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Chapter 1

Introduction

Logic is a science studying the principles of reasoning and valid inference. Au-
tomated deduction is concerned with the mechanization of formal reasoning,
following the laws of logic. The roots of the field go back to the end of the
last century when Frege developed his Begriffsschrift1, the first comprehensive
effort to develop a formal language suitable as a foundation for mathematics.
Alas, Russell discovered a paradox which showed that Frege’s system was in-
consistent, that is, the truth of every proposition can be derived in it. Russell
then devised his own system based on a type theory and he and Whitehead
demonstrated in the monumental Principia Mathematica how it can serve as a
foundation of mathematics. Later, Hilbert developed a simpler alternative, the
predicate calculus. Gentzen’s formulation of the predicate calculus in a system
of natural deduction provides a major milestone for the field. In natural deduc-
tion, the meaning of each logical connective is explained via inference rules, an
approach later systematically refined by Martin-Löf. This is the presentation
we will follow in these notes.

Gentzen’s seminal work also contains the first2 consistency proof for a for-
mal logical system. As a technical device he introduced the sequent calculus
and showed that it derives the same theorems as natural deduction. The fa-
mous Hauptsatz 3 establishes that all proofs in the sequent calculus can be found
according to a simple strategy. It is immediately evident that there are many
propositions which have no proof according to this strategy, thereby guarantee-
ing consistency of the system.

Most search strategies employed by automated deduction systems are either
directly based on or can be derived from the sequent calculus. We can broadly
classify procedures as either working backwards from the proposed theorem to-
ward the axioms, or forward from the axioms toward the theorem. Among the
backward searching procedures we find tableaux, connection methods, matrix
methods and some forms of resolution. Among the forward searching proce-

1literally translated as concept notation
2[? ]
3literally just “main theorem”, often called the cut elimination theorem
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2 Introduction

dures we find classical resolution and the inverse method. The prominence of
resolution among these methods is no accident, since Robinson’s seminal pa-
per represented a major leap forward in the state of the art. It is natural to
expect that a combination of forward and backward search could improve the
efficiency of theorem proving system. Such a combination, however, has been
elusive up to now, due to the largely incompatible basic choices in design and
implementation of the two kinds of search procedures.

In this course we study both types of procedures. We investigate high-level
questions, such as how these procedures relate to the basic sequent calculus. We
also consider low-level issues, such as techniques for efficient implementation of
the basic inference engine.

There is one further dimension to consider: which logic do we reason in?
In philosophy, mathematics, and computer science many different logics are of
interest. For example, there are classical logic, intuitionistic logic, modal logic,
relevance logic, higher-order logic, dynamic logic, temporal logic, linear logic,
belief logic, and lax logic (to mention just a few). While each logic requires
its own considerations, many techniques are shared. This can be attributed in
part to the common root of different logics in natural deduction and the sequent
calculus. Another reason is that low-level efficiency improvements are relatively
independent of higher-level techniques.

For this course we chose intuitionistic logic for a variety of reasons. First, in-
tuitionistic propositions correspond to logical specifications and proofs to func-
tional programs, which means intuitionistic logic is of central interest in the
study of programming languages. Second, intuitionistic logic is more complex
than classical logic and exhibits phenomena obscured by special properties which
apply only to classical logic. Third, there are relatively straightforward inter-
pretations of classical in intuitionistic logic which permits us to study logical
interpretations in connection with theorem proving procedures.

The course is centered around a project, namely the joint design and imple-
mentation of a succession of theorem provers for intuitionistic logic. We start
with natural deduction, followed by a sequent calculus, and a simple tableau
prover. Then we turn toward the inverse method and introduce successive re-
finements consisting of both high-level and low-level optimizations.4 The im-
plementation component is important to gain a deeper understanding of the
techniques introduced in our abstract study.

The goal of the course is to give students a thorough understanding of the
central techniques in automated theorem proving. Furthermore, they should
understand the systematic development of these techniques and their correct-
ness proofs, thereby enabling them to transfer methods to different logics or
applications. We are less interested here in an appreciation of the pragmatics
of highly efficient implementations or performance tuning.

4The precise order and extent of the improvements possible in a one-semester graduate
course has yet to be determined.
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Chapter 2

Natural Deduction

Ich wollte zunächst einmal einen Formalismus aufstellen, der dem
wirklichen Schließen möglichst nahe kommt. So ergab sich ein
,,Kalkül des natürlichen Schließens“.1

— Gerhard Gentzen
Untersuchungen über das logische Schließen [Gen35]

In this chapter we explore ways to define logics, or, which comes to the same
thing, ways to give meaning to logical connectives. Our fundamental notion is
that of a judgment based on evidence. For example, we might make the judg-
ment “It is raining” based on visual evidence. Or we might make the judgment
“‘A implies A’ is true for any proposition A” based on a derivation. The use
of the notion of a judgment as conceptual prior to the notion of proposition
has been advocated by Martin-Löf [ML85a, ML85b]. Certain forms of judg-
ments frequently recur and have therefore been investigated in their own right,
prior to logical considerations. Two that we will use are hypothetical judgments
and parametric jugments (the latter is sometimes called general judgment or
schematic judgment).

