
Journal of Automated Reasoning 31: 129–168, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

129

Abstract Congruence Closure �

LEO BACHMAIR,1 ASHISH TIWARI,2 and LAURENT VIGNERON3

1Department of Computer Science, State University of New York, Stony Brook, NY 11794-4400,
U.S.A. e-mail: leo@cs.sunysb.edu
2SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, U.S.A. e-mail: tiwari@csl.sri.com
3LORIA – Université Nancy 2, Campus Scientifique, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex,
France. e-mail: vigneron@loria.fr

(Received: 18 April 2001)

Abstract. We describe the concept of an abstract congruence closure and provide equational infer-
ence rules for its construction. The length of any maximal derivation using these inference rules for
constructing an abstract congruence closure is at most quadratic in the input size. The framework
is used to describe the logical aspects of some well-known algorithms for congruence closure. It
is also used to obtain an efficient implementation of congruence closure. We present experimental
results that illustrate the relative differences in performance of the different algorithms. The notion
is extended to handle associative and commutative function symbols, thus providing the concept
of an associative-commutative congruence closure. Congruence closure (modulo associativity and
commutativity) can be used to construct ground convergent rewrite systems corresponding to a set of
ground equations (containing AC symbols).

Key words: term rewriting, congruence closure, associative-commutative theories.

1. Introduction

Term-rewriting systems provide a simple and very general mechanism for comput-
ing with equations. The Knuth–Bendix completion method and its extensions to
equational term-rewriting systems can be used on a variety of problems. However,
completion-based methods usually yield semi-decision procedures; and in the few
cases where they provide decision procedures, the time complexity is considerably
worse than that of certain other efficient algorithms for solving the same problem.
On the other hand, the specialized decision algorithms for particular problems are
not very useful when considered for integration with general-purpose theorem-
proving systems. Moreover, the logical aspects inherent in the problem and the
algorithm seem to get lost in descriptions of specific algorithms.

We are interested in developing efficient procedures for a large class of decid-
able problems using standard and general techniques from theorem proving so as
to bridge the gap alluded to above. We first consider equational theories induced by
systems of ground equations. Efficient algorithms for computing congruence clo-

� The research described in this paper was supported in part by the National Science Foundation
under grant CCR-9902031. Some of the results described in this paper also appeared in [5, 4].

130 LEO BACHMAIR ET AL.

sure can be used to decide whether a ground equation is an equational consequence
of a set of ground equations. All algorithms for congruence closure computation
rely on the use of certain data structures, in the process obscuring any inherent
logical aspects.

In general, a system of ground equations can be completed into a convergent
ground term-rewriting system by using a total termination ordering. However, this
process can in the worst case take exponential time unless the rules are processed
using a certain strategy [25]. Even under the specific strategy, the resulting com-
pletion procedure is quadratic, and the O(n log(n)) efficiency of congruence
closure algorithms is not attained. There are also known techniques [29] to con-
struct ground convergent systems that use graph-based congruence closure algo-
rithms.

We attempt to capture the essence of some of the efficient congruence closure
algorithms using standard techniques from term rewriting. We do so by introduc-
ing symbols and extending the signature to abstractly represent sharing that is
inherent in the use of term-directed acyclic graph data structures. We thus define
a notion of abstract congruence closure and provide transition rules that can be
used to construct such abstract congruence closures. A whole class of congruence
closure algorithms can be obtained by choosing suitable strategies (and implemen-
tations) for the abstract transition rules. The complexity of any such congruence
closure algorithm is directly related to the length of derivation (using these tran-
sition rules) required to compute an abstract congruence closure with the chosen
strategy. We give bounds on the length of arbitrary maximal derivations, and we
show its relationship with the choice of ordering used for completion.

We describe some of the specific well-known congruence closure algorithms
in the framework of abstract congruence closure, and we show that the abstract
framework suitably captures the sources of efficiency in some of these algorithms.
The description separates the logical aspects inherent in these algorithms from
implementation details.

The concept of an abstract congruence closure is useful in more than one way.
Many other algorithms, like those for syntactic unification and rigid E-unification,
that rely either on congruence closure computation or on the use of term directed
acyclic graph (dag) representation for efficiency also admit simpler and more ab-
stract descriptions using an abstract congruence closure [6, 5].

Furthermore, if certain function symbols in the signature are assumed to be
associative and commutative, we can introduce standard techniques from rewriting
modulo an equational theory to handle it. Thus, we obtain a notion of congruence
closure modulo associativity and commutativity. As an additional application, we
consider the problem of constructing ground convergent systems (in the original
signature) for a set of ground equations. We show how to eliminate the new con-
stants introduced earlier to transform all equations back to the original signature
while preserving some of the nice properties of the system over the extended
signature, thus generalizing the results in [29].

ABSTRACT CONGRUENCE CLOSURE 131

PRELIMINARIES

Let � be a set, called a signature, with an associated arity function α: �→2N,
and let V be a disjoint (denumerable) set. We define T (�,V) as the smallest set
containing V and such that f (t1, . . . , tn) ∈ T (�,V) whenever f ∈ �, n ∈ α(f)
and t1, . . . , tn ∈ T (�,V). The elements of the sets �, V, and T (�,V) are re-
spectively called function symbols, variables, and terms (over � and V). Elements
c in � for which α(c) = {0} are called constants. By T (�) we denote the set
T (�,∅) of all variable-free, or ground, terms. The symbols s, t, u, . . . are used to
denote terms; f, g, . . . , function symbols; and x, y, z, . . . , variables. We write t[s]
to indicate that a term t contains s as a subterm and (ambiguously) denote by t[u]
the result of replacing a particular occurrence of s by u.

An equation is a pair of terms, written s ≈ t . The replacement relation →Eg

induced by a set of equations E is defined by u →Eg v if, and only if, u = u[l]
contains l as a subterm and v = u[r] is obtained by replacing l by r in u, where
l ≈ r is in E. The rewrite relation→E induced by a set of equations E is defined
by u →E v if, and only if, u = u[lσ], v = u[rσ], l ≈ r is in E, and σ is some
substitution.

If → is a binary relation, then ← denotes its inverse, ↔ its symmetric clo-
sure,→+ its transitive closure, and→∗ its reflexive-transitive closure. Thus,↔∗Eg
denotes the congruence relation� induced by E. We shall mostly be interested in
sets E of ground equations whence the distinction between rewrite relation and
replacement relation disappears. The equational theory of E is defined as the rela-
tion↔∗E . Equations are often called rewrite rules, and a set E a rewrite system, if
one is interested particularly in the rewrite relation→∗E rather than the equational
theory↔∗E.

A term t is irreducible, or in normal form, with respect to a rewrite system R

if there is no term u such that t →R u. We write s →!R t to indicate that t is an
R-normal form of s.

A rewrite system R is said to be (ground) confluent if for every pair s, s′ of
(ground) terms, if there exists a (ground) term t such that s ←∗R t →∗R s′, then there
exists a (ground) term t ′ such that s →∗R t ′ ←∗R s′. Thus, if R is (ground) confluent,
then every (ground) term t has at most one normal form. A rewrite system R is
terminating if there exists no infinite reduction sequence s0 →R s1 →R s2 · · · of
terms. Clearly, if R is terminating, then every term t has at least one normal form.
Rewrite systems that are (ground) confluent and terminating are called (ground)
convergent.

A rewrite system R is left reduced if every left-hand side term (of any rule in R)
is irreducible by all other rules in R. A rewrite system R is right reduced if every
right-hand side term (of any rule in R) is in R-normal form. A rewrite system that
is both left reduced and right reduced is said to be fully reduced.

� A congruence relation is a reflexive, symmetric, and transitive relation on terms that is also a
replacement relation.

132 LEO BACHMAIR ET AL.

2. Abstract Congruence Closure

We first describe the form of terms and equations that will be used in the description
of an abstract congruence closure. Definitions that introduce similar concepts also
appear in [16–18, 27].

DEFINITION 1. Let� be a signature andK be a set of constants disjoint from�.
A D-rule (with respect to � and K) is a rewrite rule of the form

f (c1, . . . , ck)→ c,

where f ∈ � is a k-ary function symbol and c1, . . . , ck, c are constants in set K.
A C-rule (with respect to K) is a rule c → d, where c and d are constants

in K.

For example, if �0 = {a, b, f } and E0 = {a ≈ b, ff a ≈ f b},� then

D0 = {a→ c0, b→ c1, f c0 → c2, f c2 → c3, f c1 → c4}
is a set of D-rules over �0 and K0 = {c0, c1, c2, c3, c4}. Using these D-rules,
we can simplify the original equations in E0. For example, the term ff a can be
rewritten to c3 as ff a →D0 ff c0 →D0 f c2 →D0 c3. Original equations in E0

can thus be simplified by using D0 to give C0 = {c0 ≈ c1, c3 ≈ c4}. The set
D0 ∪ C0 may be viewed as an alternative representation of E0 over an extended
signature. The equational theory presented by D0 ∪ C0 is a conservative extension
of the theory E0. This reformulation of the equations E0 in terms of an extended
signature is (implicitly) present in all congruence closure algorithms; see Section 3.

The constants in the setK can be thought of as names for equivalence classes of
terms. AD-rule f (c1, . . . , ck)→ c0 indicates that a term with top function symbol
f and arguments belonging to the equivalence classes c1, . . . , ck itself belongs to
the equivalence class c0. In this sense, a set ofD-rules can be thought of as defining
a bottom-up tree automaton [10]. Other interpretations for the constants in K are
possible too, especially in the context of term directed acyclic graph representation;
see Section 3 for details.

A constant c in K is said to represent a term t in T (� ∪ K) (via the rewrite
system R) if t ↔∗R c. A term t is represented by R if it is represented by some
constant in K via R. For example, the constant c3 represents the term ff a via D0.

DEFINITION 2 (Abstract congruence closure). Let � be a signature and K be
a set of constants disjoint from �. A ground rewrite system R = D ∪ C of
D-rules and C-rules (with respect to � and K) is said to be an (abstract) con-
gruence closure if

(i) each constant c ∈ K represents some term t ∈ T (�) via R, and
(ii) R is ground convergent.

� When writing a term, we remove parentheses wherever possible for clarity.

ABSTRACT CONGRUENCE CLOSURE 133

If E is a set of ground equations over T (� ∪ K) and in addition R is such
that

(iii) for all terms s and t in T (�), s ↔∗E t if, and only if, s →∗R ◦ ←∗R t ,
then R will be called an (abstract) congruence closure for E.

Condition (i) essentially states that K contains no superfluous constants; condi-
tion (ii) ensures that equivalent terms have the same representative (which usually
also implies that congruence of terms can be tested efficiently); and condition (iii)
implies that R is a conservative extension of the equational theory induced by E
over T (�).

The rewrite system R0 = D0 ∪ {c0 → c1, c3 → c4} above is not a congruence
closure for E0, as it is not ground convergent. But we can transform R0 into a
suitable rewrite system, using a completion-like process described in more detail
below, to obtain a congruence closure

R1 = {a→ c1, b→ c1, f c1 → c4, f c4 → c4,

c0 → c1, c2 → c4, c3 → c4}.

2.1. CONSTRUCTION OF ABSTRACT CONGRUENCE CLOSURES

We next present a general method for construction of an abstract congruence clo-
sure. Our description is fairly abstract, in terms of transition rules that manipulate
triples (K,E,R), where K is the set of constants that extend the original fixed
signature �, E is the set of ground equations (over�∪K) yet to be processed, and
R is the set of C-rules and D-rules that have been derived so far. Triples represent
states in the process of constructing a congruence closure. Construction starts from
an initial state (∅, E,∅), where E is a given set of ground equations.

The transition rules can be derived from those for standard completion as de-
scribed in [3], with some differences so that (i) application of the transition rules
is guaranteed to terminate and (ii) a convergent system is constructed over an ex-
tended signature. The transition rules do not require a total reduction ordering� on
terms in T (�), but simply an ordering on T (� ∪ U) (that is, terms in T (�) need
not be comparable in this ordering), where U is an infinite set disjoint from �

from which new constants K ⊂ U are chosen. In particular, we assume �U is any
ordering on the set U and define � as follows: c � d if c �U d and t � c if t → c

is a D-rule. For simplicity, we take U to be the set {c0, c1, c2, . . .} and assume that
ci �U cj if, and only if, i < j .

A key transition rule introduces new constants as names for subterms.

Extension:
(K,E[t], R)

(K ∪ {c}, E[c], R ∪ {t → c})
� By an ordering we mean any irreflexive and transitive relation on terms. A reduction ordering

is an ordering that is also a well-founded replacement relation. An ordering � is total if for any two
distinct elements s and t , either s � t or t � s.

134 LEO BACHMAIR ET AL.

where t → c is a D-rule, t is a term occurring in (some equation in) E, and
c ∈ U −K.

The following three rules are versions of the corresponding rules for standard
completion specialized to the ground case.

Simplification:
(K,E[t], R ∪ {t → c})
(K,E[c], R ∪ {t → c})

where t occurs in some equation in E. (It is fairly easy to see that by repeated
application of extension and simplification, any equation in E can be reduced to an
equation that can be oriented by the ordering �.)

Orientation:
(K ∪ {c}, E ∪ {t ≈ c}, R)
(K ∪ {c}, E,R ∪ {t → c})

if t � c.
Trivial equations may be deleted.

Deletion:
(K,E ∪ {t ≈ t}, R)

(K,E,R)

In the case of completion of ground equations, deduction steps can all be re-
placed by suitable simplification steps, in particular by collapse. To guarantee
termination, however, we formulate collapse by two different specialized tran-
sition rules. The usual side condition in the collapse rule, which refers to the
encompassment ordering, can be considerably simplified in our case.

