vein, Le Chenadec [1985] did substantial work on �nitely-presented groups
from topology and geometry, including the Coxeter groups (showing termination
was sometimes diÆcult).
Burris and Lawrence [1991] presented systems for �nite �elds, rings with xn =

x, and such rings with n prime and nx = 0 (studied also by Nipkow [1990]).
Kapur and Zhang [1989] used an enhanced associative-commutative completion
procedure (which avoids many redundant critical pairs) to prove commutativity for
rings with xn = x, for many speci�c n. Anatharaman and Hsiang [1990] used a
combination of ordered and associative-commutative completion to derive purely
syntactic proofs of the Moufang identities for alternative rings. Pedersen [1985a]
used a variant of associative-commutative completion to generate an in�nite system
that \computes" Whitman normal form for lattices. Finally, the Robbins algebra
conjecture has recently been proved using rewriting techniques [McCune 1997]. The
12-step equational proof followed after 50,000 equations were generated and 6,000
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simpli�cation steps were performed; almost 90% of the computer's e�ort went into
simpli�cation. Simpli�cation was critical for the success of the automated proof.
As �rst suggested in [Hsiang and Dershowitz 1983], one can apply completion to

full �rst-order theorem proving, by using Boolean rings [Zhegalkin 1927, Stone 1936]
to represent formul�:

x � T ! x x� F ! x

x � F ! F (x� y) � z ! (x � z)� (y � z)

x � x ! x x � x � y ! x � y

x� x ! F x� x� y ! y

where � is \conjunction",� is \exclusive or", and both are associative and commuta-
tive. With this system, all propositional tautologies reduce to T and contradictions
to F . To prove validity of a formula, one Skolemizes its negation (and renames vari-
ables) to obtain a universally quanti�ed formula, and expresses it using the above
connectives. Then, were the original formula true, there would be an equational
proof of the contradiction T = F . Completion can be used to discover such a proof.
As a very simple example, consider the theorem

[9xp(x) ^ 8x (p(x)) p(f(x)))] ) 9xp(f(f(x)))

Its Skolemized negation is equivalent to the following equations:

p(f(f(x))) = F

p(a) = T

p(x) _ p(f(x)) = p(f(x))

where a is a Skolem constant. These equations entail the contradiction:

T = T _ [p(f(a)) _ p(f(f(a)))]

= p(a) _ [p(f(a)) _ p(f(f(a)))]

= [p(a) _ p(f(a))] _ p(f(f(a)))

= p(f(a)) _ p(f(f(a)))

= p(f(f(a))) = F

This method can be re�ned [Hsiang 1985] to ignore many critical pairs, but one
must take care to ensure completeness. Further work along these lines includes
[Bachmair and Dershowitz 1987, Zhang 1994, Kapur and Narendran 1985a], see
also [Bachmair and Ganzinger 2001] (Chapter 2 of this Handbook). For the use of
Boolean rings in the propositional case, see [Hsiang and Huang 1996, Dershowitz,
Hsiang and Shieng 2000].
There is a subtlety in the notion of logical consequence which should be men-

tioned here. A �rst-order structure M may include elements that are inacces-
sible, and cannot be represented by any ground term. For example, if E in-
cludes the constant 0 and unary function symbol s, then the ground terms are
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f0; s(0); s(s(0)); : : :g. However, the domain of the structure M may include ele-
ments d that cannot be represented by any of these elements; formally, it may be
that d 6= 0M ; d 6= s(0)M ; d 6= s(s(0))M ; : : :. This means that the notion of logical
consequence may not agree with na��ve intuition, where we wish to infer those equa-
tions s = t such that whenever the variables of s and t are replaced by ground terms
in a systematic way, the result is a consequence of E. We are often interested in
those equations s = t such that all ground instances are logical consequences of E.
For example, suppose E contains two axioms: x + 0 = x, and x+ s(y) = s(x+ y).
These equations completely de�ne the usual addition operation on nonnegative
integers, regarding s as the successor function. We expect addition to be commu-
tative, which means that we expect to have E j= u+ v = v+u. Indeed, any ground
instance of this equation containing only the function symbols s and 0 is a logical
consequence of E. However, the equation u+ v = v+ u itself is not a logical conse-
quence of E, since it is possible to construct a structure M , containing inaccessible
elements, in which E is valid but the equation u+ v = v + u is not. The inductive
theory of a set E of equations is the set of equations s = t such that all ground
instances s� = t� are logical consequences of E. These two concepts are related as
follows: Consider the term algebra T (X ) over a (countable) set X of variables, for
some vocabulary. Then T (X )==E j= s = t i� s = t is a logical consequence of E.
And T (;)==E j= s = t i� s = t is in the inductive theory of E. The quotient set
T (X )==E is a free algebra in the class of models of E and T (;)==E is the initial
algebra in this class.
In fact, by G�odel's First Incompleteness Theorem, there can be no method of

