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Initial Sequents. This leaves the question of initial sequents, which is easily
handled by allowing an left passive atomic proposition to match a right passive
atomic proposition.

init
∆, P ; ·=⇒ ·;P

The judgments ∆; Γ =⇒ ρ are hypothetical in ∆, but not hypothetical in Γ.
This is because proposition in Γ do not persist, and because they have to be
empty in the initial sequents. In other words, contraction and weakening are not
available for Γ. However, it can be explained as a linear hypothetical judgment
where each linear hypothesis must be used exactly once in a derivation. We do
not formalize this notion any further, but just remark that appropriate versions
of the substitution property can be devised to explain its meaning.

First, the soundness theorem is straightforward, since inversion proofs merely
eliminate some disjunctive non-determinism.

Theorem 4.2 (Soundness of Inversion Proofs)
If ∆; Γ =⇒ A; · or ∆; Γ =⇒ ·;A then ∆,Γ =⇒ A.

Proof: By a straightforward induction over the given derivation, applying weak-
ening in some cases. 2

Formulating appropriate theorems for the study of inversion proofs is some-
what difficult, because of the nature conjunctive and disjunctive non-determinism.
To complement the soundness property, we first show the completeness theo-
rem for the deductive system. Note, however, that this does not yet take into
account the don’t care non-determinism we have in mind for the sequents with
active propositions.

The completeness theorem requires a number of lemmas about inversion
sequents. For a possible alternative path, see Exercise 4.2. The first set of results
expresses the invertibility of the rules concerning the active propositions. That
is, we can immediately apply any invertible rule witout losing completeness.
The second set of results expresses the opposite: we can always postpone the
non-invertible rules until all invertible rules have been applied.

To state inversion in the strongest form (which is needed in the completeness
proof for the search procedure, Theorem 4.8) we define the depth of a derivation
as one plus the maximum of the depth of the derivations of the premises of the
last rule applied. The depth is defined as 1 if the last inference rule has no
premises.

Lemma 4.3 (Inversion on Active Rules)

1. If ∆; Γ =⇒ A ∧B; · then ∆; Γ =⇒ A and ∆; Γ =⇒ A; ·.

2. If ∆; Γ =⇒ A ⊃B; · then ∆; Γ, A =⇒ B; ·.

3. If ∆; Γ =⇒ ∀x. A; · then ∆; Γ =⇒ [a/x]A; · for any new parameter a.
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60 Focused Derivations

4. If ∆; Γ =⇒ R; · then ∆; Γ =⇒ ·;R.

5. If ∆; Γ, A∧B =⇒ ρ then ∆; Γ, A, B =⇒ ρ.

6. If ∆; Γ,>=⇒ ρ then ∆; Γ =⇒ ρ.

7. If ∆; Γ, A∨B =⇒ ρ then ∆; Γ, A =⇒ ρ and ∆; Γ, B =⇒ ρ.

8. If ∆; Γ, ∃x. A =⇒ ρ then ∆; Γ, [a/x]A=⇒ ρ for any new parameter a.

9. If ∆; Γ, L=⇒ ρ then ∆, L; Γ =⇒ ρ.

Moreover, in each case the derivations whose existence is asserted are of equal
or smaller depth than the given derivations.

Proof: By straightforward induction on the structure of the given derivations.
2

The dual lemma shows that passive rules can be postponed until after the
active rules. We define the active size of a sequent ∆; Γ =⇒ A; · or ∆; Γ =⇒
·;R as the number of logical quantifiers, connectives, constants, and atomic
propositions in Γ and A. Note that the active size of a sequent is 0 if and only
if it has the form ∆; · =⇒ ·;R.

