
Computation and Deduction

Frank Pfenning
Carnegie Mellon University

Draft of February 27, 1997

Draft notes for a course given at Carnegie Mellon University during the fall semester
of 1994. Please send comments to fp@cs.cmu.edu. Do not cite, copy, or distribute
without the express written consent of Frank Pfenning and the National Football
League.

Copyright c© Frank Pfenning 1992–1997

ii

Contents

1 Introduction 1

1.1 The Theory of Programming Languages 2

1.2 Deductive Systems . 3

1.3 Goals and Approach . 6

2 The Mini-ML Language 9

2.1 Abstract Syntax . 9

2.2 Substitution . 12

2.3 Operational Semantics . 13

2.4 A First Meta-Theorem: Evaluation Returns a Value 17

2.5 The Type System . 20

2.6 Type Preservation . 24

2.7 Further Discussion . 28

2.8 Exercises . 31

3 Formalization in a Logical Framework 37

3.1 The Simply-Typed Fragment of LF 38

3.2 Higher-Order Abstract Syntax . 40

3.3 Representing Mini-ML Expressions 45

3.4 Judgments as Types . 50

3.5 Adding Dependent Types to the Framework 53

3.6 Representing Evaluations . 56

3.7 Meta-Theory via Higher-Level Judgments 63

3.8 The Full LF Type Theory . 71

3.9 Canonical Forms in LF . 74

3.10 Summary and Further Discussion . 76

3.11 Exercises . 79

iii

iv CONTENTS

4 The Elf Programming Language 81
4.1 Concrete Syntax . 83
4.2 Type and Term Reconstruction . 84
4.3 A Mini-ML Interpreter in Elf . 88
4.4 An Implementation of Value Soundness 97
4.5 Dynamic and Static Constants . 101
4.6 Exercises . 105

5 Parametric and Hypothetical Judgments 107
5.1 Closed Expressions . 108
5.2 Function Types as Goals in Elf . 118
5.3 Negation . 121
5.4 Representing Mini-ML Typing Derivations 123
5.5 An Elf Program for Mini-ML Type Inference 127
5.6 Representing the Proof of Type Preservation 133
5.7 Exercises . 139

6 Compilation 145
6.1 An Environment Model for Evaluation 146
6.2 Adding Data Values and Recursion 158
6.3 Computations as Transition Sequences 168
6.4 Complete Induction over Computations 180
6.5 A Continuation Machine . 181
6.6 Relating Relations between Derivations 192
6.7 Contextual Semantics . 194
6.8 Exercises . 199

7 Natural Deduction 205
7.1 Natural Deduction . 206
7.2 Representation in LF . 217
7.3 Implementation in Elf . 224
7.4 The Curry-Howard Isomorphism . 229
7.5 Generalization to First-Order Arithmetic 233
7.6 Contracting Proofs to Programs∗ . 239
7.7 Proof Reduction and Computation∗ 241
7.8 Termination∗ . 241
7.9 Exercises . 241

8 Logic Programming 243
8.1 Uniform Derivations . 244
8.2 Canonical Forms for the Simply-Typed λ-Calculus 255
8.3 Canonical Forms for Natural Deductions 266

CONTENTS v

8.4 Completeness of Uniform Derivations 272
8.5 Resolution . 279
8.6 Success and Failure Continuations 286

9 Advanced Type Systems∗ 289
9.1 Polymorphism∗ . 291
9.2 Continuations∗ . 292
9.3 Intersection and Refinement Types∗ 292
9.4 Dependent Types∗ . 293

10 Equational Reasoning∗ 295
10.1 Cartesian Closed Categories∗ . 295
10.2 A Church-Rosser Theorem∗ . 295
10.3 Unification∗ . 295

Bibliography 296

vi CONTENTS

Chapter 7

Natural Deduction

Ich wollte zunächst einmal einen Formalismus aufstellen, der dem
wirklichen Schließen möglichst nahe kommt. So ergab sich ein
,,Kalkül des natürlichen Schließens“.