deriving all the quanti�ed formul� of arithmetic (addition, multiplication, and in-
equality) that are true of the nonnegative integers. This means that every set of
axioms for the integers has a nonstandard model, containing inaccessible elements,
in which some inductive theorem is false in the model. Another way of looking
at this is that it is impossible in a �nite axiom system to fully characterize the
integers, or the set of �nite terms. Nevertheless, there are incomplete methods for
deriving and verifying equations in an inductive theory, which involve some form
of mathematical induction. A modi�ed completion procedure is an integral part of
many of the inductionless induction theorem-proving methods [Comon 2001]; see
Chapter 14 of this Handbook.
Oftentimes one is interested in the satis�ability of equations. We may want to

know if E j= (9x)s = t, that is, from E does it follow that there is an x such
that s = t? This topic is covered in [Baader and Snyder 2001] (Chapter 8 of this
Handbook), including the rewriting-based approach called \narrowing".

9. Conditional Rewriting

ometimes equational systems are not expressive enough. For example, we may want
to state that s = t if some condition C is true, as in

x

y
=

x� y

y
+ 1 only if y 6= 0
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In the many cases where speci�cations are naturally conditional, we cannot use
conventional term-rewriting systems. Instead, we use conditional rewrite systems,
in which the rewrite rules have conditions attached, which must hold true for the
rewrite to transpire. A rule l! r with a condition C is written C j l ! r, as in

y 6= 0 j
x

y
!

x� y

y
+ 1

where C is viewed as a \guard" for the application of the rewrite. Conditions C may
take several di�erent forms; for example, they may be logical formul�, or equations,
or inequations. If C is a logical formula, the meaning is that a term encompassing
l rewrites to the corresponding term with the appropriate instance of r in place of
l only if C is true. That leaves the question of how to determine whether C is true.
In this chapter, we will assume that C is a conjunction of equations, omitting a

condition when it is the empty conjunction. For example,

(x > y) = T j max(x; y) ! x

(x > y) = F j max(x; y) ! y

s(x) > s(y) ! x > y

s(x) > 0 ! T

0 > x ! F

de�ne maximum and greater-than for tally numbers si(0). The equations in the
conditions can be evaluated recursively by conditional rewriting, in a manner similar
to the goal-subgoal structure of Prolog, making conditional rewrite systems an
attractive combination of logic and functional programming paradigms.
A conditional equation (or equational Horn clause) is an implication of the form

u1 = v1 ^ � � � ^ un = vn ) l = r

In a rule of form C j l ! r, we call C the premiss and l ! r the conclusion.
The semantics is that C ) l = r. In general, C may be any formula, and may
contain the equality predicate, or the rewrite relation !, or its variants. If C is a
conjunction of equations, we call it a semi-equational rule; if C is a conjunction of
statements of the form si # ti, we call it a join rule.
A (standard or join) conditional rewrite system is a collection of rules of the form

u1 # v1 ^ � � � ^ un # vn j l! r

intending that terms u[l�], containing an instance of left-hand side l, rewrite to
u[r�] only when all the conditions ui� # vi� hold for that substitution �. The most
popular operational semantics for such a system require both sides of each condition
to rewrite to the same normal form before an instance of l may be rewritten.
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9.1. Example (Conditional Append). To feel the avor of this version of rewriting,
consider the system

null(�) ! T head (x : y) ! x

null(x : y) ! F tail (x : y) ! y

append (�; y) ! y

null(x) # F j append (x; y) ! head (x) : append (tail (x); y)

and its derivation

append (a : (b : �); c : �) !� a : (b : (c : �))