A hypothetical judgment has the form “J2 under hypothesis J1”. We con-
sider this judgment evident if we are prepared to make the judgment J2 once
provided with evidence for J1. Formal evidence for a hypothetical judgment
is a hypothetical derivation where we can freely use the hypothesis J1 in the
derivation of J2. Note that hypotheses need not be used, and could be used
more than once.

A parametric judgment has the form “J for any a” where a is a parameter
which may occur in J . We make this judgment if we are prepared to make the
judgment [O/a]J for arbitrary objects O of the right category. Here [O/a]J is
our notation for substituting the object O for parameter a in the judgment J .
Formal evidence for a parametric judgment J is a parametric derivation with
free occurrences of the parameter a.

1First I wanted to construct a formalism which comes as close as possible to actual rea-
soning. Thus arose a “calculus of natural deduction”.

Draft of August 23, 1999



4 Natural Deduction

Formal evidence for a judgment in form of a derivation is usually written in
two-dimensional notation:

D
J

ifD is a derivation of J . For the sake of brevity we sometimes use the alternative
notation D :: J . A hypothetical judgment is written as

u
J1

...
J2

where u is a label which identifies the hypothesis J1. We use the labels to
guarantee that hypotheses which are introduced during the reasoning process
are not used outside their scope.

The separation of the notion of judgment and proposition and the corre-
sponding separation of the notion of evidence and proof sheds new light on
various styles that have been used to define logical systems.

An axiomatization in the style of Hilbert [Hil22], for example, arises when
one defines a judgment “A is true” without the use of hypothetical judgments.
Such a definition is highly economical in its use of judgments, which has to
be compensated by a liberal use of implication in the axioms. When we make
proof structure explicit in such an axiomatization, we arrive at combinatory
logic [Cur30].

A categorical logic [LS86] arises when the basic judgment is not truth, but
entailment “A entails B”.2 Once again, presentations are highly economical
and do not need to seek recourse in complex judgment forms (at least for the
propositional fragment). But derivations often require many hypotheses, which
means that we need to lean rather heavily on conjunction here. Proofs are
realized by morphisms which are an integral part of the machinery of category
theory.

While these are interesting and in many ways useful approaches to logic
specification, neither of them comes particularly close to capturing the practice
of mathematical reasoning. This was Gentzen’s point of departure for the design
of a system of natural deduction [Gen35]. From our point of view, this system is
based on the simple judgment “A is true”, but relies critically on hypothetical
and parametric judgments. In addition to being extremely elegant, it has the
great advantage that one can define all logical connectives without reference to
any other connective. This principle of modularity extends to the meta-theoretic
study of natural deduction and simplifies considering fragments and extension of
logics. Since we will consider many fragments and extension, this orthogonality
of the logical connectives is a critical consideration. There is another advantage
to natural deduction, namely that its proofs are isomorphic to the terms in a λ-
calculus via the so-called Curry-Howard isomorphism [How69], which establishes
many connections to functional programming.

2[This has been disputed by practitioners of the field and should be re-evaluated.]
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2.1 Intuitionistic Natural Deduction 5

Finally, we arrive at the sequent calculus (also introduced by Gentzen in his
seminal paper [Gen35]) when we split the single judgment of truth into two:
“A is an assumption” and “A is true”. While we still employ the machinery of
parametric and hypothetical judgments, we now need an explicit rule to state
that “A is an assumption” is sufficient evidence for “A is a true”. The reverse,
namely that if “A is true” then “A may be used as an assumption” is the Cut
rule which he proved to be redundant in his Hauptsatz. For Gentzen the sequent
calculus was primarily a technical device to prove consistency of his system of
natural deduction, but it exposes many details of the fine structure of proofs in
such a clear manner that many logic presentations employ sequent calculi. The
laws governing the structure of proofs, however, are more complicated than the
Curry-Howard isomorphism for natural deduction might suggest and are still
the subject of study [Her95, Pfe95].

We choose natural deduction as our definitional formalism as the purest
and most widely applicable. Later we justify the sequent calculus as a calculus
of proof search for natural deduction and explicitly relate the two forms of
presentation.

We begin by introducing natural deduction for intuitionistic logic, exhibiting
its basic principles.