— Gerhard Gentzen
Untersuchungen über das logische Schließen [Gen35]

In Chapter 2 we introduced the functional language Mini-ML. This language
was defined by its type system and its operational semantics, both specified via
deductive systems. The type system gives us a means to verify some properties
of Mini-ML programs. Assume, for example, we can show that e : nat for some
expression e. Then we know that if e evaluates to v (that is, e ↪→ v is derivable)
then v is a value by Theorem 2.1. We know furthermore that v : nat by type
preservation (Theorem 2.5). It is then easy to show that v must have the form
s (s . . . (s z) . . .). In other words, v must represent a natural number. As another
example, consider an expression e of type nat→ nat. Then e represents some partial
function from natural numbers to natural numbers: for each argument v : nat the
expression e v either evaluates to some v′ which represents a natural number or
does not have a value. The uniqueness of v′ is the subject of Exercise 2.16.

The type system can only capture simple properties. It can express that some
program e represents a partial function from natural numbers to natural numbers,
but it cannot express which partial function. This simplicity has a great advantage:
the question if an expression has a given type is effectively decidable, and thus a
compiler can mechanically verify program properties expressed as types. In order
to reason about more complex properties of programs within some formal system,
we need a more expressive language of specifications and some way of connecting
programs to the specifications they satisfy. Designing more expressive type sys-
tems, usually called type theories, is one path which is the subject of much current
research. For some of these systems, type checking remains decidable; for others it

205

206 CHAPTER 7. NATURAL DEDUCTION

becomes undecidable.
We will take a different path and consider predicate logic as a means of ex-

pressing specifications. The connection to programs will later be made via the
so-called Curry-Howard isomorphism which interprets constructive proofs as pro-
grams and formulas as types. There are many ways a logical system can be
specified, and relationships between them have been intensively investigated. The
most important styles of presentation are axiomatic systems (often associated with
Hilbert [HB34]), systems of natural deduction, and sequent calculi (the latter two
are due to Gentzen [Gen35]). In an axiomatic system, the logic is described by some
axioms and a minimal set of inference rules in order to derive new theorems from
the axioms and prior theorems. Systems of natural deduction on the other hand
try to explicate the meaning of the logical connectives and quantifiers by means
of inference rules only. This is in the same spirit as the approach of LF whose
design was based on natural deduction. Sequent calculi can instead be considered
as calculi for proof search. For the investigation of the connections between proofs
and programs a system of natural deduction is most appropriate.

In Chapter 8 we will have occasion to consider logic programming, which is
based on a different computational mechanism than functional languages. Rather
than evaluation via substitution, computation is based on the notion of search for
a proof in a logic following a particular strategy. There, too, the system of natural
deduction will be of great importance.

7.1 Natural Deduction

The system of natural deduction we describe below is basically Gentzen’s system
NJ [Gen35] or the system which may be found in Prawitz [Pra65]. The calculus
of natural deduction was devised by Gentzen in the 1930’s out of a dissatisfaction
with axiomatic systems in the Hilbert tradition, which did not seem to capture
mathematical reasoning practices very directly. Instead of a number of axioms and
a small set of inference rules, deductions are described through inference rules only,
which at the same time explain the meaning of the logical quantifiers and connectives
in terms of their proof rules. This is often called proof-theoretic semantics, an
approach which has gained popularity in computer science through the work of de
Bruijn [dB80] and Martin-Löf [ML80, ML85a].

A language of (first-order) terms is built up from variables x, y, etc., function
symbols f , g, etc., each with a unique arity, and parameters a, b, etc. in the usual
way.

Terms t ::= x | a | f(t1, . . . , tn)

A constant c is simply a function symbol with arity 0 and we write c instead of
c(). Exactly which function symbols are available is left unspecified in the general
development of predicate logic and only made concrete for specific theories, such

7.1. NATURAL DEDUCTION 207

as the theory of natural numbers. However, variables and parameters are always
available. We will use t and s to range over terms.

The language of formulas is built up from predicate symbols P , Q, etc. and terms
in the usual way.

Formulas A ::= P (t1, . . . , tn) | A1 ∧A2 | A1 ⊃A2 | A1 ∨A2 | ¬A | ⊥ | >
| ∀x. A | ∃x. A

A propositional constant P is simply a predicate symbol with no arguments and we
write P instead of P (). We will use A, B, and C to range over formulas. Exactly
which predicate symbols are available is left unspecified in the general development
of predicate logic and only made concrete for specific theories.