Conuence of conditional systems in general is undecidable [Brand, Darringer
and Joyner 1979, Kaplan 1987], unlike the unconditional case. Other approaches to
conditional conuence include using oriented conditions, an analogue to orthogo-
nality (Theorem 10.10 below), or restricted-depth proofs of conditions [Dershowitz,
Okada and Sivakumar 1987, Giovannetti and Moiso 1987].
We say a conditional system R is Noetherian if there are no in�nite sequences

t1; t2; t3; : : : of terms such that t1 !R t2 !R t3 � � �. This corresponds to the con-
cept of termination for unconditional systems, but each rewrite step involves the
recursive evaluation of conditions. That is, to determine whether s!R t, it may be
necessary to determine whether u!R v for u and v obtained from the condition of
some rule of R. It is possible for a system to be Noetherian even when such recur-
sive evaluation of conditions does not terminate; in such a case, the computation
might not be terminating. In fact, it may happen that the rewrite relation s!R t
is undecidable.
Semi-equational systems are conuent if they are Noetherian and all critical

pairs are joinable [Dershowitz and Plaisted 1988]. In contradistinction with the
unconditional case, only under certain circumstances are Noetherian join systems
conuent|even if all their critical pairs are joinable [Dershowitz et al. 1987]. But
we �rst need a suitable notion of critical pair:

9.2. Definition (Conditional Critical Pair). Let > be a reduction ordering. The
conditional equation c� ^ p� ) s�[r�] = t� is a conditional critical pair of the
conditional equations c) l = r and p) s = t, if l uni�es via most general uni�er �
with a nonvariable subterm of s, the ordering is such that l� 6< c�, s� 6< p�, l� 6< r�,
s� 6< t�, and c� ^ p� is satis�able in E. A conditional critical pair p ) s = t is
joinable if s� and t� are joinable for all � satisfying p.

By l� 6< c�, we mean that no term in c� is always greater than l�. We use cp(E)
to denote the set of conditional critical pairs so de�ned.
If cj l! r and pj s! t are two di�erent rules and l and s unify with most general

uni�er �, then the critical pair p� ^ c� ) r� = t� is an overlay for those rules.

9.3. Theorem (Dershowitz, Okada and Sivakumar 1988). A standard Noetherian
conditional rewrite system is conuent if no left-hand side uni�es with a nonvariable
proper subterm of a left-hand side and every overlay critical pair is joinable.
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Such systems with only top-level critical pairs are called overlaying. See also
[Gramlich and Wirth 1996].

9.4. Definition (Decreasing System). A conditional rewrite system R is decreas-
ing if there exists a well-founded ordering > containing the rewrite relation !R

and which satis�es two additional requirements:

1. > has the subterm property f(: : : ; s; : : :) > s, and

2. l� > c� for each rule c j l ! r in R and substitution �.

Decreasing systems exactly capture the �niteness of recursive evaluation of terms;
they re�ne the suggestion in [Kaplan 1987]. If R is decreasing, then the rewriting
relation is decidable, since evaluating the conditions involves terms smaller than
the redex. It's possible for a conditional rewrite relation to be Noetherian without
being decreasing. In practice, simpli�cation orderings > may be used to show the
decreasing property. This de�nition implies that all variables in the premiss appear
also in the left-hand side. The notion needs to be extended, therefore, to cover
systems (important in logic programming) with variables in conditions that do not
also appear in the left-hand side. See [Bertling and Ganzinger 1989, Hanus 1995,
Marchiori 1996, Ohlebusch 1999].
Standard join systems are locally conuent if they are decreasing and all critical

pairs are joinable.

9.5. Theorem (Dershowitz, Okada and Sivakumar 1988). A decreasing system is
conuent (hence, convergent) i� there is a rewrite proof of s� = t� for each critical
pair c) s = t and substitution � such that c� holds.