2.1 Intuitionistic Natural Deduction

The system of natural deduction we describe below is basically Gentzen’s system
NJ [Gen35] or the system which may be found in Prawitz [Pra65]. The calculus
of natural deduction was devised by Gentzen in the 1930’s out of a dissatis-
faction with axiomatic systems in the Hilbert tradition, which did not seem to
capture mathematical reasoning practices very directly. Instead of a number of
axioms and a small set of inference rules, valid deductions are described through
inference rules only, which at the same time explain the meaning of the logical
quantifiers and connectives in terms of their proof rules.

A language of (first-order) terms is built up from variables x, y, etc., function
symbols f , g, etc., each with a unique arity, and parameters a, b, etc. in the usual
way.

Terms t ::= x | a | f(t1, . . . , tn)

A constant c is simply a function symbol with arity 0 and we write c instead of
c(). Exactly which function symbols are available is left unspecified in the gen-
eral development of predicate logic and only made concrete for specific theories,
such as the theory of natural numbers. However, variables and parameters are
always available. We will use t and s to range over terms.

The language of propositions is built up from predicate symbols P , Q, etc.
and terms in the usual way.

Propositions A ::= P (t1, . . . , tn) | A1 ∧A2 | A1 ⊃A2 | A1 ∨A2 | ¬A
| ⊥ | > | ∀x. A | ∃x. A
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6 Natural Deduction

A propositional constant P is simply a predicate symbol with no arguments and
we write P instead of P (). We will use A, B, and C to range over propositions.
Exactly which predicate symbols are available is left unspecified in the general
development of predicate logic and only made concrete for specific theories.

The notions of free and bound variables in terms and propositions are defined
in the usual way: the variable x is bound in propositions of the form ∀x. A and
∃x. A. We use parentheses to disambiguate and assume that ∧ and ∨ bind
more tightly than ⊃. It is convenient to assume that propositions have no free
individual variables; we use parameters instead where necessary. Our notation
for substitution is [t/x]A for the result of substituting the term t for the variable
x in A. Because of the restriction on occurrences of free variables, we can assume
that t is free of individual variables, and thus capturing cannot occur.

The main judgment of natural deduction is “C is true” written as ` C, from
hypotheses ` A1, . . . , ` An. We will model this as a hypothetical judgment.
This means that certain structural properties of derivations are tacitly assumed,
independently of any logical inferences. In essence, these assumptions explain
what hypothetical judgments are.

Hypothesis. If we have a hypothesis ` A than we can conclude ` A.

Weakening. Hypotheses need not be used.

Duplication. Hypotheses can be used more than once.

Exchange. The order in which hypotheses are introduced is irrelevant.

In natural deduction each logical connective and quantifier is characterized
by its introduction rule(s) which specifies how to infer that a conjunction, dis-
junction, etc. is true. The elimination rule for the logical constant tells what
other truths we can deduce from the truth of a conjunction, disjunction, etc.
Introduction and elimination rules must match in a certain way in order to
guarantee that the rules are meaningful and the overall system can be seen as
capturing mathematical reasoning.

The first is a local soundness property: if we introduce a connective and
then immediately eliminate it, we should be able to erase this detour and find
a more direct derivation of the conclusion without using the connective. If this
property fails, the elimination rules are too strong: they allow us to conclude
more than we should be able to know.

The second is a local completeness property: we can eliminate a connective in
a way which retains sufficient information to reconstitute it by an introduction
rule. If this property fails, the elimination rules are too weak: the do not allow
us to conclude everything we should be able to know.

We provide evidence for local soundness and completeness of the rules by
means of local reduction and expansion judgments, which relate proofs of the
same proposition.

One of the important principles of natural deduction is that each connective
should be defined only in terms of inference rules without reference to other
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2.1 Intuitionistic Natural Deduction 7

logical connectives or quantifiers. We refer to this as orthogonality of the con-
nectives. It means that we can understand a logical system as a whole by
understanding each connective separately. It also allows us to consider frag-
ments and extensions directly and it means that the investigation of properties
of a logical system can be conducted in a modular way.

We now show the introduction and elimination rules, local reductions and
expansion for each of the logical connectives in turn. The rules are summarized
on page 2.1.

Conjunction. A∧B should be true if both A and B are true. Thus we have
the following introduction rule.

` A ` B
∧I

` A ∧B

If we consider this as a complete definition, we should be able to recover both
A and B if we know A ∧B. We are thus led to two elimination rules.