Deduction:
(K,E,R ∪ {t → c, t → d})
(K,E ∪ {c ≈ d}, R ∪ {t → d})

Collapse:
(K,E,R ∪ {s[c] → c′, c→ d})
(K,E,R ∪ {s[d] → c′, c→ d})

if c is a proper subterm of s.
As in standard completion the simplification of right-hand sides of rules in R by

other rules is optional and not necessary for correctness. Right-hand sides of rules
in R are always constants.

Composition:
(K,E,R ∪ {t → c, c→ d})
(K,E,R ∪ {t → d, c→ d})

Various known congruence closure algorithms can be abstractly described by using
different strategies over the above rules. All the above transition rules with the
exception of the composition rule constitute the mandatory set of transition rules.

ABSTRACT CONGRUENCE CLOSURE 135

EXAMPLE 1. Consider the set of equations E0 = {a ≈ b, ff a ≈ f b}. An ab-
stract congruence closure forE0 can be derived from the initial state (K0, E0, R0)=
(∅, E0,∅) as follows:

i Constants Ki Equations Ei Rules Ri Transition
0 ∅ E0 ∅
1 {c0} {c0 ≈ b, ff a ≈ f b} {a→ c0} Ext
2 {c0} {ff a ≈ f b} {a→ c0, b→ c0} Ori
3 {c0} {ff c0 ≈ f c0} {a→ c0, b→ c0} Sim (twice)
4 {c0, c1} {f c1 ≈ f c0} R3 ∪ {f c0 → c1} Ext
5 {c0, c1} {f c1 ≈ c1} R3 ∪ {f c0 → c1} Sim
6 K5 {} R5 ∪ {f c1 → c1} Ori

The rewrite system R6 is an abstract congruence closure for E0.

2.2. CORRECTNESS

We use the symbol � to denote the one-step transformation relation on states
induced by the above transformation rules. A derivation is a sequence of states
(K0, E0, R0) � (K1, E1, R1) � · · ·.
THEOREM 1 (Soundness). If (K,E,R) � (K ′, E′, R′), then, for all terms s and
t in T (� ∪K), we have s ↔∗E′∪R′ t if, and only if, s ↔∗E∪R t .

Proof. For simplification, orientation, deletion, and composition, the claim fol-
lows from correctness result for the standard completion transition rules [3]. The
claim is also easily verified for the specialized collapse and deduction rules.

Now, suppose (K ′, E′, R′ = R∪{u→ c}) is obtained from (K,E,R) by using
extension. For s, t ∈ T (� ∪K), if s ↔∗E∪R t , then clearly s ↔∗E′∪R′ t . Conversely,
if s ↔∗E′∪R′ t , then sσ ↔∗E′σ∪R′σ tσ , where σ is (homomorphic extension of) the
mapping c �→ u. But sσ = s and tσ = t as c �∈ K. Furthermore, E′σ = E, and
R′σ = R ∪ {u→ u}. Therefore, s = sσ ↔∗E∪R tσ = t . ✷
LEMMA 1. Let K0 be a finite set of constants (disjoint from �), E0 a finite set of
equations (over � ∪ K), and R0 a finite set of D-rules and C-rules such that for
every C-rule c→ d in R0 we have c �U d. Then each derivation starting from the
state (K0, E0, R0) is finite. Furthermore, if (K0, E0, R0) �∗ (Km,Em,Rm), then
the rewrite system Rm is terminating.

Proof. We first define the measure of a state (K,E,R) to be the number of
occurrences of symbols from � in E. Two states are compared by comparing their
measures using the usual “greater-than” ordering on natural numbers. It can be
easily verified that each transformation rule either reduces this measure or leaves it
unchanged. Specifically, extension always reduces this measure.

136 LEO BACHMAIR ET AL.

Now, consider a derivation starting from the state (K0, E0, R0). Any such deriva-
tion can be written as

(K0, E0, R0) �∗ (Kn,En,Rn) � (Kn+1, En+1, Rn+1) � · · · ,
where the derivation (Kn,En,Rn) � (Kn+1, En+1, Rn+1) � · · · contains no appli-
cations of extension, and hence the set Kn = Kn+1 = · · · is finite. Therefore, the
ordering �Kn (defined as the restriction of the ordering �U onKn) is well founded.

Next we prove that the derivation (Kn,En,Rn) � (Kn+1, En+1, Rn+1) � · · · is
finite. Assign a weight w(c) to each symbol c in Kn so that w(c) > w(d) if, and
only if, c �Kn d; and set w(f) = max{w(c) : c ∈ Kn}+ 1, for each f ∈ �. Let�
be the Knuth–Bendix ordering using these weights. Define a secondary measure
of a state (K,E,R) as the set {{{s, t}} : s ≈ t ∈ E} ∪ {{{s}, {t}} : s → t ∈ R}.
Two states are compared by comparing their measures using a twofold multiset
extension� of the ordering� on terms. It is straightforward to see that application
of any transition rule (except extension) to a state reduces the secondary measure
of the state. Moreover, every rule in Rj is reducing in the reduction ordering �,
and hence each rewrite system Rj is terminating. ✷

The following lemma says that extension introduces no superfluous constants.

LEMMA 2. Suppose that (K,E,R) � (K ′, E′, R′) and that for every c ∈ K,
there exists a term s ∈ T (�) such that c ↔∗E∪R s. Then, for every d ∈ K ′, there
exists a term t ∈ T (�) such that d ↔∗E′∪R′ t .

Proof. If d ∈ K ′ also belongs to the set K, then the claim is easily proved by
using Theorem 1. Otherwise let d ∈ K ′ − K. The only nontrivial case is when
(K ′, E′, R′) is obtained by using extension.

Let f (c1, . . . , ck)→ d be the rule introduced by extension. Since c1, . . . , ck ∈
K, there exist terms s1, . . . , sk ∈ T (�) such that si ↔∗E∪R ci; and hence, from
Theorem 1, si ↔∗E′∪R′ ci. The term f (s1, . . . , sk) is the required term t . ✷

We call a state (K,E,R) final if no mandatory transition rule is applicable to
this state. It follows from Lemma 1 that final states can be finitely derived. The
third component of a final state is always an abstract congruence closure.

THEOREM 2. Let � be a signature and K1 a finite set of constants disjoint from
�. Let E1 be a finite set of equations over � ∪K1 and R1 be a finite set ofD-rules
and C-rules such that every c ∈ K1 represents some term t ∈ T (�) via E1 ∪ R1,
and c �U d for every C-rule c→ d in R1. If (Kn,En,Rn) is a final state such that
(K1, E1, R1) �∗ (Kn,En,Rn), then En = ∅, and Rn is an abstract congruence
closure for E1 ∪ R1 (over � and Kn).
� A multiset over a set S is a mapping M from S to the natural numbers. Any ordering � on a

set S can be extended to an ordering �m on multisets over S as follows: M �m N iff M �= N and
whenever N(x) > M(x), then M(y) > N(y), for some y � x. The multiset ordering �m (on finite
multisets) is well founded if the ordering � is well founded [13].

ABSTRACT CONGRUENCE CLOSURE 137

Proof. Since the sets K1, E1, and R1 are finite and the state (Kn,En,Rn) is
obtained from (K1, E1, R1) by using a finite derivation, it follows that Kn, En,
and Rn are all finite sets. If En �= ∅, then either extension or orientation will be
applicable. Since (Kn,En,Rn) is a final state, En = ∅.

To show that Rn is an abstract congruence closure forE1∪R1, we need to prove
the three conditions in Definition 2.

(1) Lemma 2 implies that every c ∈ Kn represents some term t ∈ T (�) via Rn.
(2) Using Lemma 1, we know that Rn is terminating. Furthermore, since (Kn,En,

Rn) is a final state, Rn is left reduced. By the critical pair lemma [1], therefore,
Rn is confluent and hence convergent.

(3) Theorem 1 establishes that if s↔∗E1∪R1
t for some s, t ∈T (�), then s↔∗En∪Rn t .

Since En = ∅ and Rn is convergent, s →∗Rn ◦ ←∗Rn t . ✷

2.3. PROPERTIES

To summarize, we have presented an abstract notion of congruence closure and
given a method to construct such an abstract congruence closure for a given set
of ground equations. The only parameters required by the procedure are a de-
numerable set U of constants (disjoint from �) and an ordering (irreflexive and
transitive relation) on this set. It might appear that the abstract congruence closure
one obtains depends on the ordering �U used. In this section, we first show that we
can construct an abstract congruence closure that is independent of the ordering on
constants.

In the process of construction of an abstract congruence closure, we may deduce
an equality between two constants inK, and we require an ordering �U to deal with
such equations. Since constants are essentially “names” for equivalence classes, it
is redundant to have two different names for the same equivalence class. Hence,
one such constant and the corresponding ordering dependence can be eliminated.

DEFINITION 3. Any constant c ∈ K that occurs as a left-hand side of a C-rule
in R is called redundant in R.

Redundant constants in R can be eliminated after composition and collapse
steps with C-rules in R have been applied exhaustively.

Compression:
(K ∪ {c, d}, E,R ∪ {c→ d})
(K ∪ {d}, E〈c �→ d〉, R〈c �→ d〉)

if c occurs only once as a left-hand side term, the notation 〈c �→ d〉 denotes the
homomorphic extension of the mapping σ defined as σ (c) = d and σ (x) = x

for x �= c, and E〈c �→ d〉 denotes the set of equations obtained by applying the
mapping 〈c �→ d〉 to each term in the set E.

Correctness of the new enhanced set of transition rules for construction of
congruence closure can be established in the same way as before.

138 LEO BACHMAIR ET AL.

THEOREM 3. Let � be a signature and E be a finite set of equations over �.
Then, there exists an abstract congruence closure D for E (over � and some K)
consisting only of D-rules.

Proof. Let (∅, E,∅) �∗ (Kn,En,Rn) such that none of the mandatory transition
rules nor compression is applicable to the state (Kn,En,Rn).

We observe that the following version of soundness (Theorem 1) is still true:
If (Ki, Ei, Ri) � (Kj ,Ej , Rj), then, for all terms s and t in T (� ∪ (Ki ∩ Kj)),
s ↔∗Ej∪Rj t iff s ↔∗Ei∪Ri t . Additionally, Lemma 1 and Lemma 2 continue to hold
with the new set of transition rules, and the proofs remain essentially unchanged.
Thus, we can use Theorem 2 in this new setting to conclude that Rn is an abstract
congruence closure. Since compression is not applicable to the final state, there can
be no C-rules in Rn. ✷

Graph-based congruence closure algorithms can be described by usingD-rules;
see Section 3. However, we can define a generalized D-rule (with respect to �
and K) as any rule of the form t → c where c ∈ K and t ∈ T (�,K) − K,
as done in [5]. The transition rules for construction of congruence closure can be
suitably generalized with minimal changes. The new definition of D-rules allows
for preserving as much of the original term structure as possible.

Choosing an Ordering �U on the Fly. As remarked earlier, the set of transition
rules presented in Section 2.1� for construction of abstract congruence closure is
parameterized by a denumerable set U of constants and an ordering �U on this set.
Since elements of U serve only as names, we can choose U to be any countable set
of symbols. An ordering �U need not be specified a priori but can be defined on
the fly as the derivation proceeds. We need to maintain irreflexivity whenever the
ordering relation is extended. Observe that we need an ordering only when there is
a C-equation to orient.

If we exhaustively apply simplification before trying to orient a C-equation,
any orientation of the fully simplified C-equation can be used. Given a derivation
(K0, E0,D0 ∪ C0) � · · · � (Ki, Ei,Di ∪ Ci) using this strategy, we construct a
sequence of relations �0,�1, . . . , where each �j is defined by c �j d if c →
d ∈ ⋃

k≤j Ck. We claim that each �j defines an ordering. To see this, note that
�0 defines a trivial ordering (in which no two elements in U are comparable).
Moreover, whenever the relation �j is extended by c � d, the constants c and d
are incomparable in the transitive closure of the existing relation �j , and hence
irreflexivity of the ordering defined by �j+1 is established.

Bounding the Maximal Derivation Length. The above observation establishes
that there exist derivations for congruence closure construction in which we do
not spend any time in comparing elements. However, we shall shortly show that
the length of derivations crucially depends on the chosen ordering. This reveals
� We exclude compression for rest of the discussion.

ABSTRACT CONGRUENCE CLOSURE 139

a tradeoff between the effort spent in choosing an ordering and the lengths of
derivations obtained when using that ordering.

DEFINITION 4. An ordering � on the set U is feasible for a state (K,E,R) if
there exists an unfailing� maximal derivation starting from the state (K,E,R) that
uses the ordering �.

The depth or height of an ordering � is the length of the longest chain. More
specifically, if the longest chain for ordering � is c0 � c1 � · · · � cδ , then the
depth of � is δ.

Congruence closure computation using specialized data structures is known to
be more efficient than naive standard completion. We next show, by proving a
bound on the length of any maximal derivation, that our description captures the
cause of this efficiency.

LEMMA 3. Any maximal derivation starting from the state (K0 = ∅, E0, R0 = ∅)
is of length O((2k + l)δ + n), where k is the number of applications of extension,
l is the difference between the number of occurrences of 0-arity symbols in E0 and
number of distinct 0-arity symbols in E0, δ is the depth of ordering �U used to
construct the derivation, and n is the number of �-symbols in E0.