Conditional Append (9.1) and the Stack system (1.7) are decreasing. Both have
one trivially joinable critical pair for which there is no satisfying substitution.
Unlike the situation for completion of ordinary rewrite systems, there is no

general-purpose mechanism for obtaining conuent conditional systems. There are
some completion-like procedures for conditional equations [Kaplan 1987, Ganzinger
1991, Kounalis and Rusinowitch 1988], which could in some instances provide de-
cision procedures for conditional equational theories (quasi-varieties), but, in prac-
tice, they do not work well and further research is required.
The free (initial) algebra for n-generators can be computed by completing the

axioms and looking at the normal forms of bigger and bigger words until they
stabilize. Pedersen [1988] did this for bands with up to three generators. Conditional
rewriting, using conditional equations, can sometimes be used to capture an in�nite
number of unconditional rules in one conditional one; this approach was taken
by Siekmann and Szabo [1982] for bands. For a conditional-rewriting approach to
associative-commutative-idempotent systems, see [Baird, Peterson and Wilkerson
1989].
In order to obtain decision procedures employing conditional rewriting, we need

to consider logical strengths of systems. The reason for this is as follow: Suppose we
are given an equational system E (with equational conditions). We want to obtain
an equivalent convergent system which can be used to decide the equality theory
of E. One way to do this is to convert E into a join system R, and then complete
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R to obtain R0 which is decreasing, Noetherian, and conuent. Then we know that
R j= s = t i� R0 j= s = t by the way completion is done, and R0 j= s = t i� s and
t have the same R0-normal form, since R0 is Noetherian and conuent. However,
we do not know that R0 j= s = t i� E j= s = t, which is what we really want.
The reason is that we changed the conditions in E to join assertions to obtain R.
Therefore, the following theorem is useful:

9.6. Theorem (Dershowitz, Okada and Sivakumar 1988). Let R be a conuent
and Noetherian standard conditional system, R0, the corresponding semi-equational
systems (with conditions changed to equations), and E the corresponding equational
system (with right-hand sides changed to equations). Then the following are equiv-
alent:

1. E j= u = v

2. u and v have the same R-normal form

3. u and v have the same R0-normal form.

If the conditions of the theorem hold, then reduction via R can be used to decide
the theory of E. Note that typically E, when converted to R, will not be conuent
and Noetherian. Therefore, we have to complete R in a way that does not change
the corresponding equational theory E.
Completion for conditional systems is trickier than for unconditional systems.

The inference rules we present may be classi�ed into three expansion rules and
four contraction rules. Contraction rules signi�cantly reduce space requirements,
but make proofs of completeness much more subtle. As with ordinary completion,
a reduction ordering � is used to control simpli�cation (demodulation).
Superposition (that is, oriented paramodulation of positive equational literals) is

performed only at nonvariable positions:

Superpose:
E

E; e
if e 2 cp(E)

Only positive equations are used in this rule, and only in a decreasing direction.
Either side of an equation may be used for superposition, but only if it is potentially
the largest term involved. Note that the two conditional equations may actually be
renamed variants of one and the same equation.
We need, additionally, a rule that paramodulates into maximal negative literals:

Narrow:
E; q ^ s[l0] = t) u = v

E; q ^ s[l] = t) u = v;

p� ^ q� ^ s[r]� = t�) u� = v�

if

8>>><
>>>:

p) l0 = r 2 E;

l is not a variable

� = mgu(l; l0)

s[l]� 6� p�; q�; t�; s[r]�

The condition s� 6� p� means that s� is not smaller than any side of any equation
in p�. Whenever this or subsequent rules refer to a conditional equation like q^s =
t) u = v, the intent is that s = t is any one of the conditions and u is either side
of the implied equation.



590 Nachum Dershowitz and David A. Plaisted

The last expansion rule in e�ect resolves a maximal negative literal with reex-
ivity of equals (x = x):

Reect:
E; q ^ s = t) u = v

E; q ^ s = t) u = v;

q�) u� = v�

if

(
� = mgu(s; t)

s� 6� q�

The contraction rules all simplify the set of conditional equations:

E; q ) u = u

E

E; q ^ s = s) u = v

E; q ) u = v

E; q[l�]) u = v

E; q[r�] ) u = v
if p) l = r 2 E; l� � r�; p�; E j= p�

E; q ) u[l�] = v

E; q ) u[r�] = v
if

(
p) l = r 2 E; l� � r�; p�; E j= p�

v � u[l�] _ (v � r ^ l 6� u[l�])