` A ∧B ∧EL
` A

` A ∧B ∧ER
` B

To check our intuition we consider a deduction which ends in an introduction
followed by an elimination:

D
` A

E
` B

∧I
` A ∧B

∧EL
` A

Clearly, it is unnecessary to first introduce the conjunction and then eliminate it:
a more direct proof of the same conclusion from the same (or fewer) assumptions
would be simply

D
` A

Formulated as a transformation or reduction between derivations we have

D
` A

E
` B

∧I
` A ∧B

∧EL
` A

=⇒R
D
` A

and symmetrically

D
` A

E
` B

∧I
` A ∧B

∧ER
` B

=⇒R
E
` B
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8 Natural Deduction

The new judgment
D
` A =⇒R

E
` A

relates derivations with the same conclusion. We say D locally reduces to E .
Since local reductions are possible for both elimination rules for conjunction,
our rules are locally sound. To show that the rules are locally complete we show
how to reintroduce a conjunction from its components in the form of a local
expansion.

D
` A ∧B =⇒E

D
` A ∧B

∧EL
` A

D
` A ∧B

∧ER
` B
∧I

` A ∧B

Implication. To derive ` A ⊃ B we assume ` A and then derive ` B.
Written as a hypothetical judgment:

u
` A
...
` B

⊃Iu

` A⊃ B

We must be careful that the hypothesis ` A is available only in the deriva-
tion above the premiss. We therefore label the inference with the name of the
hypothesis u, which must not be used already as the name for a hypothesis in
the derivation of the premiss. We say that the hypothesis ` A labelled u is
discharged at the inference labelled ⊃Iu. A derivation of ` A ⊃ B describes a
construction by which we can transform a derivation of ` A into a derivation
of ` B: we substitute the derivation of ` A wherever we used the assumption
` A in the hypothetical derivation of ` B. The elimination rule expresses this:
if we have a derivation of ` A ⊃ B and also a derivation of ` A, then we can
obtain a derivation of ` B.

` A⊃ B ` A
⊃E

` B

The local reduction rule carries out the substitution of derivations explained
above.

u
` A
D
` B

⊃Iu

` A⊃ B
E
` A

⊃E
` B

=⇒R

E
u

` A
D
` B
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2.1 Intuitionistic Natural Deduction 9

The final derivation depends on all the hypotheses of E and D except u, for
which we have substituted E . An alternative notation for this substitution of
derivations for hypotheses is [E/u]D :: ` B. The local reduction described
above may significantly increase the overall size of the derivation, since the
deduction E is substituted for each occurrence of the assumption labeled u in
D and may thus be replicated many times. The local expansion simply rebuilds
the implication.

D
` A⊃ B =⇒E

D
` A⊃ B

u
` A
⊃E

` B
⊃Iu

` A⊃ B

Disjunction. A∨B should be true if either A is true or B is true. Therefore
we have two introduction rules.

` A ∨IL
` A ∨B

` B ∨IR
` A ∨B

If we have a hypothesis ` A ∨ B, we do not know how it might be inferred.
That is, a proposed elimination rule

` A ∨B
?

` A

would be incorrect, since a deduction of the form

E
` B

∨IR
` A ∨B

?
` A

cannot be reduced. As a consequence, the system would be inconsistent: if we
have at least one theorem (B, in the example) we can prove every formula (A,
in the example). How do we use the assumption A ∨B in informal reasoning?
We often proceed with a proof by cases: we prove a conclusion C under the
assumption A and also show C under the assumption B. We then conclude
C, since either A or B by assumption. Thus the elimination rule employs two
hypothetical judgments.

` A ∨B

u1

` A
...
` C

u2

` B
...
` C

∨Eu1,u2

` C
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10 Natural Deduction

Now one can see that the introduction and elimination rules match up in two
reductions. First, the case that the disjunction was inferred by ∨IL.

D
` A

∨IL
` A ∨B

u1

` A
E1
` C

u2

` B
E2
` C

∨Eu1,u2

` C

=⇒R

D
u1

` A
E1
` C

The other reduction is symmetric.

D
` B

∨IR
` A ∨B

u1

` A
E1
` C

u2

` B
E2
` C

∨Eu1,u2

` C

=⇒R

D
u2

` B
E2
` C

As in the reduction for implication, the resulting derivation may be longer than
the original one. The local expansion is more complicated than for the previous
connectives, since we first have to distinguish cases and then reintroduce the
disjunction in each branch.