The notions of free and bound variables in terms and formulas are defined in the
usual way: the variable x is bound in formulas of the form ∀x. A and ∃x. A. We use
parentheses to disambiguate and assume that ∧ and ∨ bind more tightly than ⊃.
It is convenient to assume that formulas have no free individual variables; we use
parameters instead where necessary. Our notation for substitution is [t/x]A for the
result of substituting the term t for the variable x in A. Because of the restriction
on occurrences of free variables, we can assume that t is free of individual variables,
and thus capturing cannot occur.

The main judgment of natural deduction is the derivability of a formula C,
written as ` C, from assumptions ` A1, . . . , ` An. We will model this as a
hypothetical judgment. This means that certain structural properties of derivations
are tacitly assumed, independently of any logical inferences.

Assumption. If we have an assumption ` A than we can conclude ` A. For
example, ` A by itself represents a deduction of ` A from assumption ` A.

Weakening. If ` C is derivable from ` A1, . . . , ` An then ` C is also derivable
from ` A1, . . . , ` An, ` An+1. Alternatively, we could say that assumptions
need not be used. For example, ` A by itself also represents a deduction of
` A from assumptions ` A and ` B, even through B is not even mentioned.

Duplication. Assumptions can be used more than once.

Exchange. The order of assumptions is irrelevant.

In keeping with general mathematical practice in the discussion of natural de-
duction, we will omit the turnstile ` and let a formula A itself stand for the
judgment ` A. It is important to keep in mind that this is merely a shorthand,
and that we are defining a judgment via inference rules in the same manner as in
earlier chapters in this book.

In natural deduction each logical connective and quantifier is characterized by
its introduction rule(s) which specifies how to infer a conjunction, disjunction, etc.

208 CHAPTER 7. NATURAL DEDUCTION

The elimination rule for the logical constant tells us how we can assumptions in
the form of a conjunction, disjunction, etc. The introduction and elimination rules
must match in a certain way in order to guarantee the consistency of the system:
if we introduce a connective and then immediately eliminate it, we should be able
to erase this detour and find a more direct derivation of the conclusion. The rules
are summarized on page 7.1.

Conjunction. A∧B should be derivable if both A and B are derivable. Thus we
have the following introduction rule.

A B
∧I

A ∧B
If we consider this as a complete definition, we should be able to recover both A
and B if we know A ∧B. We are thus led to two elimination rules.

A ∧B ∧EL
A

A ∧B ∧ER
B

To check our intuition we consider a deduction which ends in an introduction fol-
lowed by an elimination:

D
A

E
B
∧I

A ∧B
∧EL

A

Clearly, it is unnecessary to first introduce the conjunction and then eliminate it:
a more direct proof of the same conclusion from the same (or fewer) assumptions
would be simply

D
A

Formulated as a transformation or reduction between derivations we have

D
A

E
B
∧I

A ∧B
∧EL

A

=⇒L
D
A

and symmetrically
D
A

E
B
∧I

A ∧B
∧ER

B

=⇒L
E
B

7.1. NATURAL DEDUCTION 209

The new judgment
D :: ` A =⇒L E :: ` A

relates derivations with the same conclusion. We say D locally reduces to E . Later in
Section 7.7 we will define a another judgment of reduction in which local reductions
can be applied to any subderivation.

Implication. To derive A ⊃ B we assume A and then derive B. Written as a
hypothetical judgment:

u
A
...
B

⊃Iu

A⊃ B
Thus a derivation of A ⊃ B describes a construction by which we can transform a
derivation of A into a derivation of B: we substitute the derivation of A wherever
we used the assumption A in the hypothetical derivation of B. The elimination rule
expresses this: if we have a derivation of A⊃B and also a derivation of A, then we
can obtain a derivation of B.