Lemma 4.4 (Postponement of Passive Rules)

1. If ∆; Γ =⇒ A; · or ∆; Γ =⇒ ·;A then ∆; Γ =⇒ ·;A ∨B.

2. If ∆; Γ =⇒ B; · or ∆; Γ =⇒ ·;B then ∆; Γ =⇒ ·;A ∨B.

3. If ∆; Γ =⇒ [t/x]A; · or ∆; Γ =⇒ ·; [t/x]A then ∆; Γ =⇒ ·; ∃x. A.

4. If (∆, A⊃ B); Γ =⇒ A; · and (∆, A⊃ B); Γ, B =⇒ ρ
then (∆, A⊃ B); Γ =⇒ ρ.

5. If (∆, ∀x. A); Γ, [t/x]A=⇒ ρ then (∆, ∀x. A); Γ =⇒ ρ.

Proof: By induction on the active size of the given sequent. In the base case,
the result follows directly by an inference rule. In each other case we apply in-
version to an element of Γ (Lemma 4.3) and appeal to the induction hypothesis.
We show two cases in the proof of part (4).

Case: Γ = · and ρ = ·;R.

(∆, A⊃B);B =⇒ ·;R Assumption
(∆, A⊃B); · =⇒ A; · Assumption
(∆, A⊃B); · =⇒ ·;R By rule ⊃L

Case: Γ = Γ′, C ∧D.
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4.1 Inversion 61

(∆, A⊃ B); Γ′, C ∨D,B =⇒ ρ Assumption
(∆, A⊃ B); Γ′, C, B =⇒ ρ and
(∆, A⊃ B); Γ′, D, B =⇒ ρ By inversion
(∆, A⊃ B); Γ′, C ∨D =⇒ A; · Assumption
(∆, A⊃ B); Γ′, C =⇒ A; · and
(∆, A⊃ B); Γ′, D =⇒ A; · By inversion
(∆, A⊃ B); Γ′, C =⇒ ρ By i.h. on Γ′, C
(∆, A⊃ B); Γ′, D =⇒ ρ By i.h. on Γ′, D
(∆, A⊃ B); Γ′, C ∨D =⇒ ρ By rule ∨L

2

In sequent calculus, the main judgment Γ =⇒ A is hypothetical in Γ. This
means Γ directly satisfies weakening and contraction (the additional substitu-
tion property is not relevant in this context). However, the inversion sequent
∆; Γ =⇒ ρ is not hypothetical in Γ. In particular, weakening is not obvious
(since Γ must be empty for a passive rule to apply) and contraction is not obvi-
ous (since elements of Γ are not propagated from the conclusion to the premises
of the rules).

For the proof of completeness, and also to permit some optimizations in the
search procedure, we need to show that weakening and contraction for propo-
sitions in Γ are admissible, at the price of possibly lengthening the derivation.
Note that weakening and contraction for ∆ is trivial, since inversion sequents
are hypothetical in ∆.

Lemma 4.5 (Structural Properties of Inversion Sequents)

1. If ∆; Γ =⇒ ρ then (∆, A); Γ =⇒ ρ.

2. If (∆, A, A); Γ =⇒ ρ then (∆, A); Γ =⇒ ρ.

3. If ∆; Γ =⇒ ρ then ∆; (Γ, A) =⇒ ρ.

4. If ∆; (Γ, A, A) =⇒ ρ then ∆; (Γ, A) =⇒ ρ.

Proof: Parts (1) and (2) follow as usual by straightforward structural induc-
tions over the given derivations. Parts (3) and (4) follow by induction on the
structure of A, taking advantage of the inversion properties for active proposi-
tions (Lemma 4.3) and parts (1) and (2) for passive propositions. 2

The first completeness theorem below does not express the conjunctive non-
determinism in the search for inversion proofs. This will be treated in a further
refinement.

Theorem 4.6 (Completeness of Inversion Proofs)
If Γ =⇒ A then ·; Γ =⇒ A; ·.
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62 Focused Derivations

Proof: By induction on the structure of the given sequent derivation S, taking
advantage of the inversion, postponement, and structural properties proven in
this section. We consider in turn: invertible right rules, invertible left rules,
initial sequents, non-invertible right rules and non-invertible left rules.

Case:

S =

S1

Γ =⇒ A1

S2

Γ =⇒ A2

∧R
Γ =⇒ A1 ∧A2

·; Γ =⇒ A1; · By i.h. on S1

·; Γ =⇒ A2; · By i.h. on S2

·; Γ =⇒ A1 ∧A2; · By rule ∧R

Cases: The right invertible rules ⊃R and ∀R and also the case for >R are
similar to the case for ∧R.