D
` A ∨B =⇒E

D
` A ∨B

u1

` A
∨IL

` A ∨B

u2

` B
∨IR

` A ∨B
∨Eu1,u2

` A ∨B

Negation. In order to derive ¬A we assume A and try to derive a contra-
diction. Thus it seems that negation requires falsehood, and, indeed, in most
literature on constructive logic, ¬A is seen as an abbreviation of A ⊃ ⊥. In
order to give a self-contained explanation of negation by an introduction rule,
we employ a judgment that is parametric in a propositional parameter p: If we
can derive any p from the hypothesis A we conclude ¬A.

u
` A
...
` p

¬Ip,u

` ¬A
` ¬A ` A

¬E
` C
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2.1 Intuitionistic Natural Deduction 11

The elimination rule follows from this view: if we know ` ¬A and ` A then
we can conclude any formula C is true. In the form of a local reduction:

u
` A
D
` p

¬Ip,u
` ¬A

E
` A

¬E
` C

=⇒R

E
u

` A
[C/p]D
` C

The substitution [C/p]D is valid, since D is parametric in p. The local expansion
is similar to the case for implication.

D
` ¬A =⇒E

D
` ¬A

u
` A
¬E

` p
¬Ip,u

` ¬A

Truth. There is only an introduction rule for >:

>I
` >

Since we put no information into the proof of >, we know nothing new if we
have an assumption > and therefore we have no elimination rule and no local
reduction. It may also be helpful to think of > as a 0-ary conjunction: the
introduction rule has 0 premisses instead of 2 and we correspondingly have 0
elimination rules instead of 2. The local expansion allows the replacement of
any derivation of > by >I.

D
` > =⇒E >I

` >

Falsehood. Since we should not be able to derive falsehood, there is no in-
troduction rule for ⊥. Therefore, if we can derive falsehood, we can derive
everything.

` ⊥
⊥E

` C

Note that there is no local reduction rule for ⊥E. It may be helpful to think
of ⊥ as a 0-ary disjunction: we have 0 instead of 2 introduction rules and we
correspondingly have to consider 0 cases instead of 2 in the elimination rule.
Even though we postulated that falsehood should not be derivable, falsehood
could clearly be a consequence of contradictory assumption. For example, `
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12 Natural Deduction

A ∧ ¬A⊃⊥ is derivable. While there is no local reduction rule, there still is a
local expansion in analogy to the case for disjunction.

D
` ⊥ =⇒E

D
` ⊥

⊥E
` ⊥

Universal Quantification. Under which circumstances should ` ∀x. A be
true? This clearly depends on the domain of quantification. For example, if we
know that x ranges over the natural numbers, then we can conclude ∀x. A if we
can prove [0/x]A, [1/x]A, etc. Such a rule is not effective, since it has infinitely
many premisses. Thus one usually retreats to rules such as induction. However,
in a general treatment of predicate logic we would like to prove statements
which are true for all domains of quantification. Thus we can only say that
∀x. A should be provable if [a/x]A is provable for a new parameter a about
which we can make no assumption. Conversely, if we know ∀x. A, we know that
[t/x]A for any term t.

` [a/x]A
∀Ia

` ∀x. A
` ∀x. A

∀E
` [t/x]A

The label a on the introduction rule is a reminder the parameter a must be
“new”, that is, it may not occur in any uncancelled assumption in the proof
of [a/x]A or in ∀x. A itself. In other words, the derivation of the premiss
must parametric in a. The local reduction carries out the substitution for the
parameter.

D
` [a/x]A

∀I
` ∀x. A

∀E
` [t/x]A

=⇒R
[t/a]D
` [t/x]A

Here, [t/a]D is our notation for the result of substituting t for the parameter a
throughout the deduction D. For this substitution to preserve the conclusion,
we must know that a does not already occur in A. Similarly, we would change
the hypotheses if a occurred free in any of the undischarged hypotheses of D.
This might render a larger proof incorrect. As an example, consider the formula
∀x. ∀y. P (x)⊃ P (y) which should clearly not be true for all predicates P . The

Draft of August 23, 1999



2.1 Intuitionistic Natural Deduction 13

following is not a deduction of this formula.

u
` P (a)

∀Ia?
` ∀x. P (x)

∀E
` P (b)

⊃Iu

` P (a)⊃ P (b)
∀Ib

` ∀y. P (a)⊃ P (y)
∀Ia

` ∀x. ∀y. P (x)⊃ P (y)

The flaw is at the inference marked with “?,” where a is free in the hypothesis
labelled u. Applying a local proof reduction to the (incorrect) ∀I inference
followed by ∀E leads to the the assumption [b/a]P (a) which is equal to P (b).
The resulting derivation

u
` P (b)

⊃Iu

` P (a)⊃ P (b)
∀Ib

` ∀y. P (a)⊃ P (y)
∀Ia

` ∀x. ∀y. P (x)⊃ P (y)

is once again incorrect since the hypothesis labelled u should read P (a), not
P (b).

The local expansion for universal quantification is much simpler.

D
` ∀x. A =⇒E

D
` ∀x. A

∀E
` [a/x]A

∀Ia
` ∀x. A

Existential Quantification. We conclude that ∃x. A is true when there is a
term t such that [t/x]A is true.