A ⊃B A
⊃E

B

The reduction rule carries out the substitution of derivations explained above.

u
A
D
B

⊃Iu

A ⊃B
E
A
⊃E

B

=⇒L

E
u

A
D
B

The final derivation depends on all the assumptions of E and D except u, for which
we have substituted E . An alternative notation for this substitution of derivations
for assumptions as introduced in Chapter 5 is [E/u]D :: ` B. The local reduction
described above may significantly increase the overall length of the derivation, since
the deduction E is substituted for each occurrence of the assumption labeled u in
D and may thus be replicated many times.

Disjunction. A∨B should be derivable if either A is derivable or B is derivable.
Therefore we have two introduction rules.

A ∨IL
A ∨B

B ∨IR
A ∨B

210 CHAPTER 7. NATURAL DEDUCTION

If we have an assumption A ∨ B, we do not know how it might be inferred. That
is, a proposed elimination rule

A ∨B
?

A

would be incorrect, since a deduction of the form

E
B
∨IR

A ∨B
?

A

cannot be reduced. As a consequence, the system would be inconsistent: if we have
at least one theorem (B, in the example) we can prove every formula (A, in the
example). How do we use the assumption A ∨ B in informal reasoning? We often
proceed with a proof by cases: we prove a conclusion C under the assumption A
and also show C under the assumption B. We then conclude C, since either A or
B by assumption. Thus the elimination rule employs two hypothetical judgments.

A ∨B

u1

A
...
C

u2

B
...
C
∨Eu1,u2

C

Now one can see that the introduction and elimination rules match up in two re-
ductions. First, the case that the disjunction was inferred by ∨IL.

D
A
∨IL

A ∨B

u1

A
E1
C

u2

B
E2
C
∨Eu1,u2

C

=⇒L

D
u1

A
E1
C

The other reduction is symmetric.

D
B

∨IR
A ∨B

u1

A
E1
C

u2

B
E2
C
∨Eu1,u2

C

=⇒L

D
u2

B
E2
C

As in the reduction for implication, the resulting derivation may be longer than the
original one.

7.1. NATURAL DEDUCTION 211

Negation. In order to derive ¬A we assume A and try to derive a contradiction.
Thus it seems that negation requires falsehood, and, indeed, in most literature on
constructive logic, ¬A is seen as an abbreviation of A⊃⊥. In order to give a self-
contained explanation of negation by an introduction rule, we employ a judgment
that is parametric in a propositional parameter p: If we can derive any p from the
hypothesis A we conclude ¬A.

u
A
...
p
¬Ip,u

¬A
¬A A

¬E
C

The elimination rule follows from this view: if we know ¬A and A then we can
conclude any formula C. In the form of a local reduction:

u
A
D
p
¬Ip,u

¬A
E
A
¬E

C

=⇒L

E
u

A
[C/p]D
C

The substitution [C/p]D is valid, since D is parametric in p.

Truth. There is only an introduction rule for >:

>I
>

Since we put no information into the proof of >, we know nothing new if we have
an assumption > and therefore we have no elimination rule and no reduction. It
may also be helpful to think of > as a 0-ary conjunction: the introduction rule has
0 premisses instead of 2 and we correspondingly have 0 elimination rules instead of
2.

Falsehood. Since we should not be able to derive falsehood, there is no introduc-
tion rule for ⊥. Therefore, if we can derive falsehood, we can derive everything.

⊥
⊥E

C

Note that there is no local reduction rule for⊥E. It may be helpful to think of ⊥ as a
0-ary disjunction: we have 0 instead of 2 introduction rules and we correspondingly

212 CHAPTER 7. NATURAL DEDUCTION

have to consider 0 cases instead of 2 in the elimination rule. Even though we
postulated that falsehood should not be derivable, falsehood could clearly be a
consequence of contradictory assumption. For example, ` A∧¬A⊃⊥ is derivable.

Universal Quantification. Under which circumstances should we be able to
derive ∀x. A? This clearly depends on the domain of quantification. For example,
if we know that x ranges over the natural numbers, then we can conclude ∀x. A if
we can prove [0/x]A, [1/x]A, etc. Such a rule is not effective, since it has infinitely
many premisses. Thus one usually retreats to rules such as induction. However, in
a general treatment of predicate logic we would like to prove statements which are
true for all domains of quantification. Thus we can only say that ∀x. A should be
provable if [a/x]A is provable for a new parameter a about which we can make no
assumption. Conversely, if we know ∀x. A, we know that [t/x]A for any term t.