The �rst contraction rule deletes trivial conditional equations. The second allows for
deletion of conditions that are trivially true. The last two use decreasing instances to
simplify other clauses. One rule simpli�es conditions; the other (compose) applies
to the equation part. In both, the original clause is replaced by a version that is
logically equivalent, assuming the rest of E. By l 6� u we mean that l is not a
variant of u. This allows the larger side of an equation to be simpli�ed by a more
general equation, and the smaller side to be rewritten in any case.
As before, we use the notation E ` E0 to denote one inference step, applying

any of the seven rules to a set E of conditional equations to obtain a new set E0.
The inference rules are evidently sound, in that the class of provable theorems is
unchanged by an inference step.
Let > be any complete simpli�cation ordering extending the given partial order-

ing �. A proof of an equation s = t between ground terms (any variables in s and
t may be treated as Skolem constants) is a sequence:

s = t1  !
j

P1

t2  !
j

P2

� � �  !
j

Pm

tm+1 = t

of m+ 1 terms (m � 0), each step tk $ tk+1 of which is either trivial (tk+1 = tk),
or else is justi�ed by a conditional equation ek in E, applied at some position in tk,
a substitution �k for variables in the equation, and subproofs Pk (of the same form)
for each conditions uk;j�k = vk;j�k of the applied instance ek�k. Steps employing
an unconditional equation do not have subproofs as part of their justi�cation. By
the completeness of positive-unit resolution for Horn clauses, any equation s = t
that is valid for a set E of conditional equations is amenable to such an equational
proof.
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The above inference rules are designed to allow any equational proof to be trans-
formed into normal form. A strategy based on these rules is complete if we can
show that, with enough inferences, any theorem has a normal-form proof. For the
unit strategy, a normal-form proof is a valley proof having no peaks s u! t, no
steps s ! t with (valley) subproofs, and no trivial steps. Normal-form proofs may
be thought of as \direct" proofs; in a refutational framework the existence of such
a proof for s = t means that demodulation of s and t using positive unit equations
suÆces to derive a contradiction between the Skolemized negation s0 6= t0 of the
given theorem and x = x.
We must demonstrate that for any proof s $�

E0
t, there eventually exists an

unconditional valley proof s #Ek
t. In the unit strategy, only expansions involving

an unconditional equation are necessary. Speci�cally, both equations used by su-
perpose are unconditional and the positive literal used in narrow is a unit. Were
it not for contraction rules, it would be relatively easy to show that narrow and
reect eventually provide an unconditional proof of s = t, and that superpose
eventually turns that into a valley.
Conditional inference is fair if all persistent superpositions of unit clauses, nar-

rowings via unit clauses, and reections have been considered:

9.7. Definition (Unit Strategy [Dershowitz 1991]). An inference sequence E0 `
E1 ` � � � is fair with respect to the unit strategy if

cp1(E1) � E0 [ E1 [ � � �

where E1 is the set of persisting conditional equations and cp1(E1) is the set
of conditional equations that may be inferred from persisting equations by one
application of deduce for unconditional systems, narrow with p empty, or reect.

9.8. Theorem (Dershowitz 1991). If an inference sequence E0 ` E1 ` � � � is fair
for the unit strategy, then for any proof of s = t in E0, there is a normal-form proof
of s = t in E1.

Proof. For the proof ordering, the term ordering > is �rst extended to the tran-
sitive closure of it together with the proper subterm ordering >sub, which is still
well-founded [Dershowitz and Jouannaud 1990]. This in turn is extended to equa-
tions by considering the equation as a bag of two terms, and using the bag extension
of this ordering. An equation is greater than a term i� one of its sides is. Conjunc-
tions of equations are compared as bags of these bags, and a conjunction is larger
than a term if one of its conjuncts is. Proofs are measured in the following way:
Consider a step s = w[l�] $ w[r�] = t in a ground proof or its subproofs, using a
conditional equation q ) l = r, with s � t (in the complete simpli�cation ordering
extending >). To each such step, we assign the weight h[q�; s; l�]; q ) l = ri Steps
are compared in the lexicographic ordering of these pairs. The �rst components
of pairs are compared in the bag extension of the ordering on conjunctions and
terms described above. (Note that s is always greater or equal to l�, and that for
decreasing instances it is also greater than q�.) Second components are compared
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using the extension � of the encompassment ordering described earlier. Proofs are
compared in the well-founded bag extension of the lexicographic ordering on steps.
We use � to denote this well-founded proof ordering.
One needs to show that inferences never increase the complexity of proofs and,