` [t/x]A
∃I

` ∃x. A

When we have an assumption ∃x. A we do not know for which t it is the case
that [t/x]A holds. We can only assume that [a/x]A holds for some parameter
a about which we know nothing else. Thus the elimination rule resembles the

Draft of August 23, 1999



14 Natural Deduction

one for disjunction.

` ∃x. A

u
` [a/x]A

...
` C

∃Ea,u
` C

The restriction is similar to the one for ∀I: the parameter a must be new, that is,
it must not occur in ∃x. A, C, or any assumption employed in the derivation of
the second premiss. In the reduction rule we have to perform two substitutions:
we have to substitute t for the parameter a and we also have to substitute for
the hypothesis labelled u.

D
` [t/x]A

∃I
∃x. A

u
` [a/x]A
E
` C

∃Ea,u
` C

=⇒R

D
u

` [t/x]A
[t/a]E
` C

The proviso on occurrences of a guarantees that the conclusion and hypotheses
of [t/a]E have the correct form. The local expansion for existential quantification
is also similar to the case for disjunction.

D
` ∃x. A =⇒E

D
` ∃x. A

u
` [a/x]A

∃I
` ∃x. A

∃Ea,u
` ∃x. A

Here is a simple example of a natural deduction. We attempt to show the
process by which such a deduction may have been generated, as well as the
final deduction. The three vertical dots indicate a gap in the derivation we are
trying to construct, with hypotheses and their consequences shown above and
the desired conclusion below the gap.

...
` A ∧ (A ⊃B) ⊃ B

;

u
` A ∧ (A⊃ B)

...
` B

⊃Iu

` A ∧ (A⊃ B) ⊃B
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2.1 Intuitionistic Natural Deduction 15

;

u
` A ∧ (A ⊃B)

∧EL
` A
...
` B

⊃Iu

` A ∧ (A ⊃B) ⊃ B

;

u
` A ∧ (A ⊃B)

∧EL
` A

u
` A ∧ (A ⊃B)

∧ER
` A⊃ B

...
` B

⊃Iu

` A ∧ (A ⊃B) ⊃ B

;

u
` A ∧ (A⊃ B)

∧ER
` A⊃ B

u
` A ∧ (A ⊃B)

∧EL
` A
⊃E

` B
...
` B

⊃Iu

` A ∧ (A ⊃B) ⊃ B

;

u
` A ∧ (A⊃ B)

∧ER
` A⊃ B

u
` A ∧ (A ⊃B)

∧EL
` A
⊃E

` B
⊃Iu

` A ∧ (A ⊃B) ⊃ B

The symbols A and B in this derivation stand for arbitrary propositions; we
can thus established a judgment parametric in A and B. In other words, every
instance of this derivation (substituting arbitrary propositions for A and B) is
a valid derivation.

Below is a summary of the rules of intuitionistic natural deduction.
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16 Natural Deduction

Introduction Rules Elimination Rules

` A ` B
∧I

` A ∧B
` A ∧B ∧EL
` A

` A ∧B ∧ER
` B

` A ∨IL
` A ∨B

` B ∨IR
` A ∨B

` A ∨B

u1

` A
...
` C

u2

` B
...
` C

∨Eu1,u2

` C

u
` A
...
` B

⊃Iu

` A⊃ B
` A⊃ B ` A

⊃E
` B

u
` A
...
` p

¬Ip,u
` ¬A

` A ` ¬A
¬E

` C

>I
` > no > elimination

no ⊥ introduction

` ⊥
⊥E

` C

` [a/x]A
∀Ia

` ∀x. A
` ∀x. A

∀E
` [t/x]A

` [t/x]A
∃I

` ∃x. A

` ∃x. A

u
` [a/x]A

...
` C

∃Ea,u
` C
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2.2 Classical Logic 17

2.2 Classical Logic

The inference rules so far only model intuitionistic logic, and some classically
true propositions such as A ∨ ¬A (for an arbitrary A) are not derivable, as we
will see in Section ??. There are three commonly used ways one can construct a
system of classical natural deduction by adding one additional rule of inference.
⊥C is called Proof by Contradiction or Rule of Indirect Proof, ¬¬C is the Double
Negation Rule, and XM is referred to as Excluded Middle.

u
¬A

...
⊥
⊥uC

A

¬¬A ¬¬C
A

XM
A ∨ ¬A

The rule for classical logic (whichever one chooses to adopt) breaks the pattern
of introduction and elimination rules. One can still formulate some reductions
for classical inferences, but natural deduction is at heart an intuitionistic cal-
culus. The symmetries of classical logic are much better exhibited in sequent
formulations of the logic. In Exercise 2.3 we explore the three ways of extending
the intuitionistic proof system and show that they are equivalent.