[a/x]A
∀Ia

∀x. A
∀x. A

∀E
[t/x]A

The superscript on the inference rules is a reminder the parameter a must be “new”,
that is, it may not occur in any uncancelled assumption in the proof of [a/x]A or
in ∀x. A itself. In other words, the derivation of the premiss must parametric in a.
The local reduction carries out the substitution for the parameter.

D
[a/x]A

∀I
∀x. A

∀E
[t/x]A

=⇒L
[t/a]D
[t/x]A

Here, [t/a]D is our notation for the result of substituting t for the parameter a
throughout the deduction D. For this substitution to preserve the conclusion,
we must know that a does not already occur in A. Similarly, we would change
the assumptions if a occurred free in any of the undischarged hypotheses of D.
This might render a larger proof incorrect. As an example, consider the formula
∀x. ∀y. P (x)⊃P (y) which should clearly not be derivable for all predicates P . The

7.1. NATURAL DEDUCTION 213

following is not a deduction of this formula.

u
P (a)

∀Ia?
∀x. P (x)

∀E
P (b)

⊃Iu

P (a)⊃ P (b)
∀Ib

∀y. P (a)⊃ P (y)
∀Ia

∀x. ∀y. P (x)⊃ P (y)

The flaw is at the inference marked with “?,” where a is free in the assumption u.
Applying a local proof reduction to the (incorrect) ∀I inference followed by ∀E leads
to the the assumption [b/a]P (a) which is equal to P (b). The resulting derivation

u
P (b)

⊃Iu

P (a)⊃ P (b)
∀Ib

∀y. P (a)⊃ P (y)
∀Ia

∀x. ∀y. P (x)⊃ P (y)

is once again incorrect since the hypothesis labelled u should read P (a), not P (b).

Existential Quantification. To conclude that ∃x. A is true, we must know that
there is a t such that [t/x]A is true. Thus,

[t/x]A
∃I

∃x. A

When we have an assumption ∃x. A we do not know for which t it is the case
that [t/x]A holds. We can only assume that [a/x]A holds for some parameter a
about which we know nothing else. Thus the elimination rule resembles the one for
disjunction.

∃x. A

u
[a/x]A

...
C

∃Ea,u
C

The restriction is similar to the one for ∀I: the parameter a must be new, that is,
it must not occur in ∃x. A, C, or any assumption employed in the derivation of

214 CHAPTER 7. NATURAL DEDUCTION

the second premiss. In the reduction rule we have to perform two substitutions:
we have to substitute t for the parameter a and we also have to substitute for the
hypothesis labelled u.

D
[t/x]A

∃I
∃x. A

u
[a/x]A
E
C

∃Ea,u
C

=⇒L

D
u

[t/x]A
[t/a]E
C

The proviso on occurrences of a guarantees that the conclusion and hypotheses of
[t/a]E have the correct form.

Classical Logic. The inference rules so far only model intuitionistic logic, and
some classically true formulas such as A∨¬A (for an arbitrary A) are not derivable
(see Exercise 7.10). There are three commonly used ways one can construct a system
of classical natural deduction by adding one additional rule of inference. ⊥C is called
Proof by Contradiction or Rule of Indirect Proof, ¬¬C is the Double Negation Rule,
and XM is referred to as Excluded Middle.

u
¬A

...
⊥
⊥Cu

A

¬¬A ¬¬C
A

XM
A ∨ ¬A

The rule for classical logic (whichever one chooses to adopt) breaks the pattern
of introduction and elimination rules. One can still formulate some reductions for
classical inferences, but natural deduction is at heart an intuitionistic calculus. The
symmetries of classical logic are much better exhibited in sequent formulations of
the logic. In Exercise 7.2 we explore the three ways of extending the intuitionistic
proof system and show that they are equivalent.

Here is a simple example of a natural deduction. We attempt to show the process
by which such a deduction may have been generated, as well as the final deduction.
The three vertical dots indicate a gap in the derivation we are trying to construct,
with assumptions and their consequences shown above and the desired conclusion
below the gap.