Proof. To simplify the argument, we first split simplification and deduction rules
as follows (ignoring the K-component):

Sim1:
(E[f (. . .)], R ∪ {f (. . .)→ c})
(E[c], R ∪ {f (. . .)→ c}) Sim2:

(E[c], R ∪ {c→ d})
(E[d], R ∪ {c→ d})

Ded1:
(E,R ∪ {f (. . .)→ c, f (. . .)→ d})
(E ∪ {c ≈ d}, R ∪ {f (. . .)→ d})

Ded2:
(E,R ∪ {c→ d, c→ d ′})
(E ∪ {d ≈ d ′}, R ∪ {c→ d})

Next, we bound the number of applications of individual rules in any derivation
as follows:

(i) A derivation step using sim2, ded2, collapse, or composition corresponds to
rewriting some constant. Since the length of a rewriting sequence c1 → c2 →
· · · is bounded by δ and 2k + l is an upper bound on the number of oc-
currences of constants (from K∞) in Ei ∪ Ri (for any i), the number of
applications of sim2, ded2, collapse, and composition is O((2k + l)δ).

(ii) The number of deletion steps is at most |E0| + k because each transition
rule, with the exception of extension and deletion, preserves the cardinality of
Ei ∪ Ri and extension increases this number by one while deletion decreases
it by one.

� By unfailing we mean that the set of unoriented equations in the final state is empty.

140 LEO BACHMAIR ET AL.

(iii) The number of sim1 and ded1 steps is at most n because each such step
reduces the number of �-symbols (in E ∪ R).

(iv) The number of Extension steps is k.
(v) Application of Orientation at most doubles the length of any derivation.

Thus, the total length of any derivation is O((2k + l)δ + n). ✷
The number k of extension steps used in any maximal derivation is O(n) be-

cause the total number of �-symbols in the second component of the state is non-
increasing in any derivation and an application of extension reduces this number
by one.

LEMMA 4. A starting state (K0 = ∅, E0, R0 = ∅) can be transformed into a state
(Km,Em,Rm) in O(n) derivation steps, where n is the total number of symbols in
the finite set E0 of ground equations such that

(i) the set Em consists of only C-equations and Rm consists of only D-rules, and
(ii) the total number of symbols in Em ∪ Rm is O(n).

Proof. We construct the desired derivation by an exhaustive application of ex-
tension and simplification rules. Clearly, the set Em contains only C-equations and
Rm contains only D-rules. The length of this derivation is O(n) because every
application of extension and simplification reduces the total number of �-symbols
inEi by at least one. Moreover, the total number of symbols inEm∪Rm is O(n) be-
cause every application of extension and simplification increases the total number
of symbols by a constant. ✷

Informally speaking, therefore, since l is clearly O(n), Lemma 3 gives us an
upper bound of O(nδ) on the length of maximal derivations. Any total (linear)
order on the set K∞ of constants is feasible but has depth equal to the cardinality
of K∞, which is O(n). This gives a quadratic bound on the length of a derivation.
However, we can also show that there exist feasible orderings with smaller depth.

LEMMA 5. Let (Km,Em,Rm) be a state such thatEm consists of onlyC-equations
and Rm consists of only D-rules. Then, there exists a feasible ordering �U for this
state with depth O(log(n)), where n is the number of constants in Km.

Proof. We shall exhibit an unfailing derivation that constructs the required or-
dering on the fly as discussed before; that is, during the derivation, we ensure that
whenever we apply orientation as (Ki, Ei ∪ {c ≈ d},Di ∪ Ci) � (Ki, Ei,Di ∪
Ci ∪ {c→ d}), the constants c and d are in Ci-normal form. Additionally, we also
impose the requirement that the cardinality of the set {c′ ∈ Km : c′ ↔∗Ci c} is less
than or equal to the cardinality of {c′ ∈ Km : c′ ↔∗Ci d}.

As argued before, the relation thus built defines an ordering. Suppose (K∞, E∞,
D∞ ∪ C∞) is the final state of this unfailing derivation. If c1 � c2 � · · · � cj is a
maximal descending chain, then the cardinality of the set {c′ ∈ Km : c′ ↔∗C∞ cj } is
at least 2j−1. But, since the cardinality of Km is O(n), therefore, j = O(log(n)). ✷

ABSTRACT CONGRUENCE CLOSURE 141

Combining these three lemmas leads to the following result.

THEOREM 4. There exists a maximal derivation of length O(n log(n)) with start-
ing state (∅, E0,∅), where n is the total number of symbols in the finite set E0 of
ground equations.

Proof. We construct the derivation in two stages. In the first stage we use the
derivation constructed in the proof of Lemma 4 to obtain an intermediate state
(Km,Em,Rm) from the starting state (K0 = ∅, E0, R0 = ∅). In the second stage,
we start with this intermediate state and carry out the derivation in the proof of
Lemma 5 to reach a final state. The claim then follows from Lemma 4 and Lem-
ma 3. ✷

Theorem 4 establishes the possibility of obtaining short maximal derivations
by using (simple strategies on) the abstract transition rules. However, to get an
efficient, say O(n log(n)), algorithm for computing a congruence closure, we need
to show that the ordering on constants can be efficiently computed and that each
individual step in the derivation can be applied in (amortized) constant time. The
first of these is easily achieved by extending the state triple (K,E,R) by an ad-
ditional component that is a function, counter, that maps each constant in K to a
natural number. More precisely, counter(c) stores the cardinality of the set

[c]C def= {c′ ∈ K : c′ ↔∗C c},
where C is the set of C-equations in R. Thus, counter(c) is the number of con-
stants in the current equivalence class of c (see proof of Lemma 5). The function
counter can easily be updated when a C-equation, say c ≈ d, is oriented into, say,
c→ d, by setting counter(d) = counter(c) + counter(d).

Second, efficient application of each transition step requires specialized data
structures and/or efficient indexing mechanisms. Some such details have been de-
scribed in the literature, and we discuss these in the next section.

We observe here that in the special case when each congruence class modulo E0

is finite, feasible orderings with constant depth (in fact, depth 1) can be constructed
efficiently on the fly. During orientation, only those C-equations are oriented that
contain constants whose congruence class [c]Ci (w.r.t. the set Ci of C-equations in
the present state) is known to not change in subsequent states. For example, if c is
one such constant and [c]Ci = {c, c1, . . . , ck}, then we orient so that we add rules
{ci → c : i = 1, . . . , k} to the third component. That such C-equations always
exist and can be efficiently identified is a simple consequence of the finiteness
assumption; see [30, 15] for details. Thus, we obtain a linear bound on the length of
(certain) maximal derivations for construction of congruence closure in this special
case.

3. Congruence Closure Strategies

The literature abounds with various implementations of congruence closure al-
gorithms. The general framework of abstract congruence closure can be used to

142 LEO BACHMAIR ET AL.

uniformly describe the logical characteristics of such algorithms and provides a
context for interpreting differences in their performance. We next describe the
algorithms proposed by Downey, Sethi, and Tarjan [15], Nelson and Oppen [23],
and Shostak [28] in this way. That is, we provide a description of these algorithms
(the description does not capture certain implementation details) using abstract
congruence closure transition rules.

Directed acyclic graphs are a common data structure used to implement algo-
rithms that work with terms. In fact, many congruence closure algorithms assume
that the input is an equivalence relation on vertices of a given dag, and the de-
sired output, the congruence closure of this equivalence, is again represented by an
equivalence on the same dag.

A set ofC-rules andD-rules may be interpreted as an abstraction of a dag repre-
sentation. The constants in K (or U) represent nodes in a dag. TheD-rules specify
edges, and the C-rules represent a binary relation on the nodes. More precisely,
a D-rule f (c1, . . . , ck) → c specifies that the node c is labeled by the symbol f
and has pointers to the nodes c1, . . . , ck. Conversely, any dag and an associated
binary relation on its nodes can be represented by using D-rules and C-rules.
Figure 1 illustrates the representation of a set of terms (and a binary relation on
them) using dags and using D-rules and C-rules. The solid lines represent subterm
edges, and the dashed lines represent a binary relation on the vertices. We have a
D-rule corresponding to each vertex, and a C-rule for each dashed edge. (We note
here that generalized D-rules (with respect to � and K) as defined in Section 2.3
correspond to storing contexts, rather than just symbols from �, in each node of
the term dag. We do not pursue this optimization in this paper.)

Traditional congruence closure algorithms employ data structures that are suit-
ably abstracted in our presentation as follows:

(i) To obtain a representation via D-rules and C-equations for the input dag
corresponding to equation set E0, we start from the state (∅, E0,∅) and repeatedly

Figure 1. A term dag and a relation on its vertices.

ABSTRACT CONGRUENCE CLOSURE 143

apply a single extension step followed by an exhaustive application of simpli-
fication (represented using the expression (Ext · Sim∗)∗). In the resulting state
(K1, E1,D1), the set D1 represents the input dag, and the set E1 contains only
C-equations representing the input equivalence on nodes of this dag. Note that
because of eager simplification, we obtain a representation of a dag with maxi-
mum possible sharing. For example, if E0 = {a ≈ b, ff a ≈ f b}, then K1 =
{c0, c1, c2, c3, c4}, E1 = {c0 ≈ c1, c3 ≈ c4}, and R1 = {a → c0, b → c1, f c0 →
c2, f c2 → c3, f c1 → c4}.

(ii) The signature of a term f (t1, . . . , tk) is defined as f (c1, . . . , ck), where ci
is the name of the equivalence class containing term ti . A signature table (indexed
by vertices of the input dag) stores a signature for some or all vertices. A signature
table specifies a set of fully left reduced D-rules.

(iii) The use table (also called predecessor list) is a mapping from the constant c
to the set of all nodes whose signature contains c. In our presentation this translates
to a method of indexing the set of D-rules.

(iv) A union-find data structure is used to maintain equivalence classes on the
set of nodes of the input dag. In the abstract representation, C-rules describe equiv-
alence relations on constants in K. Operations on the union-find structure ex-
hibit as transitions on C-rules. For instance, application of composition specifies
path-compression on the union-find structure.

We note that D-rules serve a twofold purpose: they represent both a term dag
and a signature table.

3.1. SHOSTAK’S ALGORITHM

We show that Shostak’s congruence closure procedure is a specific strategy over
the general transition rules for abstract congruence closure.

Shostak’s congruence closure is dynamic in that equations are processed one
at a time. The strategy underlying Shostak’s procedure can be described by the
following regular expression:

((Sim∗ · Ext?)∗ · (Del ∪Ori) · (Col · Ded∗)∗)∗

This expression should be interpreted as follows. Given a (start) state (K,E,R),
(i) Pick an equation s ≈ t from the set E. (ii) Reduce the terms s and t to constants,
say c and d, respectively, by repeatedly applying simplification and extension, al-
ways eagerly applying simplification before any possible extension. (iii) If c and d
are identical, then apply deletion (and continue with (i)) and, if not, create aC-rule,
say c → d, using orientation. (iv) Replace c by d using collapse, and follow it by
exhaustive application of deduction. Repeat this until there are no more possible
collapse steps. Finally, apply steps (i) through (iv) repeatedly. Shostak’s procedure
halts if no unoriented equations remain.

Shostak’s procedure uses indexing based on the idea of the use() list. This use()-
based indexing helps in identifying all possible collapse applications.

144 LEO BACHMAIR ET AL.

It is fairly easy to observe that a maximal derivation starting from state (∅, E0,∅)
and using the above strategy ends in a final state. Hence, Theorem 2 establishes
that the third component of Shostak’s halting state is convergent and an abstract
congruence closure (for E0).

EXAMPLE 2. We use the set E0 from Example 1 to illustrate Shostak’s method,
showing the essential intermediate steps in the derivation.

i Cnsts Ki Equations Ei Rules Ri Transition
0 ∅ E0 ∅
1 {c0, c1} {ff a ≈ f b} {a→ c0, b→ c1, c0 → c1} Ext · Ext·

c0 → c1} Ori
2 {c0, c1} {ff c1 ≈ f b} {a→ c0, b→ c1, c0 → c1} Sim · Sim
3 {c0, . . . , c3} {c3 ≈ f b} R2 ∪ {f c1 → c2, f c2 → c3} Ext · Ext
4 {c0, . . . , c3} {c3 ≈ c2} R3 Sim · Sim
5 {c0, . . . , c3} ∅ R4 ∪ {c3 → c2} Ori

3.2. DOWNEY, SETHI, AND TARJAN’S ALGORITHM

The Downey–Sethi–Tarjan algorithm assumes that the input is a dag and an equiv-
alence relation on its vertices. Thus, the starting state is a triple given by (K1,∅,
D1 ∪ C1), where D1 represents the input dag and C1 the given equivalence. The
underlying strategy of this algorithm can be described as

((Col · (Ded ∪ {ε}))∗ · (Sim∗ · (Del ∪Ori))∗)∗,

where ε is the null transition rule. This strategy is implemented by repeating the
following steps: (i) Repeatedly apply the collapse rule and any resulting deduction
steps until no more collapse steps are possible. (ii) If no collapse steps are possible,
repeatedly select a C-equation, fully simplify it, and then either delete or orient it.

In the Downey, Sethi, and Tarjan procedure an equation c ≈ d is oriented to
c→ d if the equivalence class c contains fewer terms (in the set of all subterms in
the input set of equations) than does the equivalence class d. This point is crucial
in ensuring the O(n log(n)) time complexity for this algorithm; cf. Theorem 4.