Another way to obtain a natural deduction system for classical logic is to
allow multiple conclusions (see, for example, Parigot [Par92]).

2.3 Localizing Hypotheses

In the formulation of natural from Section 2.1 correct use of hypotheses and
parameters is a global property of a derivation. We can localize it by annotating
each judgment in a derivation by the available parameters and hypotheses. We
give here a formulation of natural deduction for intuitionistic logic with localized
hypotheses, but not parameters. For this we need a notation for hypotheses
which we call a context.

Contexts Γ ::= · | Γ, u:A

Here, “·” represents the empty context, and Γ, u:A adds hypothesis ` A labelled
u to Γ. We assume that each label u occurs at most once in a context in order
to avoid ambiguities. The main judgment can then be written as Γ ` A, where

·, u1:A1, . . . , un:An ` A

stands for
u1

` A1 . . .
un

` An
...
` A
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18 Natural Deduction

in the notation of Section 2.1.
We use a few important abbreviations in order to make this notation less

cumbersome. First of all, we may omit the leading “·” and write, for example,
u1:A1, u2:A2 instead of ·, u1:A1, u2:A2. Secondly, we denote concatenation of
contexts by overloading the comma operator as follows.

Γ, · = Γ
Γ, (Γ′, u:A) = (Γ,Γ′), u:A

With these additional definitions, the localized version of our rules are as
follows.

Introduction Rules Elimination Rules

Γ ` A Γ ` B
∧I

Γ ` A ∧B
Γ ` A ∧B ∧EL

Γ ` A
Γ ` A ∧B ∧ER

Γ ` B

Γ ` A ∨IL
Γ ` A ∨B

Γ ` B ∨IR
Γ ` A ∨B

Γ ` A ∨B Γ, u1:A ` C Γ, u2:B ` C
∨Eu1,u2

Γ ` C

Γ, u:A ` B
⊃Iu

Γ ` A⊃ B
Γ ` A ⊃B Γ ` A

⊃E
Γ ` B

Γ, u:A ` p
¬Ip,u

Γ ` ¬A
Γ ` A Γ ` ¬A

¬E
Γ ` C

>I
Γ ` > no > elimination

no ⊥ introduction

Γ ` ⊥
⊥E

Γ ` C

Γ ` [a/x]A
∀Ia

Γ ` ∀x. A
Γ ` ∀x. A

∀E
Γ ` [t/x]A

Γ ` [t/x]A
∃I

Γ ` ∃x. A

Γ ` ∃x. A Γ, u:[a/x]A ` C
∃Ea,u

Γ ` C

We also have a new rule for hypotheses which was an implicit property of the
hypothetical judgments before.

u
Γ1, u:A,Γ2 ` A

Other general assumptions about hypotheses, namely that they may be used ar-
bitrarily often in a derivation and that their order does not matter, are indirectly
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2.3 Localizing Hypotheses 19

reflected in these rules. Note that if we erase the context Γ from the judgments
throughout a derivation, we obtain a derivation in the original notation.

When we discussed local reductions in order to establish local soundness, we
used the notation

D
u

` A
E
` C

for the result of substituting the derivation D of ` A for all uses of the hy-
pothesis ` A labelled u in E . We would now like to reformulate the property
with localized hypotheses. In order to prove that the (now explicit) hypotheses
behave as expected, we use the principle of structural induction over derivations.
Simply put, we prove a property for all derivations by showing that, whenever
it holds for the premisses of an inference, it holds for the conclusion. Note that
we have to show the property outright when the rule under consideration has
no premisses, which amounts to the base cases forof the induction.

Theorem 2.1 (Structural Properties of Hypotheses) The following prop-
erties hold for intuitionistic natural deduction.

1. (Exchange) If Γ1, u1:A,Γ2, u2:B,Γ2 ` C then Γ1, u2:B,Γ2, u1:A,Γ2 ` C.

2. (Weakening) If Γ1,Γ2 ` C then Γ1, u:A,Γ2 ` C.

3. (Contraction) If Γ1, u1:A,Γ2, u2:A,Γ2 ` C then Γ1, u:A,Γ2,Γ3 ` C.

4. (Substitution) If Γ1, u:A,Γ2 ` C and Γ1 ` A then Γ1,Γ2 ` C.

Proof: The proof is in each case by straightforward induction over the structure
of the first given derivation.

In the case of exchange, we appeal to the inductive assumption on the deriva-
tions of the premisses and construct a new derivation with the same inference
rule. Algorithmically, this means that we exchange the hypotheses labelled u1

and u2 in every judgment in the derivation.
In the case of weakening and contraction, we proceed similarly, either adding

the new hypothesis u:A to every judgment in the derivation (for weakening), or
replacing uses of u1 and u2 by u (for contraction).