furthermore, that there are always inferences that can decrease the complexity of
nonnormal proofs. Then, by induction with respect to �, the eventual existence of
a normal-form proof follows: If E ` E0, then for any proof P in E of an equation
s = t, there exists a proof P 0 in E0 of s = t, such that P�P 0. This is established
by consideration of the e�ects of each contracting inference rule that deletes or
replaces equations, since for expansion rules, E � E0, and we can take P 0 = P .
The conditions imposed on compose are essential for showing a decrease in �.
Furthermore, if P is a non-normal-form proof in E, then there exists a proof P 0 in
E [ cp1(E) such that P � P 0.
If s = t is provable in E0, then it has a proof P in the limit E1. If P is nonnormal,

then it admits a smaller proof P 0 using (in addition to E1) a �nite number of
equations in cp1(E1). By fairness, each of those equations appeared at least once
along the way. Subsequent inferences can only decrease the complexity of the proof
of such an equation once it appears in a set Ei (and has a one-step proof). Thus,
each equation needed in P 0 has a proof of no greater complexity in E1 itself, and
hence (by the bag nature of the proof measure), there is a proof of s = t in E1
that is strictly smaller than P . Since the ordering on proofs is well-founded, by
induction there must be a normal proof in E1.

In the above method, only unconditional equations are used for superposition
and narrowing. This may be good for theorem proving purposes, but is useless
from the point of view of completion. An alternative is to design an inference
system that distinguishes between decreasing and nondecreasing non-unit clauses
[Ganzinger 1991, Dershowitz 1991b]. The required inferences (using superpose and
narrow) are a stringent restriction of paramodulation.
For the decreasing method, we rede�ne a normal-form proof of s = t to be a

valley proof s # t in which each subproof is also in normal form and each term in
a subproof is smaller than the larger of s and t [Dershowitz and Okada 1988]. Any
non-normal-form proof has a peak made from decreasing instances with normal-
form subproofs, or has a nondecreasing step with normal-form subproofs, or has
a trivial step. Theorem 9.5 can be adapted to ground conuence of decreasing
systems. Superposition is needed between decreasing conditional rules. As before,
we must perform enough expansions with persistent conditional equations for there
to always be a normal-form proof in the limit.

9.9. Definition (Decreasing Strategy [Dershowitz 1991]). An inference sequence
E0 ` E1 ` � � � is fair with respect to the decreasing strategy if

cp+(E1) � E0 [ E1 [ � � �

where cp+(E1) is the set of conditional equations that may be inferred from per-
sisting equations by one application of an expansion rule superpose, narrow, or
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reect.

Decreasingness is essentially the same condition as imposed on conditional rewrite
rules by the completion-like procedures of [Kaplan 1987, Ganzinger 1991]. In these
methods, superposition is used when the left-hand side is larger than the conditions;
narrowing, when a condition dominates the left-hand side. (As theorem provers,
however, those were refutationally incomplete, since they made no provision for
unorientable equations s = t such that s 6> t and t 6> s.)

9.10. Theorem (Dershowitz 1991). If an inference sequence is fair for the decreas-
ing strategy, then for any proof of s = t in the initial set E0 of conditional equations,
there is a normal-form proof of s = t in the limit E1.

For extensions of the ideas in this chapter to full �rst-order theorem proving, see
[Bachmair and Ganzinger 2001] (Chapter 2 of this Handbook).

10. Programming

Rewrite systems are readily used as a programming language. If one requires of the
programmer that all programs be terminating, then rewriting may be used as is to
compute normal forms. With ground conuence, one is assured of their uniqueness.
Modularity is critical in the programming context. The idea of modularity is to

infer properties of a combination of two rewrite systems from properties of their
parts:

10.1. Theorem (Toyama 1987). The union of two conuent rewrite systems shar-
ing no function symbols or constants is also conuent.

An example showing that conuence is not preserved when a constructor is shared
is:

f(x; x) ! a e ! c(e)

f(x; c(x)) ! b

In the combined nonterminating, non-left-linear system, f(e; e) reduces both to a
and b.