If (Kn,En,Dn∪Cn) is the last state in a derivation from (K1,∅,D1∪C1) using
the above strategy, then (Kn,En,Dn∪Cn) is a final state, and hence the setDn∪Cn
is convergent and an abstract congruence closure. The rewrite systemDn represents
the information contained in the signature table, and Cn represents information in
the union-find structure. The set Cn is usually considered the output of the Downey,
Sethi, and Tarjan procedure.

EXAMPLE 3. We illustrate the Downey–Sethi–Tarjan algorithm by using the
same set of equations E0 as above. The start state is (K1,∅,D1 ∪ C1), where

ABSTRACT CONGRUENCE CLOSURE 145

K = {c0, . . . , c4}, D1 = {a → c0, b → c1, f c0 → c2, f c2 → c3, f c1 → c4},
and, C1 = {c0 → c1, c3 → c4}.

i Consts Ki Eqns Ei Rules Ri Transition
1 K1 ∅ D1 ∪ C1

2 K1 ∅ {a→ c0, b→ c1, f c1 → c2, Col
f c2 → c3, f c1 → c4} ∪ C1

3 K1 {c2 ≈ c4} R2 − {f c1 → c2} Ded
4 K1 ∅ R3 ∪ {c4 → c2} Ori

Note that c4 ≈ c2 was oriented in a way that no further collapses were needed
thereafter.

3.3. NELSON AND OPPEN’S ALGORITHM

The Nelson–Oppen procedure is not exactly a completion procedure, and it does
not generate a congruence closure in our sense. The initial state of the Nelson–
Oppen procedure is given by the tuple (K1, E1,D1), whereD1 is the input dag, and
E1 represents an equivalence on vertices of this dag. The sets K1 and D1 remain
unchanged in the Nelson–Oppen procedure. In particular, the inference rule used
for deduction is different from the conventional deduction rule:�

NODeduction:
(K,E,D ∪ C)

(K,E ∪ {c ≈ d},D ∪ C)
if there exist twoD-rules f (c1, . . . , ck)→ c, and, f (d1, . . . , dk)→ d in the setD;
and, ci →!C ◦ ←!C di , for i = 1, . . . , k.

The Nelson–Oppen procedure can now be (at a certain abstract level) repre-
sented as

NO = (Sim∗ · (Ori ∪ Del) · NODed∗)∗,

which is applied in the following sense: (i) select a C-equation c ≈ d from the
E-component; (ii) simplify the terms c and d using simplification steps until the
terms can’t be simplified any more; (iii) either delete or orient the simplified
C-equation; (iv) apply the NODeduction rule until there are no more nonredundant
applications of this rule; and (v) if the E-component is empty, then stop; otherwise
continue with step (i).

Assume that, using the Nelson–Oppen strategy, we get a derivation (K1, E1,

D1) �∗NO (Kn,En,Dn ∪ Cn). One consequence of using a nonstandard deduction
rule, NODeduction, is that the resulting setDn∪Cn = D1∪Cn need not necessarily
be convergent, although the rewrite relation Dn/Cn [12] is convergent.
� This rule performs deduction modulo C-equations; that is, we compute critical pairs between

D-rules modulo the congruence induced by C-equations. Hence, the Nelson–Oppen procedure can
be described as an extended completion [12] (or completion modulo C-equations) method over an
extended signature.

146 LEO BACHMAIR ET AL.

EXAMPLE 4. Using the same set E0 as equations, we illustrate the Nelson–
Oppen procedure. The initial state is given by (K1, E1,D1), whereK1 = {c0, c1, c2,

c3, c4}; E1 = {c0 ≈ c1, c3 ≈ c4}; and, D1 = {a → c0, b→ c1, f c0 → c2, f c2 →
c3, f c1 → c4}.

i Constants Ki Equations Ei Rules Ri Transition
1 K1 E1 D1

2 K1 {c3 ≈ c4} D1 ∪ {c0 → c1} Ori
3 K1 {c2 ≈ c4, c3 ≈ c4} R2 NODed
4 K1 {c3 ≈ c4} R2 ∪ {c2 → c4} Ori
5 K1 ∅ R4 ∪ {c3 → c4} Ori

Consider deciding the equality f a ≈ ff b. Even though f a ↔∗E0
ff b, the terms

f a and ff b have distinct normal forms with respect toR5. But terms in the original
term universe have identical normal forms.

4. Experimental Results

We have implemented several congruence closure algorithms, including those pro-
posed by Nelson and Oppen (NO) [23], Downey, Sethi, and Tarjan (DST) [15],
and Shostak (SHO) [28], and two algorithms based on completion – one with an
indexing mechanism (IND) and the other without (COM). Implementation of the
first three procedures is based on the representation of terms by directed acyclic
graphs and the representation of equivalence classes by a union-find data structure.
Union-find data structure uses path compression, and the same code (with only
minor variations) is used in all three implementations.

NO is an implementation of the pseudocode given on page 358 (with some
details on page 359) of [23]. In particular, the predecessor lists are kept sorted and
duplicates are removed whenever two predecessor lists are merged. Furthermore,
the double loop described in step 4 of the algorithm is implemented as an optimized
linear search (with a “sorting” overhead) as suggested in [23]. We tested other
minor variants, too. The variant in which splicing the predecessor list was done in
constant time (allowing for duplicates in the process), and step 4 was implemented
as a nested loop gave the best running times on our examples, which we report
here.

The DST implementation corresponds exactly to the pseudocode on page 761
of [15]. In particular, the signature table is implemented as a hash table, equiva-
lence classes are represented in union-find, and the sets pending and combine are
implemented as singly linked lists of pointers to graph nodes and to graph edges,
respectively.

Implementation SHO of Shostak’s algorithm is based on the specialization to
the pure theory of equality of the combination method described on page 8 of [28].
The main data structures in the implementation are the union-find, use lists, and

ABSTRACT CONGRUENCE CLOSURE 147

sig, which stores a signature for each vertex. The manipulation of these data struc-
tures, especially the use lists, and the sequence of calls to merge are exactly as
described in [28]. This algorithm (with only a slight difference in the order of calls
to subroutine merge) is also described in [11, 18].

The completion procedure COM uses the following strategy:

((Sim∗ · Ext∗)∗ · (Del ∪Ori) · ((Com∗ · Col∗) · Ded · (Del ∪Ori))∗)∗.

More specifically, we process one equation at a time, fully simplify it, and if nec-
essary use extension to generate a C-equation. The C-equation is oriented, and
composition and collapse are applied exhaustively, followed by a deduction step.
The generated C-equation is similarly handled. When no more C-equations can be
produced, we process the next equation. In short, this strategy is based on eager
elimination of redundant constants.

The indexed variant IND uses a slightly different strategy:

((Sim∗ · Ext∗)∗ · ((Del ∪Ori) · (Col∗ · Com? · Ded?)∗ · Sim∗)∗)∗.

As before, using Sim∗ · Ext∗ we convert one equation to a C-equation. This equa-
tion is oriented; and, individually on every D-rule, we perform all simplifications
using this C-rule, namely, collapse and composition, followed by any deduction
step (Col∗ · Com? · Ded?). Subsequently, simplification of equations using the
oriented C-rule is done. All the C-equations are processed this way before we take
up the next equation to process. Indexing refers to the use of suitable data structures
to efficiently identify which D-rules contain specified constants, thus making the
process of identifying collapse, composition, and superposition efficient.

In all our implementations, input is read from a file containing equations in
a specified syntax. It is parsed and represented internally as a list of tree node
pairs (representing terms with no sharing). There is a preprocessing step in the NO
and DST algorithms to convert this representation into a dag and to initialize the
other required data structures. In DST we construct a dag in which all vertices have
outdegree at most two. The other three algorithms interleave construction of a dag
with deduction steps. The published descriptions of DST and NO do not address
construction of a dag. Our implementation maintains in a hash table the list of
terms that have been represented in the dag and creates a new node for each term
not yet represented.

The input set of equations E can be classified based on (i) the size of the input
and the number of equations, (ii) the number of equivalence classes on terms and
subterms of E, and (iii) the average number of occurrences of a constant in the set
ofD- and C-rules, which roughly corresponds to average size of use lists in most of
the implementations. The first set of examples is relatively simple and developed by
hand to highlight strengths and weaknesses of the various algorithms. Example 11
contains five equations that induce a single equivalence class.� Example 12 is the

� The equation set is {f 2(a) ≈ a, f 10a ≈ f 15b, b ≈ f 5b, a ≈ f 3a, f 5b ≈ b}.

148 LEO BACHMAIR ET AL.

Table I. Total running time (in milliseconds) for Examples 11–14. Eqns refers to the
number of equations, Vert to the number of vertices in the initial dag, and Class to the
number of equivalence classes induced on the dag.

Eqns Vert Class DST NO SHO COM IND

Ex.11 5 27 1 1.286 1.640 0.281 0.606 0.409

Ex.12 20 27 1 2.912 2.772 0.794 1.858 0.901

Ex.13 12 20 6 1.255 0.733 0.515 0.325 0.323

Ex.14 34 105 2 10.556 22.488 7.275 12.077 4.416

same as 11 except that it contains five copies of all the equations. Example 13 re-
quires slightly larger use lists.�� Example 14 consists of equations that are oriented
in the “wrong” way.‡

In a first set of experiments, we assume that the input is a set of equations
presented as pairs of trees (representing terms). Thus, the total running time given
includes time spent on preprocessing and construction of the dag (for NO and
DST). In Table I the times shown are the averages of several runs on a Sun Ultra
workstation under similar load conditions. The time was computed by using the
gettimeofday system call.

Table II contains similar comparisons for considerably larger examples con-
sisting of randomly generated equations over a specified signature. The equations
are obtained by fixing a signature and a bound on the depth of terms and randomly
picking 2n terms from the set of all bounded depth terms in the given signature.
We generate n equations by pairing the 2n terms thus obtained. The choice of
signatures and depth bound was governed by the need to randomly generate inter-
esting instances (i.e., where there are a fair number of deductions). The columns�i
denote the number of function symbols of arity i in the signature and d denotes the
maximum term depth. The total running time includes the preprocessing time.‡‡

In Table III we show the time for computing a congruence closure assuming
terms are already represented by a dag. In other words, we do not include the time
it takes to create a dag. Note that we include no comparison with Shostak’s method,
as the dynamic construction of a dag from given term equations is inherent in this
procedure. However, a comparison with a suitable strategy (in which all extension
steps are applied before any deduction steps) of IND is possible. We denote by IND*
indexed completion based on a strategy that first constructs a dag. The examples
are the same as in Table II.

Several observations can be drawn from these results. First, the Nelson–Oppen
procedure NO is competitive only when deduction steps are few and the number of

�� The equation set is {g(a, a, b) ≈ f (a, b), gabb ≈ f ba, gaab ≈ gbaa, gbab ≈ gabb, gbba ≈
gbab, gaaa ≈ f aa, a ≈ c, c ≈ d, d ≈ e, b ≈ c1, c1 ≈ d1, d1 ≈ e1}.

‡ The set is {g(f i (a), h10(b)) ≈ g(a, b), i = {1, . . . , 25}, h47(b) ≈ b, b ≈ h29(b), h(b) ≈
c0, c0 ≈ c1, c1 ≈ c2, c2 ≈ c3, c3 ≈ c4, c4 ≈ a, a ≈ f (a)}.

‡‡ Times for COM are not included because indexing is indispensable for larger examples.

ABSTRACT CONGRUENCE CLOSURE 149

Table II. Total running time (in seconds) for randomly generated sets of equations.

Eqns Vert �0, �1, �2, d Class DST NO SHO IND

Ex.21 10000 17604 2, 0, 2, 3 7472 11.1 3.19 10.2 13.0

Ex.22 5000 4163 2, 1, 1, 3 3 2.28 306 3.09 0.77

Ex.23 5000 7869 3, 0, 1, 3 2745 2.44 1.36 3.52 3.99

Ex.24 6000 8885 3, 0, 1, 3 9 3.55 1152 52.4 7.07

Ex.25 7000 9818 3, 0, 1, 3 1 4.63 1682 47.8 5.47

Ex.26 5000 645 4, 2, 0, 23 77 1.22 1.58 0.37 0.36

Ex.27 5000 1438 10, 2, 0, 23 290 1.45 3.67 0.39 0.37

Table III. Running time (in seconds) when input is in a dag form.

DST NO IND∗ DST NO IND∗

Ex.21 0.919 0.296 0.076 Ex.25 0.958 1614.961 9.770

Ex.22 0.309 319.112 1.971 Ex.26 0.026 0.781 0.060

Ex.23 0.241 0.166 0.030 Ex.27 0.048 2.470 0.176

Ex.24 0.776 1117.239 7.301

equivalence classes is large. In logical terms, this is because it uses a nonstandard
deduction rule (see [5]), which may force the procedure to unnecessarily repeat the
same deduction steps many times over a single execution. Not surprising, straight-
forward completion without indexing is also inefficient when many deduction steps
are necessary. Indexing is of course a standard technique employed in all practical
implementations of completion.

The running time of the DST procedure critically depends on the size of the
hash table that contains the signatures of all vertices. If the hash table size is large,
enough potential deductions can be detected in (almost) constant time. If the hash
table size is reduced, to say 100, then the running time increases by a factor of
up to 50. A hash table with 1,000 entries was sufficient for our examples (which
contained fewer than 10,000 vertices). Larger tables did not improve the running
times substantially.