Case:

S =

S1

Γ, B1 ∨B2, B1 =⇒ A
S2

Γ, B1 ∨B2, B2 =⇒ A
∨L

Γ, B1 ∨B2 =⇒ A

·; Γ, B1 ∨B2, B1 =⇒ A; · By i.h. on S1

·; Γ, B1 ∨B2, B2 =⇒ A; · By i.h. on S2

·; Γ, B1 ∨B2, B1 ∨B2 =⇒ A; · By rule ∨L
·; Γ, B1 ∨B2 =⇒ A; · By contraction (Lemma 4.5)

Cases: The left invertible rule ∃L and also the case for ⊥L are similar to the
case for ∨L.

Case:

S =

S1

Γ, B1 ∧B2, B1 =⇒ A
∧L1

Γ, B1 ∧B2 =⇒ A

·; Γ, B1 ∧B2, B1 =⇒ A; · By i.h. on S1

·; Γ, B1 ∧B2, B1, B2 =⇒ A; · By weakening (Lemma 4.5)
·; Γ, B1 ∧B2, B1 ∧B2 =⇒ A By rule ∧L
·; Γ, B1 ∧B2 =⇒ A By contraction (Lemma 4.5)

Case: The case for ∧L2 is symmetric to ∧L1. Note that there is no left rule
for > in the sequent calculus, so the >L rule on inversion sequents arises
only from weakening (see the following case).
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Case:

S = init
Γ, P =⇒ P

P ; · =⇒ ·;P By rule init
P ; · =⇒ P ; · By rule tR
·;P =⇒ P ; · By rule tL
·; Γ, P =⇒ P ; · By weakening (Lemma 4.5)

Case:

S =

S1

Γ =⇒ A1
∨R1

Γ =⇒ A1 ∨A2

·; Γ =⇒ A1; · By i.h. on S1

·; Γ =⇒ ·;A1 ∨A2 By postponement (Lemma 4.4)
·; Γ =⇒ A1 ∨A2; · By rule tR

Cases: The cases for the non-invertible right rules ∨R2 and ∃R are similar to
∨R1.

Case:

S =

S1

Γ, B1 ⊃ B2 =⇒ B1

S2

Γ, B1 ⊃B2, B2 =⇒ A
⊃L

Γ, B1 ⊃ B2 =⇒ A

·; Γ, B1 ⊃B2 =⇒ B1; · By i.h. on S1

B1 ⊃ B2; Γ =⇒ B1; · By inversion (Lemma 4.3)
·; Γ, B1 ⊃B2, B2 =⇒ A; · By i.h. on S2

B1 ⊃ B2; Γ, B2 =⇒ A; · By inversion (Lemma 4.3)
B1 ⊃ B2; Γ =⇒ A; · By postponement (Lemma 4.4)
·; Γ, B1 ⊃B2 =⇒ A; · By rule tL

Case: The cases for the non-invertible left rule ∀L is similar to ⊃L.

2

To capture the conjunctive non-determinism we think of an unproven se-
quent as a goal and the unproven leaves of a partially constructed derivation
as subgoals. From the inversion properties for active propositions we already
know that we do not lose completeness when applying active rules. However,
it is conceivable that the eager application of active rules does not terminate,
which means that the search procedure we have in mind would be incomplete.
Fortunately, this is not the case. While the following termination property is
not directly needed in the completeness proof for the search procedure, it fore-
shadows the argument used there.
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64 Focused Derivations

Lemma 4.7 (Termination of Active Rules)
Given a goal ∆; Γ =⇒ ρ. Any sequence of applications of active rules terminates.

Proof: By induction on the active size of the given sequent. 2

Next we describe a non-deterministic algorithm for proof search. There are a
number of ways to eliminate the remaining disjunctive non-determinism. Typ-
ical is depth-first search, made complete by iterative deepening. The choice of
the term t in the rules ∃R and ∀L is later solved by introducing free variables
and equational constraints into the search procedures which are solved by unifi-
cation (see Section ??). Many futher refinements and improvements are possible
on this procedures, but not discussed here.

Given a goal ∆; Γ =⇒ ρ.