...
A ∧ (A⊃ B) ⊃B

;

u
A ∧ (A⊃ B)

...
B

⊃Iu

A ∧ (A⊃ B) ⊃B

7.1. NATURAL DEDUCTION 215

;

u
A ∧ (A⊃ B)

∧EL
A
...
B

⊃Iu

A ∧ (A ⊃B) ⊃ B

;

u
A ∧ (A ⊃B)

∧EL
A

u
A ∧ (A⊃ B)

∧ER
A⊃ B

...
B

⊃Iu

A ∧ (A⊃ B) ⊃B

;

u
A ∧ (A ⊃B)

∧ER
A⊃ B

u
A ∧ (A⊃ B)

∧EL
A
⊃E

B
...
B

⊃Iu

A ∧ (A⊃ B) ⊃B

;

u
A ∧ (A ⊃B)

∧ER
A⊃ B

u
A ∧ (A⊃ B)

∧EL
A
⊃E

B
⊃Iu

A ∧ (A⊃ B) ⊃B

The symbols A and B in this derivation stand for arbitrary formulas; we can
thus view the derivation generated below as being parametric in A and B. In other
words, every instance of this derivation (replacing A and B by arbitrary formulas)
is a valid derivation.

Below is a summary of the rules of intuitionistic natural deduction.

216 CHAPTER 7. NATURAL DEDUCTION

Introduction Rules Elimination Rules

A B
∧I

A ∧B
A ∧B ∧EL
A

A ∧B ∧ER
B

A ∨IL
A ∨B

B ∨IR
A ∨B

A ∨B

u1

A
...
C

u2

B
...
C
∨Eu1,u2

C

u
A
...
B

⊃Iu

A ⊃B
A ⊃B A

⊃E
B

u
A
...
p
¬Ip,u

¬A
A ¬A

¬E
C

>I
>

⊥
⊥E

C

[a/x]A
∀I∗

∀x. A
∀x. A

∀E
[t/x]A

[t/x]A
∃I

∃x. A

∃x. A

u
[a/x]A

...
C

∃Ea,u
C

7.2. REPRESENTATION IN LF 217

7.2 Representation in LF

The LF logical framework and its implementation in Elf are ideally suited to the
representation of natural deduction, and we will exploit a number of the encoding
techniques we have encountered so far.

The representation of terms and formulas employs the idea of higher-order ab-
stract syntax so that substitution and side-conditions on variable occurrences re-
quired for the inference rules can be expressed directly. Recall the basic principle
of higher-order abstract syntax: represent object-level variables by meta-level vari-
ables. As a consequence, object-language constructs that bind variables are repre-
sented by meta-level constructs that also bind variables. Parameters play the role
of variables in derivations and are thus also represented as variables in the meta-
language. As in Section 3.2, we write the representation function as p·q. First, we
declare the type of individuals (i) and the type of formulas (o).

i : type
o : type

The structure of the domain of individuals is left open in the development of pred-
icate logic. Commitment to, say, natural numbers then leads to a formalization
of arithmetic. Our encoding reflects this approach: we do not specify that any
particular individuals exist, but we can give the recipe by which function symbols
can be added to our encoding. For every function symbol f of arity n, we add a
corresponding declaration

f : i→ · · · → i→︸ ︷︷ ︸
n

i.

The representation of terms is then given by

pxq = x
paq = a

pf(t1, . . . , tn)q = f pt1q . . .ptnq.

Note that each parameter a of predicate logic is mapped to an LF variable with the
same name.