Indexed Completion, DST, and Shostak’s method are roughly comparable in
performance, though Shostak’s algorithm has some drawbacks. For instance, equa-
tions are always oriented from left to right. In contrast, Indexed Completion always
orients equations in a way so as to minimize the number of applications of the
collapse rule, an idea that is also implicit in Downey, Sethi, and Tarjan’s algorithm.
Example 12 illustrates this fact. More crucial, the manipulation of the use lists in
Shostak’s method is done in a convoluted manner, and hence redundant inferences
may be made when searching for the correct nonredundant ones. As a consequence,

150 LEO BACHMAIR ET AL.

Shostak’s algorithm performs poorly on instances where use lists are large and
deduction steps are many, such as in Examples 13, 24 and 25.

We note that the indexing technique used in our implementation of completion
is simple – with every constant c we associate a list of D-rules that contain c
as a subterm. On the other hand, DST maintains at least two different ways of
indexing the signatures, and hence it is more efficient when the examples are large
and deduction steps numerous. On small examples, the overhead to maintain the
data structures dominates. This also suggests that the use of more sophisticated
indexing schemes for indexed completion might improve performance.

5. Associative-Commutative Congruence Closure

We next consider the problem of constructing a congruence closure for a set of
ground equations over a signature consisting of binary function symbols that are
associative and commutative. It is not obvious how the traditional dag-based al-
gorithms can be modified to handle associativity and commutativity of certain
function symbols, though commutativity alone is easily handled by simple mod-
ifications; see comments on page 767 of [15].

Let � be a signature with arity function α, and E a set of ground equations
over �. Let �AC be some subset of �, containing all the associative-commutative
operators. We denote by P the identities

f (x1, . . . , xk, s, y1, . . . , yl, t, z1, . . . , zm)

≈ f (x1, . . . , xk, t, y1, . . . , yl, s, z1, . . . , zm),

where f ∈ �AC , k, l,m ≥ 0, and k + l + m + 2 ∈ α(f), and by F the set of
identities

f (x1, . . . , xm, f (y1, . . . , yr), z1, . . . , zn)

≈ f (x1, . . . , xm, y1, . . . , yr , z1, . . . , zn),

where f ∈ �AC and {m+ n+ 1,m+ n+ r, r} ⊂ α(f). The congruence induced
by all ground instances of P is called a permutation congruence. Flattening refers
to normalizing a term with respect to the set F (considered as a rewrite rule). The
set AC = F ∪P defines an AC-theory. The symbols in�AC are called associative-
commutative operators.� We require that α(f) be a singleton set for all f ∈ � −
�AC and α(f) = {2, 3, 4, . . .} for all f ∈ �AC .

We note that apart from the D-rules and the C-rules, in the presence of
AC-symbols we additionally need A-rules.

DEFINITION 5. Let� be a signature andK be a set of constants disjoint from�.
Equations that when fully flattened are of the form f (c1, . . . , ck) ≈ f (d1, . . . , dl),
� The equations F ∪P define a conservative extension of the theory of associativity and commu-

tativity to varyadic terms. For a fixed arity binary function symbol, the equations f (x, y) ≈ f (y, x)
and f (f (x, y), z) ≈ f (x, f (y, z)) define an AC-theory.

ABSTRACT CONGRUENCE CLOSURE 151

where f ∈ �AC and c1, . . . , ck, d1, . . . , dl ∈ K, will be called A-equations.
Directed A-equations are called A-rules.

We can now generalize all definitions made in Section 2 to the case when certain
function symbols are known to be associative and commutative. By AC\R we
denote the rewrite system consisting of all rules u → v such that u ↔∗AC u′σ
and v = v′σ , for some rule u′ → v′ in R and some substitution σ . We say that
AC\R is confluent modulo AC if for all terms s, t such that s ↔∗R∪AC t , there
exist terms w and w′ such that s →∗AC\R w ↔∗AC w′ ←∗AC\R t . We speak of
ground confluence if this condition is true for all ground terms s and t . The other
definitions are analogous.

Part of the condition for confluence moduloAC can be satisfied by the inclusion
of so-called extensions of rules [24]. Given an AC-operator f and a rewrite rule
ρ: f (c1, c2)→ c, we consider its extension ρe: f (f (c1, c2), x)→ f (c, x). Given
a set of rewrite rules R, by Re we denote the set R plus extensions of rules in R.
Extensions have to be used for rewriting terms and computing critical pairs when
working with AC-symbols. The key property of extended rules is that whenever a
term t is reducible by AC\Re and t ↔∗AC t ′, then t ′ is also reducible by AC\Re.
DEFINITION 6. Let R be a set of D-rules, C-rules, and A-rules (with respect to
� and K). We say that a constant c in K represents a term t in T (� ∪K) (via the
rewrite system R) if t ↔∗AC\Re c. A term t is also said to be represented by R if it
is represented by some constant via R.

DEFINITION 7. Let� be a signature andK be a set of constants disjoint from�.
A ground rewrite system R = A∪D ∪C is said to be an associative-commutative
congruence closure (with respect to � and K) if

(i) D is a set of D-rules, C is a set of C-rules, A is a set of A-rules, and every
constant c ∈ K represents at least one term t ∈ T (�) via R, and

(ii) AC\Re is ground convergent modulo AC over T (� ∪K).
In addition, if E is a set of ground equations over T (� ∪K) such that

(iii) if s and t are terms over T (�), then s ↔∗AC∪E t if, and only if, s →∗AC\Re◦ ↔∗AC ◦ ←∗AC\Re t ,
then R will be called an associative-commutative congruence closure for E.

When�AC is empty, this definition specializes to that of an abstract congruence
closure in Definition 2.

For example, let � consist of function symbols, a, b, c, f , and g (f is AC),
and let E0 be a set of three equations f (a, c) ≈ a, f (c, g(f (b, c))) ≈ b and
g(f (b, c)) ≈ f (b, c). Using extension and orientation, we can obtain a represen-
tation of the equations in E0 using D-rules and C-rules as

R1 = {a→ c1, b→ c2, c→ c3, f (c2, c3)→ c4,

g(c4)→ c5, f (c1, c3)→ c1, f (c3, c5)→ c2, c5 → c4}.

152 LEO BACHMAIR ET AL.

However, the rewrite system R1 above is not a congruence closure for E0, since
it is not a ground convergent rewrite system. But we can transform R1 into a
suitable rewrite system, using a completion-like (modulo AC) process described
in more detail in the next section, to obtain a congruence closure (details are given
in Example 5),

R′ = {a→ c1, b→ c2, c→ c3, f c2c3 → c4, f c3c4 → c2, f c1c3 → c1,

f c2c2 → f c4c4, f c1c2 → f c1c4, gc4 → c4},
that provides a more compact representation of E0. Attempts to replace every
A-rule by two D-rules (introducing a new constant in the process) lead to non-
terminating derivations.

5.1. CONSTRUCTION OF ASSOCIATIVE-COMMUTATIVE CONGRUENCE

CLOSURE

Let U be a set of symbols from which new names (constants) are chosen. We need
a (partial) AC-compatible reduction ordering that orients the D-rules in the right
way and orients all the C- and A-equations. The precedence-based AC-compatible
ordering � of [26], with any precedence in which f ��∪U c, whenever f ∈ �
and c ∈ U , serves the purpose. Much simpler partial orderings would suffice,
too, but for convenience we use the ordering in [26]. In our case, this simply
means that orientation of D-rules is from left to right and that the orientation of an
A-rule is given by comparing the fully flattened terms as follows: f (c1, . . . , ci) �
f (c′1, . . . , c

′
j) iff either i > j , or i = j and {c1, . . . , ci} �mult {c′1, . . . , c′j }. That is,

if the two terms have the same number of arguments, we compare the multisets of
constants using a multiset extension �mult of the precedence ��∪U ; see [13].

We next present a general method for construction of associative-commutative
congruence closures. Our description is fairly abstract, in terms of transition rules
that operate on triples (K,E,R), where K is a set of new constants that are in-
troduced (the original signature � is fixed); E is a set of ground equations (over
� ∪K) yet to be processed; and R is a set of C-rules, D-rules and A-rules. Triples
represent possible states in the process of constructing a closure. The initial state
is (∅, E,∅), where E is the input set of ground equations.

New constants are introduced by the following transition.

Extension:
(K,E[t], R)

(K ∪ {c}, E[c], R ∪ {t → c})
if t → c is aD-rule, c ∈ U −K, and t occurs in some equation in E that is neither
an A-equation nor a D-equation.

Once a D-rule has been introduced by extension, it can be used to simplify
equations.

Simplification:
(K,E[s], R)
(K,E[t], R)

ABSTRACT CONGRUENCE CLOSURE 153

where s occurs in some equation in E, and, s →AC\Re t .
It is fairly easy to see that any equation in E can be transformed to a D-, a C-,

or an A-equation by suitable extension and simplification.�

Equations are moved from the second to the third component of the state by
orientation. All rules added to the third component are C-rules,D-rules, orA-rules.

Orientation:
(K,E ∪ {s ≈ t}, R)
(K,E,R ∪ {s → t})

if s � t , and s → t is a D-rule, a C-rule, or an A-rule.
Deletion allows us to delete trivial equations.

Deletion:
(K,E ∪ {s ≈ t}, R)

(K,E,R)

if s ↔∗AC t .
We consider overlaps between extensions of A-rules in ACSuperposition.

ACSuperposition:
(K,E,R)

(K,E ∪ {f (s, xσ) ≈ f (t, yσ)}, R)
if f ∈ �AC , there exist D- or A-rules (fully flattened as) f (c1, . . . , ck) → s and
f (d1, . . . , dl) → t in R, the sets C = {c1, . . . , ck} and D = {d1, . . . , dl} are not
disjoint, C �⊆ D, D �⊆ C, and the substitution σ is the ground substitution in a
minimal complete set of AC-unifiers for f (c1, . . . , ck, x) and f (d1, . . . , dl, y).��

In the special case when one multiset is contained in the other, we obtain the
ACCollapse rule.

ACCollapse:
(K,E,R ∪ {t → s})
(K,E ∪ {t ′ ≈ s}, R)

if for some u→ v ∈ R, t →AC\{u→v}e t ′, and if t ↔∗AC u, then s � v.
The Deduction inference rule in Section 2.1 (for non-AC terms) is subsumed

by ACCollapse. Note that we do not explicitly add AC extensions of rules to the
set R. Consequently, any rule in R is a C-rule, a D-rule, or an A-rule and not its
extension. We implicitly work with extensions in ACSuperposition.

We need additional transition rules to perform simplifications on the left- and
right-hand sides of other rules. The use of C-rules to simplify left-hand sides of
rules is captured by ACCollapse. The simplification on the right-hand sides is
subsumed by the following generalized composition rule.

Composition:
(K,E,R ∪ {t → s})
(K,E,R ∪ {t → s′})

if s →AC\Re s′.
� We do not need an explicit rule for flattening because Definition 5 allows for nonflattened terms

to occur in A-rules.
�� For the special case in hand, a minimal complete set of AC-unifiers contains exactly two

substitutions, exactly one of which is ground.

154 LEO BACHMAIR ET AL.

EXAMPLE 5. Let E0 = {f (a, c) ≈ a, f (c, g(f (b, c))) ≈ b, g(f (b, c)) ≈
f (b, c)}. We show some intermediate states of a derivation below (superscripts
in the last column indicate the number of applications of the respective rules). We
assume that f is AC and ci � cj if i < j .

i Constants Ki Equations Ei Rules Ri Transitions
0 ∅ E0 ∅
1 {c1, c3} {f cgf bc ≈ b, {a→ c1, c→ c3, Ext2 · Sim·

gf bc ≈ f bc} f c1c3 → c1} Ori
2 K1 ∪ {c2, c4} {f cgf bc ≈ b} R1 ∪ {b→ c2, Sim2 · Ext2·

f c2c3 → c4, gc4 → c4} Sim ·Ori
3 K2 ∅ R2 ∪ {f c3c4 → c2} Sim6 ·Ori
4 K2 ∅ R3 ∪ {f c1c2 → f c1c4} ACSup ·Ori
5 K2 ∅ R4 ∪ {f c2c2 → f c4c4} ACSup ·Ori

The derivation moves equations, one by one, from the second component of
the state to the third component through simplification, extension, and orientation.
It can be verified that the set R5 is an AC congruence closure for E0. There are
more ACSuperpositions, but the resulting equations get deleted. Note that the side-
condition in extension disallows breaking of an A-rule into two D-rules, which is
crucial for termination.

5.2. TERMINATION AND CORRECTNESS

DEFINITION 8. We use the symbol � to denote the one-step transition relation
on states induced by the above transition rules. A derivation is a sequence of states
(K0, E0, R0) � (K1, E1, R1) � · · ·. A derivation is said to be fair if any transition
rule that is continuously enabled is eventually applied. The set R∞ of persisting
rules is defined as

⋃
i

⋂
j>i Rj ; and similarly, K∞ =⋃

i

⋂
j>i Kj .

We shall prove that any fair derivation will generate only finitely many persist-
ing rewrite rules (in the third component) by using Dickson’s lemma [8]. Multisets
over K∞ can be compared by using the multiset inclusion relation. If K∞ is finite,
this relation defines a Dickson partial order.

LEMMA 6. Let E be a finite set of ground equations. The set of persisting rules
R∞ in any fair derivation starting from state (∅, E,∅) is finite.

Proof. We first claim that K∞ is finite. To see this, note that new constants are
created by extension. Using finitely many applications of extension, simplification,
and orientation, we can move all rules from the initial second component E of
the state tuple to the third component R. Fairness ensures that this situation will
eventually happen. Thereafter, any equations added to E can be oriented by using
orientation; hence we never apply extension subsequently (see the side condition
of the extension rule). Let K∞ = {c1, . . . , cn}.