For substitution, we apply the inductive assumption to the premisses of the
given derivation D until we reach hypotheses. If the hypothesis is different from
u we can simply erase u:A (which is unused) to obtain the desired derivation.
If the hypothesis is u:A the derivation looks like

D =
u

Γ1, u:A,Γ2 ` A

so C = A in this case. We are also given a derivation E of Γ1 ` A and have
to construct a derivation F of Γ1,Γ2 ` A. But we can just repeatedly apply
weakening to E to obtain F . Algorithmically, this means that, as expected, we
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20 Natural Deduction

substitute the derivation E (possibly weakened) for uses of the hypotheses u:A
in D. Note that in our original notation, this weakening has no impact, since
unused hypotheses are not apparent in a derivation. 2

It is also possible to localize the derivations themselves, using proof terms.
As we will see in Section ??, these proof terms form a λ-calculus closely related
to functional programming. When parameters, hypotheses, and proof terms
are all localized our main judgment becomes decidable. In the terminology of
Martin-Löf [ML94], the main judgment is then analytic rather than synthetic.
We no longer need to go outside the judgment itself in order to collect evidence
for it: An analytic judgment encapsulates its own evidence.

2.4 Exercises

Exercise 2.1 Prove the following by natural deduction using only intuitionistic
rules when possible. We use the convention that ⊃, ∧, and ∨ associate to the
right, that is, A⊃B⊃C stands for A⊃(B⊃C). A ≡ B is a syntactic abbreviation
for (A ⊃ B) ∧ (B ⊃ A). Also, we assume that ∧ and ∨ bind more tightly than
⊃, that is, A∧B⊃C stands for (A∧B)⊃C. The scope of a quantifier extends
as far to the right as consistent with the present parentheses. For example,
(∀x. P (x)⊃ C) ∧ ¬C would be disambiguated to (∀x. (P (x)⊃C)) ∧ (¬C).

1. ` A⊃ B ⊃ A.

2. ` A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C).

3. (Peirce’s Law). ` ((A⊃ B) ⊃A) ⊃A.

4. ` A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C).

5. ` A⊃ (A ∧B) ∨ (A ∧ ¬B).

6. ` (A⊃ ∃x. P (x)) ≡ ∃x. (A ⊃ P (x)).

7. ` ((∀x. P (x))⊃C) ≡ ∃x. (P (x)⊃C).

8. ` ∃x. ∀y. (P (x)⊃ P (y)).

Exercise 2.2 We write A ` B if B follows from hypothesis A and A a` B
for A ` B and B ` A. Which of the following eight parametric judgments are
derivable intuitionistically?

1. (∃x. A) ⊃B a` ∀x. (A⊃ B)

2. A ⊃ (∃x. B) a` ∃x. (A⊃ B)

3. (∀x. A) ⊃B a` ∃x. (A⊃ B)

4. A ⊃ (∀x. B) a` ∀x. (A⊃ B)
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2.4 Exercises 21

Provide natural deductions for the valid judgments. You may assume that the
bound variable x does not occur in B (items 1 and 3) or A (items 2 and 4).

Exercise 2.3 Show that the three ways of extending the intuitionistic proof
system are equivalent, that is, the same formulas are deducible in all three
systems.

Exercise 2.4 Assume we had omitted disjunction and existential quantification
and their introduction and elimination rules from the list of logical primitives.
In the classical system, give a definition of disjunction and existential quantifi-
cation (in terms of other logical constants) and show that the introduction and
elimination rules now become admissible rules of inference. A rule of inference is
admissible if any deduction using the rule can be transformed into one without
using the rule.

Exercise 2.5 Assume we would like to design a system of natural deduction
for a simple temporal logic. The main judgment is now “A is true at time t”
written as

`t A.

1. Explain how to modify the given rules for natural deduction to this more
general judgment and show the rules for implication and universal quan-
tification.

2. Write out introduction and elimination rules for the temporal operator
©A which should be true if A is true at the next point in time. Denote
the “next time after t” by t + 1.

3. Show the local reductions and expansions which show the local soundness
and completness of your rules.

4. Write out introduction and elimination rules for the temporal operator
2A which should be true if A is true at all times.

5. Show the local reductions and expansions.

Exercise 2.6 Design introduction and elimination rules for the connectives

1. A ≡ B, usually defined as (A ⊃B) ∧ (B ⊃ A),

2. A | B (exclusive or), usually defined as (A ∧¬B) ∨ (¬A ∧B),

without recourse to other logical constants or operators. Also show the corre-
sponding local reductions and expansions.
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