This kind of encoding takes advantage of the open-ended nature of signatures:
we can always add further declarations without invalidating judgments made earlier.
Predicate symbols are dealt with in a similar manner: The general recipe is to add
a declaration

p : i→ · · · → i→︸ ︷︷ ︸
n

o

218 CHAPTER 7. NATURAL DEDUCTION

for every predicate symbol P of arity n. The representation function and the re-
maining declarations are then straightforward.

pP (t1, . . . , tn)q = p pt1q . . .ptnq
pA1 ∧A2q = and pA1q pA2q and : o→ o→ o
pA1 ⊃ A2q = imp pA1q pA2q imp : o→ o→ o
pA1 ∨A2q = or pA1q pA2q or : o→ o→ o

p¬Aq = not pAq not : o→ o
p⊥q = false false : o
p>q = true true : o

p∀x. Aq = forall (λx:i. pAq) forall : (i→ o)→ o
p∃x. Aq = exists (λx:i. pAq) exists : (i→ o)→ o

The formulation of an adequacy theorem for this representation is left to the
reader (see Exercise 7.4). We only note the substitution property which holds due
to the use of higher-order abstract syntax:

p[t/x]Aq = [ptq/x]pAq≡ (λx:i. pAq) ptq.

The representation of the derivability judgment of natural deduction follows the
schema of Chapter 5, since natural deduction makes essential use of parametric
and hypothetical judgments. We introduce a type family nd that is indexed by a
formula. The LF type nd pAq is intended to represent the type of natural deductions
of the formula A.

nd : o→ type

Each inference rule is represented by an LF constant which can be thought of as
a function from a derivation of the premisses of the rule to a derivation of the
conclusion. The constant must further be applied to the representation of the
formulas participating in an inference in order to avoid possible ambiguities.

Conjunction.

p
D
A

E
B
∧I

A ∧B

q

= andi pAq pBq pDq pEq

from which it follows that we declare

andi : ΠA:o. ΠB:o. nd A→ nd B → nd (and A B).

7.2. REPRESENTATION IN LF 219

For derivations ending in one of the two elimination rules we have the similarly
obvious representations

p
D

A ∧B
∧EL

A

q

= andel pAq pBq pDq

p
D

A ∧B
∧ER

B

q

= ander pAq pBq pDq

where

andel : ΠA:o. ΠB:o. nd (and A B) → nd A
ander : ΠA:o. ΠB:o. nd (and A B) → nd B

Implication. The introduction rule for implication is somewhat less straightfor-
ward, since it employs a hypothetical judgment. The derivation of the hypothetical
judgment in the premiss is represented as a function which, when applied to a
derivation of A, yields a derivation of B.

p
u

A
D
B

⊃Iu

A⊃ B

q

= impi pAq pBq (λu:nd pAq. pDq)

The assumption A labelled by u which may be used in the derivaton D is represented
by the LF variable u which ranges over derivations of A.

p
u

A

q
= u

The elimination rule is simpler, since it does not involve a hypothetical judgment.
The representation of a derivation ending in the elimination rule is defined by

p
D

A⊃ B
E
A
⊃E

B

q

= impe pAq pBq pDq pEq

220 CHAPTER 7. NATURAL DEDUCTION

where

impe : ΠA:o. ΠB:o. nd (imp A B)→ nd A→ nd B.

As an example which requires only conjunction and implication, consider the
derivation of A ∧ (A⊃ B)⊃ B from Page 215:

u
A ∧ (A⊃ B)

∧ER
A ⊃B

u
A ∧ (A ⊃B)

∧EL
A
⊃E

B
⊃Iu

A ∧ (A ⊃B) ⊃ B

This derivation is represented by the LF object

impi (and pAq (imp pAq pBq)) pBq
(λu:nd (and pAq (imp pAq pBq)).

(impe pAq pBq
(ander pAq (imp pAq pBq) u)
(andel pAq (imp pAq pBq) u)))

which has type
nd (imp (and pAq (imp pAq pBq)) pBq).

This example shows clearly some redundancies in the representation of the de-
duction (there are many occurrence of pAq and pBq). The Elf implementation of
natural deduction in Section 7.3 eliminates some of these redundancies.

Disjunction. The representation of the introduction and elimination rules for
disjunction employ the same techniques as we have seen above.

A ∨IL
A ∨B

B ∨IR
A ∨B

A ∨B

u1

A
...
C

u2

B
...
C
∨Eu1,u2

C

The corresponding LF constants:

oril : ΠA:o. ΠB:o. nd A→ nd (or A B)
orir : ΠA:o. ΠB:o. nd B → nd (or A B)
ore : ΠA:o. ΠB:o. ΠC:o.

nd (or A B)→ (nd A→ nd C)→ (nd B → nd C)→ nd C.