ABSTRACT CONGRUENCE CLOSURE 155

Next we claim that the set R∞ is finite. Suppose R∞ is an infinite set. Since
non-�AC symbols have fixed arities, R∞ contains infinitely many rules with top
symbol from �AC . Since �AC is finite, one AC-operator, say f ∈ �AC , must
occur infinitely often as the top symbol in the left-hand sides of R∞. By Dickson’s
lemma, there exists an infinite chain of rules (written as fully flattened for simplic-
ity), f (c11, . . . , c1k1)→ s0, f (c21, . . . , c2k2)→ s1, . . . , such that {c11, . . . , c1k1} ⊆{c21, . . . , c2k2} ⊆ · · · , where {ci1, . . . , ciki } denotes a multiset and ⊆ denotes mul-
tiset inclusion. But, this contradicts fairness (in application of ACCollapse). ✷

5.3. PROOF ORDERING

The correctness of the procedure will be established by using proof simplification
techniques for associative-commutative completion, as described by Bachmair [1]
and Bachmair and Dershowitz [2]. In fact, we can directly use the results and the
proof measure from [2]. However, since all rules in R have a special form, we
can choose a simpler proof ordering. One other difference is that we do not have
explicit transition rules to create extensions of rules in the third component. Instead
we use extensions of rules for simplification and computation of superpositions.

Let s = s[uσ] ↔ s[vσ] = t be a proof step using the equation (rule) u ≈ v ∈
AC ∪ E ∪ R. The complexity of this proof step is defined by

({s, t},⊥,⊥) if u ≈ v ∈ E ({s},⊥, t) if u ≈ v ∈ AC
({s}, u, t) if u→ v ∈ R ({t}, v, s) if v→ u ∈ R

where⊥ is a new symbol. Tuples are compared lexicographically using the multiset
extension of the reduction ordering � on terms over � ∪ K∞ in the first compo-
nent, and the ordering � in the second and third component. The constant ⊥ is
assumed to be minimum. The complexity of a proof is the multiset of complexities
of its proof steps. The multiset extension of the ordering on tuples yields a proof
ordering, denoted by the symbol �P . The ordering �P on proofs is well founded
because it is a lexicographic combination of well-founded orderings.

LEMMA 7. Suppose (K,E,R) � (K ′, E′, R′). Then, for any two terms s, t ∈
T (�), it is the case that s ↔∗AC∪E′∪R′ t iff s ↔∗AC∪E∪R t . Further, for any s0, sk ∈
T (� ∪K), if π is a ground proof s0 ↔ s1 ↔ · · · ↔ sk in AC ∪E ∪R, then there
is a proof π ′ s0 = s′0 ↔ s′1 ↔ · · · ↔ s′l = sk in AC ∪ E′ ∪ R′ such that π &P π

′.
Proof. The first part of the lemma, which states that the congruence on T (�)

remains unchanged, is easily verified by exhaustively checking it for each transition
rule. In fact, except for extension, all the other transition rules are standard rules
for completion modulo a congruence, and hence the result follows. Consider the
case when the state (K ′ = K ∪ {c}, E′, R′ = R ∪ {t → c}) is obtained from the
state (K,E,R) by extension. Now, if s ↔∗AC∪E∪R t , then clearly s ↔∗AC∪E′∪R′ t .
Conversely, if s ↔∗

AC∪E′∪R′ t , then we replace all occurrences of c in this proof by
t to get a proof in AC ∪ E ∪ R.

156 LEO BACHMAIR ET AL.

For the second part, one needs to check that each equation in (E−E′)∪(R−R′)
has a simpler proof in E′ ∪R′ ∪AC for each transition rule application; see [2]. In
detail, we have the following cases:

(i) Extension. The proof s[t] ↔E u is replaced by a proof s[t] →R′ s[c] ↔E′ u,
and the new proof is smaller as {s[t], u} �m {s[t]}, and {s[t], u} �m {s[c], u}.

(ii) Simplification. The proof r[s] ↔E u is replaced by the new proof r[s] ↔∗AC
r ′ →R′ r[t] ↔E′ u.� Now, {r[s], u} �m {r ′′} for every term r ′′ in the sequence of
terms r[s] ↔∗AC r ′, and {r[s], u} �m {r[t], u}.

(iii) ACCollapse. The proof t →R s is transformed to the smaller proof t ↔∗AC
t ′ →{u→v} t ′′ ↔E′ s. This new proof is smaller because the rewrite step t →R s

is more complex than (a) all proof steps in t ↔∗AC t ′ (in the second component);
(b) the proof step t ′ →{u→v} t ′′ in the second component if t �↔∗AC u, and in the
third component if t ↔∗AC u (see side condition in ACCollapse); and (c) the proof
step t ′′ ↔E′ s (in the first component).

(iv) Orientation. In this case, s ↔E t is more complex than the new proof
s →R′ t , and this follows from {s, t} �m {s}.

(v) Deletion. We have s ↔E t more complex than s ↔∗AC t because {s, t} �m
{s′} for every s′ in s ↔∗AC t .

(vi) Composition. We have the proof t →R s transformed to the smaller proof
t →R s′ ←R′ s

′′ ↔∗AC s. This new proof is smaller because the rewrite step
t →R s is more complex than (a) the rewrite step t →R′ s

′ in the third component,
(b) all proof steps in s′′ ↔∗AC s in the first component, and (c) the rewrite step
s′′ →R′ s

′ in the first component.
The ACSuperposition transition rule does not delete any equation. This com-

pletes the proof of the lemma. ✷
Note that in any derivation, extensions of rules are not added explicitly, and

hence they are never deleted either. Once we converge to R∞, we introduce exten-
sions to take care of cliffs in proofs.

LEMMA 8. If R∞ is a set of persisting rules of a fair derivation starting from
the state (∅, E,∅), then Re∞ is a ground convergent (modulo AC) rewrite system.
Furthermore, E∞ = ∅.

Proof. Fairness implies that all critical pairs (modulo AC) between rules in Re∞
are contained in the set

⋃
i Ei . Since a fair derivation is nonfailing, E∞ = ∅. Since

the proof ordering is well founded, for every proof in Ei ∪ Ri ∪ AC, there exists a
minimal proof π in E∞ ∪ R∞ ∪ AC. We argue by contradiction that certain proof
patterns cannot occur in the minimal proof π : specifically, there can be no peaks
s ←Re∞ u→AC\Re∞ t , nonoverlap cliffs, or variable overlap cliffs.

(i) Peaks. A peak caused by a nonoverlap or a variable overlap s ←Re∞
u →AC\Re∞ t can be transformed to a simpler proof s →∗

AC\Re∞ v ←∗
AC\Re∞ t .

� Note that we used extended rules in specifying simplification, but for purposes of proof
transformations, we consider only the original (nonextended) rules as being present in the third
component.

ABSTRACT CONGRUENCE CLOSURE 157

The new proof is simpler because u is bigger than each term in the new proof.
Next suppose that the above pattern is caused by a proper overlap. In this case, it
is easy to see that s ↔∗AC s′ ↔CPAC(R

e∞) t
′ ↔∗AC t , where CPAC(Re∞) denotes the

set of all equations created by ACSuperposition and ACCollapse transition rules
applied on the rules in Re∞. Since by fairness CPAC(Re∞) ⊆

⋃
k Ek, there is a

proof s ↔∗AC s′ ↔Ek t
′ ↔∗AC t for some k ≥ 0. This proof, which we name π ,

is strictly smaller than the original peak. Using Lemma 7, we may infer that there
is a proof π ′ in AC ∪ R∞ such that π ′ is strictly smaller than the original peak,
a contradiction.

(ii) Cliffs. A nonoverlap cliff w[v, s] ↔AC w[u, s] →AC\Re∞ w[u, t] can be
transformed to the following less complex proof: w[v, s] →AC\Re∞ w[v, t] ↔AC

w[u, t]. Clearly, w[v, s] � w[v, t] and hence the proof w[v, t] ↔AC w[u, t] is
smaller than the proof w[v, s] ↔AC w[u, s] (in the first component). The com-
plexity of the proof w[u, s] →AC\Re∞ w[u, t] is identical to the complexity of the
proof w[v, s] →AC\Re∞ w[v, t].

In the case of AC, a variable overlap cliff s ↔AC u →AC\Re∞ t can be elimi-
nated in favor of the proof s →AC\Re∞ t

′ ↔AC t . Note that the proof u→AC\Re∞ t
and the proof s →AC\Re∞ t

′ are of the same complexity, and additionally the proof
s ↔AC u is larger than the proof t ′ ↔AC t as all terms in the latter proof are
smaller than u.

In summary, the proof π cannot contain peaks s ←Re∞ u→AC\Re∞ , or nonover-
lap or variable overlap cliffs s ↔AC u →AC\Re∞ t . The cliffs arising from proper
overlaps can be replaced by extended rules, as (Re∞)e = Re∞. The minimal proof π
in R∞ ∪ AC can, therefore, be only of the form s →∗

AC\Re∞ s
′ ↔∗AC t ′ ←∗AC\Re∞ t ,

which is a rewrite proof. ✷
Note that we did not define the proof complexities for the extended rules, since

the rules are introduced only at the end. Hence, the argument given here is not
identical to the one in [2], though it is similar. Using Lemmas 7 and 8, we can
easily prove the following.

THEOREM 5. Let R∞ be the set of persisting rules of a fair derivation starting
from state (∅, E,∅). Then, the set Re∞ is an associative-commutative congruence
closure for E.

Proof. To show that R∞ is an associative-commutative congruence closure
for E0, we need to prove the three conditions in Definition 7.

(1) The transition rules ensure that R∞ consists of only D-rules, C-rules, and
A-rules. We prove that every constant represents some term in T (�) by induc-
tion. Let c be any constant in K∞. Since all constants are added by extension,
let f (c1, . . . , ck)→ c be the rule introduced by extension when c was added.
As induction hypothesis we can assume that all constants added before c rep-
resent a term in T (�) via R∞. Therefore, there exist terms s1, . . . , sk ∈ T (�)
such that si ↔∗AC\Re∞ ci , and hence

158 LEO BACHMAIR ET AL.

f (s1, . . . , sk)↔∗AC\Re∞ f (c1, . . . , ck)→∪iRi c.
Using Lemma 7, we get f (s1, . . . , sk) ↔∗Re∞∪E∞∪AC c. Lemma 8 shows that
E∞ = ∅, and f (s1, . . . , sk)↔∗AC\Re∞ c.

(2) Lemma 8 shows that AC\Re∞ is ground convergent.
(3) Let s, t ∈ T (�). Using Lemma 7, we know s ↔∗E∪AC t if, and only if,

s ↔∗E∞∪R∞∪AC t . Since E∞ = ∅, Lemma 8 implies that s →∗
AC\Re∞ ◦ ↔∗AC◦ ←∗

AC\Re∞ t . ✷
SinceR∞ is finite, there exists a k such thatR∞ ⊆ Rk. Thus, the set of persisting

rules can be obtained by using only finite derivations.

5.4. OPTIMIZATIONS

The set of transition rules for computing an AC congruence closure can be fur-
ther enhanced by additional simplifications and optimizations. First, we can flatten
terms in E.

Flattening:
(K,E ∪ {s ≈ t}, R)
(K,E ∪ {u ≈ t}, R)

where s →F u. Now, however, the correctness proof given above, Lemma 7 in
particular, fails because the new proof s ↔AC u ↔E′ t of the deleted equation
s ≈ t is larger than the old proof s ↔E′ t . But we can still establish the correctness
of the extended set of inference rules as follows. Assume that flattening does not
delete the equation s ≈ t from E but only marks it. All subsequent derivation steps
do not work on the marked equations. Once the derivation converges (ignoring the
marked equations), we can delete the marked equations as any such equation, say
s ≈ t , would have a proof s ↔AC u ↔AC∪R∞ t , and hence also a desired rewrite
proof (using the persisting set of rewrite rules).

As a consequence of the flattening rule, we can construct fully flattened AC
congruence closures, that is, where each term in the congruence closure is fully
flattened.

As a second optimization, the extension variable of a rewrite rule can be con-
strained to allow for fine-grained deletion of instances of rewrite rules. For ex-
ample, after deducing the critical pair f c1c2 ≈ f c2c3 that arises by overlapping
the rules f c1c2x → f c2x and f c1c1y → f c3y, we can delete the instance
f c1c1c2 → f c3c2 of the latter rule as it has a smaller proof f c1c1c2 → f c1c2 ≈
f c2c3 using the deduced equation. We can delete this instance by replacing the rule
f c1c1y → f c3y by the new rule f c1c1y → f c3y if C, where C is the constraint
that “y is not of the form f (c2, z).” These new constraints can be carried to new
equations generated in a deduction step.

Finally, we note that, as in the case of congruence closure discussed before,
we can choose the ordering between two constants in K on the fly. As an opti-
mization we could always choose it in a way so as to minimize the applications

ABSTRACT CONGRUENCE CLOSURE 159

of ACCollapse and composition later. In other words, when we need to choose the
orientation for c ≈ d, we can count the number of occurrences of c and d in the set
of D- and A-rules (in the R-component of the state), and the constant with fewer
occurrences is made larger.

5.5. PROPERTIES

The results in the preceding sections establish the decidability of the word problem
for ground theories presented over a signature containing finitely many associative-
commutative symbols. Note that we are implicitly decomposing the equations (over
a signature consisting of several symbols) into equations over exactly one func-
tion symbol and a set of new constants. A set of equations over exactly one AC
symbol and finitely many constants defines a finitely presented commutative semi-
group.