1. If Γ = · and ρ = ·;P succeed if P is in ∆.

2. If Γ = · and ρ = ·;R, but the previous case does not apply, guess an
inference rule to reduce the goal. In the cases of ∃R and ∀L we also have to
guess a term t. Solve each subgoal by recursively applying the procedure.
This case represents a disjunctive choice (don’t know non-determinism).
If no rule applies, we fail.

3. If Γ is non-empty or ρ = A; ·, choose any active rule which applies and
solve each of the subgoals by recursively applying the procedure. This
represents a conjunctive choice (don’t care non-determinism). Note that
some active rule must always be applicable in this case.

This search procedure is clearly sound, because the inversion proof system
is sound (Theorem 4.2). Furthermore, if there is a derivation the procedure will
(in principle) always terminate and find some derivation if it guesses correctly
in step (2).

Theorem 4.8 (Completeness of Inversion Search)
Given a goal ∆; Γ =⇒ ρ. If there is a derivation of the goal, the inversion search
procedures terminates and finds a derivation for any choices made in step (3)
and some choices made in step (2).

Proof: By nested induction on depth of the given derivation I and the active
size of the given sequent. That is, we can apply the induction hypothesis if

1. the depth of the derivation I strictly decreases, or

2. the depth of I remains the same and the active size of the goal strictly
decreases.

Case: I is an initial sequent. Then we are in situation (1) and succeed.
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4.2 Focusing 65

Case: I ends in a passive rule. Then we are in situation (2). We “guess”
the same rule instance to reduce our goal. Each of the resulting subgoals
now has a proof of strictly smaller depth, and we can apply the induction
hypothesis.

Case: I ends in an active rule. In that case we are in situation (3). Independent
of the last rule used in I, we can apply any active rule to reduce our
goal. By inversion (Lemma 4.3) each of the subgoals will have a proof of
smaller or equal depth than I. Moreover, the active size of the goal strictly
decreases and we can apply the induction hypothesis to each subgoal.

2

4.2 Focusing

The search procedure based on inversion developed in the previous section still
has an unacceptable amount of don’t know non-determinism. The problem lies
in the undisciplined use and proliferation of assumptions whose left rule is not
invertible.

In a typical situation we have some universally quantified implications as
assumptions. For example, ∆ could be

∀x1. ∀y1. ∀z1. P1(x1, y1, z1)⊃Q1(x1, y1, z1)⊃R1(x1, y1, z1),
∀x2. ∀y2. ∀z2. P2(x2, y2, z2)⊃Q2(x2, y2, z2)⊃R2(x2, y2, z2)

If the right-hand side is passive, we now have to apply ∀L to one of the
two assumptions. We assume we guess the first one and that we can guess an
appropriate term t1. After the ∀L rule and a left transition, we are left with

∀x1. ∀y1. ∀z1. P1(x1, y1, z1)⊃Q1(x1, y1, z1)⊃R1(x1, y1, z1),
∀x2. ∀y2. ∀z2. P2(x2, y2, z2)⊃Q2(x2, y2, z2)⊃R2(x2, y2, z2),
∀y1. ∀z1. P1(t1, y1, z1)⊃Q1(t1, y1, z1)⊃R1(t1, y1, z1).

Again, we are confronted with a don’t know non-deterministic choice, now
between 3 possibilities. One can see that the number of possible choices quickly
explodes. We can observe that the pattern above does not coincide with math-
ematical practice. Usually one applies an assumption or lemma of the form
above by instantiating all the quantifiers and all preconditions at once. This
strategy called focusing is a refinement of the inversion strategy presented in
the previous section.

Roughly, when all propositions in a sequent are passive, we focus either on an
assumption or the proposition we are trying to prove and then apply a sequence
of non-invertible rules to the chosen proposition. This phase stops when either
an invertible connective or an atomic proposition is reached.

As in the previous section, we capture this idea by a combination of a deduc-
tive system and a search strategy which distinguishes between conjunctive and
disjunctive choices. We still use the sequents ∆; Γ =⇒ A; · and ∆; Γ =⇒ ·;R
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with the same notation for simplicity. All the active rules (but not the initial
sequents) are copied verbatim to this system. In addition, we need two new
forms of sequents to express the focusing phase of proof search. We write

∆;A� ·;R Focus on A on the left
∆; · � A; · Focus on A on the right

The initial and passive rules of the inversion derivation are replaced by the
following set of rules.