10.2. Theorem (Toyama, Klop and Barendregt 1995). The union of two conver-
gent left-linear rewrite systems sharing no function symbols or constants is also
convergent.

For a proof, see [Marchiori 1995].
These results unfortunately do not carry over to the prevalent situation of shared

constructors. One result that does is:

10.3. Theorem (Gramlich 1995, Dershowitz 1995). The union of two convergent
rewrite systems, sharing only constructor symbols and all of whose critical pairs are
overlays, is convergent.
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This is because innermost termination of such systems implies termination, while
innermost termination is preserved by such unions [Kurihara and Kaji 1990].

10.4. Definition. We say that two rewrite systems R and S are mutually-
orthogonal (symbolized R ? S) if there are no non-trivial critical pairs between
rules of the di�erent systems.

As a corollary of Theorem 5.15, we have:

10.5. Theorem. The union of two mutually-orthogonal rewrite systems is conu-
ent if it is terminating.

Analogous to Theorem 5.23, we have:

10.6. Theorem (Raoult and Vuillemin 1980). The union of two left-linear conu-
ent mutually-orthogonal rewrite systems is conuent.

The related study of properties of combinations of algebraic rewriting with ver-
sions of the lambda calculus began with [Breazu-Tannen and Gallier to appear].
Many programs (interpreters, for example) do not always terminate. Still, we

would want to compute normal forms whenever they exist. Conuent systems have
at most one normal form per input term, and orthogonal systems are conuent. The
left-linearity restriction for orthogonal systems is reasonable in the programming
context, since the formal parameters of procedure de�nitions are distinct. It is also
convenient for eÆciency of pattern matching. To check if a term f(s; t) is an instance
of a left-hand side f(x; x), it is necessary to check that s and t are identical, which
can require time proportional to the size of s or t. (Of course, there are also cases
where it is very convenient to use non-left-linear rules.)
To �nd the unique normal form for orthogonal systems, when it exists, one can

use the following strategy for choosing the redex at which to apply a rule:

10.7. Definition (Outermost Rewriting). A rewriting step s ! t is outermost
with respect to some rewrite system if no rule applies at a symbol closer to the
root symbol (in the tree representation of terms).

10.8. Theorem (Outermost Normalization [O'Donnell 1977]). For any orthogo-
nal system, if no outermost step is perpetually ignored, the normal form|if there
is one|will be reached.

Outermost rewriting of expressions is similarly used to compute normal forms in
combinatory logic and head normal forms in the lambda calculus.
In this way, orthogonal systems provide a simple, pattern-directed (�rst-order)

functional programming language, in which the orthogonal conditional operator

if (T; x; y) ! x

if (F; x; y) ! y
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can also conveniently be incorporated. Various strategies have been developed for
eÆcient computation in special cases. Moreover, orthogonal systems lend themselves
easily to parallel evaluation schemes.
Huet and L�evy [1991] developed a theory of \needed redexes" and optimal deriva-

tions for orthogonal systems. The need for a redex is, however, undecidable, except
in special cases [Ho�mann and O'Donnell 1982, Huet and L�evy 1991]. Chew [1980]
used congruence-closure techniques to cache results of prior sequences of orthogo-
nal rewrites, and improve performance; this idea was extended to a class of non-
orthogonal convergent systems in [Verma 1995].
Since programs are often nonterminating, techniques for showing conuence of

nonterminating conditional rewrite systems are useful:

10.9. Definition (Conditional Orthogonality [Bergstra and Klop 1986]). A condi-
tional rewrite system is orthogonal if

1. every variable occurring on the right side or in a condition also appears on the
left,

2. each variable occurs at most once in a left-hand side of a rule,

3. one side of each condition is a ground normal form,

4. no left-hand side uni�es with a renamed nonvariable subterm of any other left-
hand side or with a proper subterm of itself, and

5. no left-hand side is just a variable.