The word problem for commutative semigroups is known to be complete for
deterministic EXP space [9]. It is a simple observation that the word problem
for commutative semigroups can be reduced to the ideal membership problem for
binomial ideals. In fact, an optimal exponential space algorithm for generating the
reduced Gröbner basis of binomial ideals was presented in [19], but that algorithm
was not based on critical pair completion.

Thus, using the approach proposed in our paper, we can construct an AC con-
gruence closure in time O(n|�|T (n)) and space O(n2 + S(n)) using an algorithm
for constructing Gröbner bases for binomial ideals that uses O(T (n)) time and S(n)
space. We have not worked out the time complexity of the critical pair completion-
based algorithm (as presented in our paper) for constructing Gröbner bases for
binomial ideals. That remains as future work.

6. Construction of Ground Convergent Rewrite Systems

We have presented transition rules for constructing a convergent presentation in
an extended signature for a set of ground equations. We next discuss the problem
of obtaining a ground convergent (AC) rewrite system for the given ground (AC-)
theory in the original signature. Hence, now we focus our attention on the problem
of transforming a convergent system over an extended signature to a convergent
system in the original signature.

The basic idea of transforming back is elimination of constants from the pre-
sentation R as follows: (i) if a constant c is not redundant (Definition 3), then we
pick a term t ∈ T (�) that is represented by c and replace all occurrences of c by t
in R; (ii) if a constant c is redundant (and say c→ d is a C-rule in which c occurs
as the left-hand side term), then all occurrences of c can be replaced by d in R.

In the case when there are no AC-symbols in the signature, the above method
generates a ground convergent system from any given abstract congruence closure.
This gives an indirect way to construct ground convergent systems equivalent to

160 LEO BACHMAIR ET AL.

a given set of ground equations. However, we run into problems when we use the
same method for translation in presence of AC-symbols. Typically, after translating
back, the set of rules obtained is nonterminating modulo AC (see Example 6). But if
we suitably define the notion of AC-rewriting, the rules are seen to be convergent in
the new definition. This is useful in two ways: (i) the new notion of AC-rewriting
seems to be more practical, in the sense that it involves strictly less work than a
usual AC\Re reduction; and (ii) it helps to clarify the advantage offered by the use
of extended signatures when dealing with a set of ground equations over a signature
containing associative and commutative symbols.

6.1. TRANSITION RULES

We describe the process of transforming a rewrite system over an extended signa-
ture � ∪ K to a rewrite system over the original signature � by transformation
rules on states (K,R), where K is the set of constants to be eliminated and R is a
set of rewrite rules over � ∪K to be transformed.

Redundant constants can be easily eliminated by the compression rule.

Compression:
(K ∪ {c}, R ∪ {c→ t})

(K,R〈c �→ t〉)
where 〈c �→ t〉 denotes the (homomorphic extension of the) mapping c �→ t , and
R〈c �→ t〉 denotes the application of this homomorphism to each term in the set R.

The basic idea for eliminating a constant c that is not redundant in R involves
picking a representative term t (over the signature �) in the equivalence class of c
and replacing c by t everywhere in R.

Selection:
(K ∪ {c}, R ∪ {t → c})
(K,R〈c �→ t〉 ∪ R′)

if (i) c is not redundant in R, (ii) t ∈ T (�), and (iii) if t ≡ f (t1, . . . , tk) with
f ∈ �AC then R′ = {f (t1, . . . , tk, X)→ f (f (t1, . . . , tk),X)}; otherwise R′ = ∅.

If �AC = ∅, we note that R′ will always be empty. We also require that terms
not be flattened after the application of mapping R〈c �→ t〉. The variable X is a
special sequence variable that can be instantiated only by nonempty sequences. We
shall formally define its role later.

EXAMPLE 6. Consider the problem of constructing a ground convergent system
for the set E0 from Example 5. A fully reduced congruence closure for E0 is given
by the set R0

a → c1 b → c2 c → c3 f c2c3 → c4

f c3c4 → c2 f c1c3 → c1 f c2c2 → f c4c4 f c1c2 → f c1c4

gc4 → c4

ABSTRACT CONGRUENCE CLOSURE 161

under the ordering c2 � c4 between constants. For the constants c1, c2, and c3 we
have no choice but to choose a, b, and c as representatives, respectively. Thus, after
three applications of selection, we get

f cc4 → b f ac → a f bb → f c4c4

f bc → c4 gc4 → c4 f ab → f ac4.

Next we are forced to choose f bc as the representative for the class c4. This gives
us the transformed set R1,

f c(f bc) → b f ac → a f bb → f (f bc)(f bc)

f bcX → f (f bc)X gf bc → f bc f ab → f a(f bc).

The relation→AC\Re1 is clearly nonterminating (with the variable X considered as
a regular term variable).

6.2. REWRITING WITH SEQUENCE EXTENSIONS MODULO PERMUTATION

CONGRUENCE

Let X denote a variable ranging over nonempty sequences of terms. A sequence
substitution σ is a substitution that maps variables to the sequences. If σ is a se-
quence substitution that maps X to the sequence 〈s′1, . . . , s′m〉, then f (s1, . . . , sk,
X)σ is the term f (s1, . . . , sk, s

′
1, . . . , s

′
m).

DEFINITION 9. Let ρ be a ground rule of the form f (t1, . . . , tk)→ g(s1, . . . , sm)

where f ∈ �AC . We define the sequence extension ρs of ρ as f (t1, . . . , tk, X)→
f (s1, . . . , sm,X) if f = g, and as f (t1, . . . , tk, X) → f (g(s1, . . . , sm),X) if
f �= g.

Now we are ready to define the notion of rewriting we use. Recall that P denotes
the equations defining the permutation congruence, and that AC = F ∪P . Given a
set R, we denote by Rs the set R plus sequence extensions of all ground rules in R.

DEFINITION 10. Let R be a set of rewrite rules. For ground terms s, t ∈ T (�),
we say that s →P \Rs t if there exists a rule l → r ∈ Rs and a sequence substitution
σ such that s = C[l′], l′ ↔∗P lσ , r ′ = rσ , and t = C[r ′].

Note that the difference with standard rewriting modulo AC is that instead of
performing matching modulo AC, we do matching modulo P . For example, if ρ
is f ac → a, then the term f (f (a, b), c) is not reducible by →P \ρs , although it
is reducible by→AC\ρe . The term f (f (a, b), c, a) can be rewritten by→P \ρs to
f (f (a, b), a).

EXAMPLE 7. Following up on Example 6, we note that the relation P \Rs1 is
convergent. For instance, a normalizing rewrite derivation for the term f abc is

f abc→P \Rs1 f a(f bc)c→P \Rs1 f ab→P \Rs1 f a(f bc).

162 LEO BACHMAIR ET AL.

On closer inspection, we find that we are essentially doing a derivation in the
original rewrite system R0 (over the extended signature),

f c1c2c3 →P \Rs0 f c1c4c3 →P \Rs0 f c1c2 →P \Rs0 f c1c4.

A P \Rs0 proof step can be projected onto a P \Rs1 proof step; see Lemma 9(a) and
Lemma 10(a). This is at the core of the proof of correctness; see Theorem 6.

6.3. CORRECTNESS

We shall prove that compression and selection transform a fully flattened AC con-
gruence closure over � ∪ K into a rewrite system R over � that is convergent
modulo P and that defines the same equational theory over fully flattened terms
over �. First note that any derivation starting from the state (K,R), where R is
an AC congruence closure over � and K, is finite. This is because K is finite, and
each application of compression and selection reduces the cardinality ofK by one.
Furthermore, in any intermediate state (K,R), R is always a rewrite system over
�∪K. Hence, in the final state (K∞, R∞), ifK∞ = ∅, then R∞ is a rewrite system
over�, the original signature. We shall show thatK∞ is actually empty and that the
reduction relation P \Rs∞ is terminating on T (�) and confluent on fully flattened
terms in T (�).

In this section, we say that R is left reduced (modulo P) if every left-hand side
of any rule in R is irreducible by P \ρ and P \ρs for every other rule ρ in R; we
say that R is terminating (modulo P) if P \Rs is.

LEMMA 9. Let (K1, R1 = R′0σ) be obtained from (K0 = K1 ∪ {c}, R0 = R′0 ∪{c→ u}) using compression, where σ = 〈c �→ u〉. Assume that the rewrite system
R0 is left reduced and terminating. Then,
(a) For any two terms s, t ∈ T (� ∪K0), if s →P \Rs0 t , then sσ →0,1

P \Rs1 tσ .

(b) For any two terms s, t ∈ T (� ∪K1), if s →P \Rs1 t , then sθ ↔+
P \Rs0 tθ , where

θ = 〈u �→ c〉.�
(c) R1 is left reduced and terminating.

Proof. To prove (a), let s, t be two terms over � ∪ K0 such that s = C[l′0],
l′0 ↔∗P l0σ s, and t = C[r0σ s], where l0 → r0 is (a sequence extension of) some rule
in R0 and σ s is a sequence substitution. Clearly, (l0σ s)σ = (l0σ)(σ sσ) = l1(σ sσ),
and similarly (r0σ s)σ = (r0σ)(σ sσ) = r1(σ sσ), where either l1 = r1, or, l1 → r1
is (a sequence extension of) some rule in R1. In the first case sσ ↔∗P tσ , and in the
second case sσ →P \Rs1 tσ .

To prove (b), note that since R0 is left reduced, a compression step has the same
effect as a sequence of composition steps followed by deletion of a rule. Hence, if
s →Rs1

t , then s ↔+
Rs0
t . Therefore, sθ →∗{c→u} s ↔+R0

t ←∗{c→u} tθ .

� Note that if θ is defined by 〈f ab �→ c0〉, then f abcθ = f abc, but f (f ab)cθ = f c0c.

ABSTRACT CONGRUENCE CLOSURE 163

To prove (c), note that termination is preserved by composition and deletion.
Furthermore, the left-hand side terms do not change, and hence the system contin-
ues to remain left reduced. ✷
LEMMA 10. Let (K1, R1 = R′0σ ∪ R′) be obtained from (K0 = K1 ∪ {c}, R0 =
R′0 ∪ {u → c}) using selection, where σ = 〈c �→ u〉. Assume that the rewrite
system R0 is left reduced and terminating. Then,

(a) For any two terms s, t ∈ T (� ∪K0), if s →P \Rs0 t , then sσ →0,1
P \Rs1 tσ .

(b) For any two terms s, t ∈ T (� ∪K1), if s →P \Rs1 t , then sθ →+
P \Rs0 tθ , where

θ = 〈u �→ c〉.
(c) R1 is left reduced and terminating.

Proof. The proof of (a) is identical to the proof of Lemma 9(a). Note that when
u = f (u1, . . . , uk), where f ∈ �AC , s ↔∗P C[f (u1, . . . , uk,Xσ

s)], and t =
C[f (c,Xσ s)], the proof

sσ ↔∗P (Cσ)[f (u1, . . . , uk,Xσ
sσ)]

→P \Rs1 (Cσ)[f (f (u1, . . . , uk),Xσ
sσ)] = tσ

uses the rule in the set R′.
To prove (b), let s, t be two terms over � ∪ K1 such that s ↔∗P C[l1σ s] and

t = C[r1σ s], where l1 → r1 is (a sequence extension of) some rule in R1. First
consider the case when l1 = f (u1, . . . , uk,X)→ f (f (u1, . . . , uk),X) = r1 is the
rule in R′. Since Xσs is nonempty,

sθ ↔∗P (Cθ)[f (u1, . . . , uk,Xσ
sθ)] →P \Rs0 (Cθ)[f (c,Xσ sθ)] = tθ.

In the other case, assume l1 = l0σ and r1 = r0σ , where l0 → r0 is (an extension
of) some rule different from u → c in R0. Since R0 is left reduced modulo P ,
sθ ↔∗P (C[(l0σ)σ s])θ = (Cθ)[l0(σ sθ)], and therefore we have

sθ ↔∗P (Cθ)[l0(σ sθ)] →R0 (Cθ)[r0(σ sθ)] →∗{u→c} (C[(r0σ)σ s])θ = tθ.
Since R0 is terminating, it follows from (b) that R1 is also terminating. Finally,

to prove that R1 = R′0σ ∪ R′ is left reduced, note that R′0σ is left reduced because
R0 is. Furthermore, Condition (i) in Selection and the fact that R0 is left reduced
together imply that R′0σ ∪ R′ is left reduced, too. ✷

The second step in the correctness argument involves showing that if Ki �= ∅,
then we can always apply either selection or compression to get to a new state.

LEMMA 11. Let (Ki, Ri) be a state in the derivation starting from (K0, R0),
where R0 = D0 ∪C0 ∪A0 is a left-reduced (modulo AC) associative-commutative
congruence closure over the signature � ∪K0. Assume that for every constant c in

164 LEO BACHMAIR ET AL.

K0, there exists a term t in T (�) such that� t →∗D0/C0
c.�� If Ki �= ∅, then either

selection or compression is applicable to the state (Ki, Ri).
Proof. Since Ki �= ∅, let c be some constant in Ki . By assumption c represents

some term t ∈ T (�) such that t →∗D0/C0
c.‡ It follows from convergence of

AC\R0 that

t →∗D0∪C0
c′ ←∗C0

c.