Decision. These rules decide which formula to focus on and are treated in a
don’t know non-deterministic manner. While we allow focusing on an atomic
assumption, focusing on the succedent requires it to be non-atomic. The reason
is our handling of initial sequents.

(∆, L);L� ·;R
dL

(∆, L); · =⇒ ·;R

∆; · � R+; ·
dR

∆; · � ·;R+

Right Focus Propositions. The non-invertible rules on the right maintain
the focus on principal formula of the inference. When we have reduced the
right-hand side to a right-invertible or atomic proposition, we blur our focus
and initiate decomposition with an active sequent. Here R is either P , A ⊃ B,
A ∧B, >, and ∀x. A.

∆; · � A; ·
∨R1

∆; · � A ∨B; ·

∆; · � B; ·
∨R2

∆; · � A ∨B; ·

no right focus rule for ⊥

∆; · � [t/x]A; ·
∃R

∆; · � ∃x. A; ·

∆; · =⇒ R; ·
bR

∆; · � R; ·

Left Focus Propositions. The non-invertible rules on the left also maintain
their focus on the principal formula of the inference. When we have reached a
non-atomic left-invertible proposition, we blur our focus and initiate decompo-

sition with an active sequent. Here L
+

is either A ∨B, ⊥, ∃x. A.

∆;B� ·;R ∆; · =⇒ A; ·
⊃L

∆;A⊃B � ·;R

∆;A� ·;R
∧L1

∆;A ∧B � ·;R
∆;B � ·;R

∧L2
∆;A∧B � ·;R

no rule for >L

∆;L
+

=⇒ ·;R
bL

∆;L
+ � ·;R
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Note that the second premise of the ⊃L rule is an unfocused sequent. From a
practical point of view it is important to continue with the focusing steps in
the first premise before attempting to prove the second premise, because the
decomposition of B may ultimately fail when an atomic proposition is reached.
Such a failure would render the possibly difficult proof of A useless.

It is possible to extend the definition of L
+

to include conjunction and > and
remove the left focus rules for conjunction. In some situations this would clearly
lead to shorter proofs, but the present version appears to have less disjunctive
non-determinism.3

Initial Sequents. There is a slight, but important asymmetry in the initial
sequents: we require that we have focused on the left proposition.

init
∆;P � ·;P

Since this is the only rule which can be applied when the left focus formula
is atomic, a proof attempt fails in a situation where ∆;P � ·;Q for P 6= Q.
This is a very important property of the search, limiting non-determinism in
focusing.

If one shows only applications of the decision rules in a derivation, the format
is very close to assertion-level proofs as proposed by Huang [Hua94]. His mo-
tivation was the development of a formalism appropriate for the presentation
of mathematical proofs in a human-readable form. This provides independent
evidence for the value of focusing proofs. Focusing derivations themselves were
developed by Andreoli [And92] in the context of classical linear logic. An adap-
tation to intuitionistic linear logic was given by Howe [How98] which is related
the calculus LJT devised by Herbelin [Her95]. Herbelin’s goal was to devise
a sequent calculus whose derivations are in bijective correspondence to normal
natural deductions. Due to the ∨, ⊥ and ∃ elimination rules, this is not the
case here.

The search procedure which works with focusing sequents is similar to the
one for inversion: it mixes conjunctive non-determinism for active rules with
disjunctive non-determinism for choice and focused rules. After the detailed
development of inversion proofs, we will not repeat or extend the development
here, but refer the interested reader to the literature. The techniques are very
similar to the ones shown in Section 4.1.

4.3 Exercises

Exercise 4.1 Give an alternative proof of the inversion properties (Theorem 4.1)
which does not use induction, but instead relies on admissibility of cut in the
sequent calculus (Theorem 3.11).

3[evaluate]
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68 Focused Derivations

Exercise 4.2 Formulate one or several cut rules directly on inversion sequents
as presented in Section 4.1 and prove that they are admissible. Does this simplify
the development of the completeness result for inversion proofs? Show how
admissibility might be used, or illustrate why it is not much help.
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