10.10. Theorem (Bergstra and Klop 1986). Every orthogonal conditional rewrite
system is conuent.

This de�nition of orthogonality could be weakened to allow overlaps when the
conjunction of the conditions of the overlapping rules cannot be satis�ed by the
rules of the system. This is the case with the Conditional Append example, since
only the last two rules overlap, but null(�) can never be F .
As indicated earlier, there are various methods of de�ning the semantics of con-

ditional rewrite systems. For example, if we have arbitrary conditions as in

p(c) j a! b

:p(c) j a! b

can we rewrite a to b? We might say yes, since either p(c) is true or :p(c) is.
We might say no, since neither condition can be proved. For discussions of logic-
based semantics and alternative operational semantics for conditional systems, see
[Brand et al. 1979, Plaisted 1987, Dershowitz and Plaisted 1988, Dershowitz and
Okada 1990].
Conditional equations provide a natural bridge between functional programming,

based on equational semantics, and logic-programming, based on Horn clauses. Note
that the above rules can be expressed as

p(c) = T j a! b

:p(c) = T j a! b
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In this way, we can convert conditions involving arbitrary formul� to conditions
involving equations. However, the law of the excluded middle no longer holds; we
do not have x = T or x = F for all x. This changes the semantics, of course.
Interpreting de�nite Horn clauses p _ :q1 _ : : : _ :qn as conditional rewrite rules,
q1 # T ^ � � � ^ qn # T j p ! T , gives a system satisfying the constraints of
Theorem 9.3, because predicate symbols are never nested in the \head" p of a
clause. Furthermore, all critical pairs are joinable, since all right-hand sides are just
T .
However, logic programming permits variables to be bound by uni�cation,

whereas conditional rewriting typically uses matching instead, which is more re-
strictive. To simulate a language like Prolog, something like \conditional narrow-
ing" is needed. See [Dershowitz and Plaisted 1988] for one approach to conditional
narrowing. (See [Baader and Snyder 2001, page 495] in Chapter 8 of this Handbook,
for the de�nition of narrowing and related equation-solving methods.) Solving ex-
istential queries for conditional equations corresponds to the logic-programming
capability of resolution-based languages like Prolog. Goals of the form s =? t can
be solved by a linear restriction of paramodulation akin to narrowing (for uncon-
ditional equations) and to the selected linear strategy for Horn-clause logic. If s
and t are uni�able, then the goal is satis�ed by any instance of their most general
uni�er. Alternatively, if there is a (renamed) conditional rule p j l ! r such that l
uni�es with a nonvariable (selected) subterm of s via most general uni�er �, then
the conditions in p� are solved, say via substitution �, and the new goal becomes
s�� =? t��.
Suppose we wish to solve

append (x; y) =? x

using Conditional Append (9.1). To apply the conditional rule, we need �rst to
solve null(x) =? F using the (renamed) rule null(u : v) ! F , thereby narrowing
the original goal to

head ((u : v); append (tail (u : v); y)) =? u : v

Straightforward rewriting reduces this to

u : append (v; y) =? u : v

to which the �rst rule for append applies (letting v be �), giving a new goal u : y =?

u : v. Since the two terms are now uni�able, this process has produced the solution
x 7! u : � and y; v 7! �.
For ground conuent conditional systems, any equationally satis�able goal can be

solved by the method outlined above. Some recent proposals for logic programming
languages, incorporating equality, adopt such an operational mechanism. The idea
of adding rewrite-based equation solving to rewriting to provide a functional-logic
language originated with [Dershowitz 1985, Fribourg 1985, Goguen and Meseguer
1986, Dershowitz and Plaisted 1988]. A number of experimental languages combine
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narrowing with outermost (\lazy") evaluation to add goal solving capabilities within
functional languages. See [Reddy 1986, Hanus 1994].
Simpli�cation via terminating rules is a very powerful feature, particularly when

de�ned function symbols are allowed to be arbitrarily nested in left-hand sides
(which is not permitted with orthogonal rules). Assuming ground convergence, any
strategy can be used for simpli�cation, and completeness of the goal-solving pro-
cess is preserved. One way negation can be handled is by incorporating negative
information in the form of rewrite rules which are then used to simplify subgoals
to F . Combined with eager simpli�cation, this approach has the advantage of al-
lowing unsatis�able goals to be pruned, thereby avoiding some potentially in�nite
paths. Various techniques are also available to help avoid some superuous paths
that cannot lead to solutions.
The semantics of rewriting with in�nite structures was explored in [Dershowitz,

Kaplan and Plaisted 1991, Kennaway, Klop, Sleep and de Vries 1995].
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