Since R0 is a left-reduced (modulo AC) congruence closure, therefore R0 is left
reduced and terminating modulo P , and hence Lemma 9 and Lemma 10 are ap-
plicable. As none of the constants in K0 − Ki occur in the terms t and c, using
Lemma 9(a) and Lemma 10(a), we have

t →∗P \Rsi ◦ ←
∗
P \Rsi c,

where the right-hand side of each rule used in the above proof is either a constant
or a term in T (�). If c is reducible by Ri , then c is a redundant constant that
can be eliminated by compression. If there are no redundant constants, then the
above proof is of the form t →∗

P \Rsi c. If l → d ∈ Rsi is the first rule used in the
above proof that has a constant as a right-hand side, then we can choose l as the
representative for d, and hence selection is applicable. ✷
THEOREM 6. If (K∞, R∞) is the final state of a maximal derivation starting from
state (K,R), where R is a left reduced fully flattened AC congruence closure such
that for every constant c in K0, there exists a term t in T (�) such that t →∗D0/C0

c,
then (i) K∞ = ∅, (ii) →P \Rs∞ is ground convergent on all fully flattened terms
over�, and (iii) the equivalence over flattened T (�) terms defined by this relation
is the same as the equational theory induced by R∪AC over flattened T (�) terms.

Proof. Statement (i) is a consequence of Lemma 11. It follows from Lemma 9(c)
and Lemma 10(c) that→P \Rs∞ is terminating. Let s, t be fully flattened terms over
T (�) such that s ↔∗

P∪Rs∞ t . From Lemma 9(b) and Lemma 10(b), it follows that
s ↔∗AC∪R t . This, in turn, implies that s →∗AC\Re ◦ ↔∗AC ◦ ←∗AC\Re t , and hence,
by projecting this proof onto fully flattened terms (normalize each term in the proof
by F), we obtain a proof s →∗P \Rs ◦ ↔∗P ◦ ←∗P \Rs t , as R is assumed to be fully
flattened. From Lemma 9(a) and Lemma 10(a), this normal form proof can be
projected onto a proof s →∗

P \Rs∞ ◦ ↔∗P ◦ ←∗P \Rs∞ t . This establishes claims (ii)
and (iii). ✷

Note that in the special case when �AC is empty, the notion of rewriting corre-
sponds to the standard notion, and hence R∞ is convergent in the standard sense
by this theorem.

� →D/C= (↔∗C ◦ →D ◦ ↔∗C).
�� If �AC = ∅, then this condition is satisfied by any abstract congruence closure.
‡ Note that if the nonextended form of an A-rule is aD-rule, it is included in the set D0.

ABSTRACT CONGRUENCE CLOSURE 165

7. Conclusion

ABSTRACT CONGRUENCE CLOSURE

Kapur [18] considered the problem of casting Shostak’s congruence closure [28]
algorithm in the framework of ground completion on rewrite rules. Our work has
been motivated by the goal of formalizing not just one but several congruence
closure algorithms, so as to be able to better compare and analyze them.

We have suggested that, abstractly, congruence closure can be defined as a
ground convergent system and that this definition does not restrict the applicability
of congruence closure. We give strong bounds on the length of derivations used to
construct an abstract congruence closure. This brings out a relationship between
derivation lengths and term orderings used in the derivation. The rule-based ab-
stract description of the logical aspects of the various published congruence closure
algorithms leads to a better understanding of these methods. It explains the ob-
served behavior of implementations and also allows one to identify weaknesses in
specific algorithms.

The paper also illustrates the use of an extended signature as a formalism to
model and subsequently reason about data structures like the term dags, which are
based on the idea of structure sharing. This insight is more generally applicable to
other algorithms as well [6].

EFFICIENT CONSTRUCTION OF GROUND CONVERGENT SYSTEMS

Graph-based congruence closure algorithms have also been used to construct a
convergent set of ground rewrite rules in polynomial time by Snyder [29]. Plaisted
et al. [25] gave a direct method, not based on using congruence closure, for com-
pleting a ground rewrite system in polynomial time. Hence our work completes the
missing link, by showing that congruence closure is nothing but ground comple-
tion.

Snyder [29] uses a particular implementation of congruence closure because
of which some postprocessing followed by a second run of congruence closure is
required. We, on the other hand, work with abstract congruence closure and are
free to choose any implementation. All the steps in the algorithm in [29] can be
described by using our construction of abstract congruence closure steps, and the
final output of Snyder’s algorithm corresponds to an abstract congruence closure.
The compression and selection rules for translating back in our work actually
correspond to what Snyder calls printing-out the reduced system, and this is not
included in the algorithm’s time complexity of O(n log(n)) as computed in [29].
Finally, the approach in [29] is to solve the problem “by abandoning rewriting
techniques altogether and recasting the problem in graph theoretic terms.” On the
other hand, we stick to rewriting over extensions.

Plaisted and Sattler-Klein [25] show that ground term-rewriting systems can be
completed in a polynomial number of rewriting steps by using an appropriate data

166 LEO BACHMAIR ET AL.

structure for terms and processing the rules in a certain way. Our work describes the
construction of ground convergent systems using congruence closure as completion
with extensions, followed by a translating back phase. Plaisted and Sattler-Klein
prove a quadratic time complexity of their completion procedure.

AC CONGRUENCE CLOSURE

The fact that we can construct an AC congruence closure implies that the word
problem for finitely presented ground AC-theories is decidable; see [20, 22], and
[14]. We arrive at this result without assuming the existence of an AC-simplification
ordering that is total on ground terms. The existence of such AC-simplification
orderings was established in [22] but required a nontrivial proof.

Since we construct a convergent rewrite system, even the problem of determin-
ing whether two finitely presented ground AC-theories are equivalent is decidable.
Since commutative semigroups are special kinds of AC-theories, where the signa-
ture consists of a single AC-symbol and a finite set of constants, these results carry
over to this special case [21, 19].

Domenjoud and Klay present the idea of using variable abstraction to transform
a set of equations over several AC-symbols into a set of equations in which each
equation contains exactly one AC-symbol [14]. All equations containing the same
AC-symbol are separated out and completed into a canonical rewriting system
(modulo AC) by using the method proposed in [7]. However, the combination of
ground AC-theories with other ground theories is done differently here. In [14],
the ground theory (non-AC part) is handled by using ground completion (and a re-
cursive path ordering during completion). We, on the other hand, use a congruence
closure. The usefulness of our approach can also be seen from the simplicity of the
correctness proof and the results we obtain for transforming a convergent system
over an extended signature to one over the original signature.

The method for completing a finitely presented commutative semigroup (using
what we call A-rules here) has been described in various forms in the literature,
for example, [7].� It is essentially a specialization of Buchberger’s algorithm for
polynomial ideals to the case of binomial ideals (i.e., when the ideal is defined by
polynomials consisting of exactly two monomials with coefficients +1 and −1).

The basic idea behind our construction of associative-commutative congruence
closure is that we consider only certain ground instantiations of the nonground AC
axioms. If we are interested in the E-algebra presented by E (where E consists
of only AC axioms for some function symbols in the signature � in our case,
and E is a set of ground equations), then since E consists of nonground axioms,
one needs to worry about what instantiations of these axioms to consider. For the

� Actually there is a subtle difference between the proposed method here and the various other
algorithms for deciding the word problem for commutative semigroups, too. For example, working
with rule extensions is not the same as working with rules on equivalence classes (under AC) of
terms. Hence, in our method, we can apply certain optimizations as mentioned in Section 5.4.

ABSTRACT CONGRUENCE CLOSURE 167

case when E is a set of AC axioms, we show that we need to consider ground
instances in which every variable is replaced by some subterm occurring in E.
This observation can be generalized, and one can ask for what choices of E axioms
does considering such restricted instantiations suffice to decide the word problem
in E-algebras. Evans [16, 17] gives a characterization in terms of embeddability
of partial E-algebras. Apart from commutative semigroups, this method works for
lattices, groupoids, quasigroups, loops, and so forth.

Acknowledgments

We thank Deepak Kapur, Rakesh Verma, and the anonymous referees for their
helpful comments.

References

1. Bachmair, L.: Canonical Equational Proofs, Birkhäuser, Boston, 1991.
2. Bachmair, L. and Dershowitz, N.: Completion for rewriting modulo a congruence, Theoret.

Comput. Sci. 67(2 & 3) (Oct. 1989), 173–201.
3. Bachmair, L. and Dershowitz, N.: Equational inference, canonical proofs, and proof orderings,

J. ACM 41 (1994), 236–276.
4. Bachmair, L., Ramakrishnan, I., Tiwari, A. and Vigneron, L.: Congruence closure modulo

Associativity-Commutativity, in H. Kirchner and C. Ringeissen (eds), Frontiers of Combining
Systems, Third International Workshop, FroCoS 2000, Nancy, France, March 2000, Lecture
Notes in Artificial Intelligence 1794, Springer, Berlin, 2000, pp. 245–259.

5. Bachmair, L. and Tiwari, A.: Abstract congruence closure and specializations, in D. McAllester
(ed.), Conference on Automated Deduction, CADE 2000, Pittsburgh, PA, June 2000, Lecture
Notes in Artificial Intelligence 1831, Springer, Berlin, 2000, pp. 64–78.

6. Bachmair, L. and Tiwari, A.: Congruence closure and syntactic unification, in C. Lynch and
D. Narendran (eds), 14th International Workshop on Unification, 2000.

7. Ballantyne, A. M. and Lankford, D. S.: New decision algorithms for finitely presented
commutative semigroups, Comp. Math. Appl. 7 (1981), 159–165.

8. Becker, T. and Weispfenning, V.: Gröbner Bases: A computational Approach to Commutative
Algebra, Springer-Verlag, Berlin, 1993.

9. Cardozo, E., Lipton, R. and Meyer, A.: Exponential space complete problems for petri nets
and commutative semigroups, in Proc. 8th Ann. ACM Symp on Theory of Computing, 1976,
pp. 50–54.

10. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S. and Tom-
masi, M.: Tree automata techniques and applications. Available on: http://www.grappa.
univ-lille3.fr/tata, 1997.

11. Cyrluk, D., Lincoln, P. and Shankar, N.: On Shostak’s decision procedure for combination
of theories, in M. A. McRobbie and J. Slaney (eds), Proceedings of the 13th Int. Confer-
ence on Automated Deduction, Lecture Notes in Comput. Sci. 1104, Springer, Berlin, 1996,
pp. 463–477.

12. Dershowitz, N. and Jouannaud, J. P.: Rewrite systems, in J. van Leeuwen (ed.), Handbook
of Theoretical Computer Science (Vol. B: Formal Models and Semantics), North-Holland,
Amsterdam, 1990.

13. Dershowitz, N. and Manna, Z.: Proving termination with multiset orderings, Comm. ACM 22(8)
(1979), 465–476.

168 LEO BACHMAIR ET AL.

14. Domenjoud, E. and Klay, F.: Shallow AC theories, in Proceedings of the 2nd CCL Workshop,
La Escala, Spain, Sept. 1993.

15. Downey, P. J., Sethi, R. and Tarjan, R. E.: Variations on the common subexpressions problem,
J. ACM 27(4) (1980), 758–771.

16. Evans, T.: The word problem for abstract algebras, J. London Math. Soc. 26 (1951), 64–71.
17. Evans, T.: Word problems, Bull. Amer. Math. Soc. 84(5) (1978), 789–802.
18. Kapur, D.: Shostak’s congruence closure as completion, in H. Comon (ed.), Rewriting Tech-

niques and Applications, RTA 1997, Sitges, Spain, July 1997, Lecture Notes in Comput. Sci.
1103, Springer, Berlin, pp. 23–37.

19. Koppenhagen, U. and Mayr, E. W.: An optimal algorithm for constructing the reduced Gröbner
basis of binomial ideals, in Y. D. Lakshman (ed.), Proceedings of the International Symposium
on Symbolic and Algebraic Computation, 1996, pp. 55–62.

20. Marche, C.: On ground AC-completion, in R. V. Book (ed.), 4th International Conference on
Rewriting Techniques and Applications, Lecture Notes in Comput. Sci. 488, Springer, Berlin,
1991, pp. 411–422.

21. Mayr, E. W. and Meyer, A. R.: The complexity of the word problems for commutative
semigroups and polynomial ideals, Adv. in Math. 46 (1982), 305–329.

22. Narendran, P. and Rusinowitch, M.: Any ground associative-commutative theory has a finite
canonical system, in R. V. Book (ed.), 4th International Conference on Rewriting Techniques
and Applications, Lecture Notes in Comput. Sci. 488, Springer, Berlin, 1991, pp. 423–434.

23. Nelson, G. and Oppen, D.: Fast decision procedures based on congruence closure, J. Assoc.
Comput. Mach. 27(2) (Apr. 1980), 356–364.

24. Peterson, G. E. and Stickel, M. E.: Complete sets of reductions for some equational theories,
J. ACM 28(2) (Apr. 1981), 233–264.

25. Plaisted, D. and Sattler-Klein, A.: Proof lengths for equational completion, Inform. and
Comput. 125 (1996), 154–170.

26. Rubio, A. and Nieuwenhuis, R.: A precedence-based total AC-compatible ordering, in
C. Kirchner (ed.), Proceedings of the 5 Intl. Conference on Rewriting Techniques and
Applications, Lecture Notes in Comput. Sci. 960, Springer, Berlin, 1993, pp. 374–388.

27. Sherman, D. J. and Magnier, N.: Factotum: Automatic and systematic sharing support for
systems analyzers, in Proc. TACAS, Lecture Notes in Comput. Sci. 1384, 1998.

28. Shostak, R. E.: Deciding combinations of theories, J. ACM 31(1) (1984), 1–12.
29. Snyder, W.: A fast algorithm for generating reduced ground rewriting systems from a set of

ground equations, J. Symbolic Comput. 15(7) (1993).
30. Tiwari, A.: Decision procedures in automated deduction, Ph.D. thesis, State University of New

York at Stony Brook, New York, 2000.