7.2. REPRESENTATION IN LF 221

Negation. The introduction and elimination rules for negation and their repre-
sentation follow the pattern of the rules for implication.

u
A
...
p
¬Ip,u

¬A
¬A A

¬E
C

noti : ΠA:o. (Πp:o. nd A→ nd p)→ nd (not A)
note : ΠA:o. nd (not A)→ ΠC:o. nd A→ nd C

Truth. There is only an introduction rule, which is easily represented. We have

p
>I

>
q

= truei

where

truei : nd (true).

Falsehood. There is only an elimination rule, which is easily represented. We
have

p
D
⊥
⊥E

C

q

= falsee pCq pDq

where

falsee : ΠC:o. nd (false)→ nd C.

Universal Quantification. The introduction rule for the universal quantifier
employs a parametric judgment and the elimination rule employs substitution.

[a/x]A
∀Ia

∀x. A
∀x. A

∀E
[t/x]A

222 CHAPTER 7. NATURAL DEDUCTION

The side condition on ∀I states that the parameter a must be “new”. In the spirit of
Chapter 5 the derivation of a parametric judgment will be represented as a function
of the parameter. Recall that p∀x. Aq = forall (λx:i. pAq).

p
D

[a/x]A
∀Ia

∀x. A

q

= foralli (λx:i. pAq) (λa:i. pDq)

Note that pAq, the representation of A, has a free variable x which must be bound
in the meta-language, so that the representing object does not have a free variable
x. This representation determines the type of the constant foralli.

foralli : ΠA:i→ o. (Πa:i. nd (A a))→ nd (forall A)

In an application of this constant, the argument labelled A will be λx:i. pAq and
(A a) will be (λx:i. pAq) a which is equivalent to [a/x]pAq which in turn is equiva-
lent to p[a/x]Aq by the substitution property on Page 218.

The elimination rule does not employ a hypothetical judgment.

p
D
∀x. A

∀E
[t/x]A

q

= foralle (λx:i. pAq) pDq ptq

The substitution of t for x in A is representation by the application of the function
(λx:i. pAq) (the first argument of foralle) to ptq.

foralle : ΠA:i→ o. nd (forall A)→ Πt:i. nd (A t)

We now check that
p

D
∀x. A

∀E
[t/x]A

q

: nd p[t/x]Aq,

assuming that pDq : nd p∀x. Aq. This would be an important part in the proof
of adequacy of this representation of natural deductions. First we note that the
arguments have the expected types and find that

foralle : ΠA:i→ o. nd (forall A)→ Πt:i. nd (A t)
foralle (λx:i. pAq) : nd (forall (λx:i. pAq))→ Πt:i. nd ((λx:i. pAq) t)

foralle (λx:i. pAq) pDq : Πt:i. nd ((λx:i. pAq) t)
foralle (λx:i. pAq) pDq ptq : nd ((λx:i. pAq) ptq).

7.2. REPRESENTATION IN LF 223

Now we have to recall the rule of type conversion for LF (see Section 3.8)

Γ Σ̀ M : A A ≡ B Γ Σ̀ B : type
conv

Γ Σ̀ M : B

and note that
(λx:i. pAq) ptq ≡ [ptq/x]pAq

by β-conversion. Furthermore, by the substitution property for the representation
we have

[ptq/x]pAq = p[t/x]Aq
which yields the desired

foralle (λx:i. pAq) pDq ptq : nd (p[t/x]Aq).

Existential Quantification. The representation techniques are the same we used
for universal quantification: parametric and hypothetical derivations are repre-
sented as LF functions.

p
D

[t/x]A
∃I

∃x. A

q

= existsi (λx:i. pAq) ptq pDq

p

∃x. A

u
[a/x]A
D
C

∃Ea,u
C

q

= existse (λx:i pAq) pCq (λa:i. λu:nd p[a/x]Aq. pDq)

where

existsi : ΠA:i→ o. Πt:i. nd (A t)→ nd (exists A)
existse : ΠA:i→ o. ΠC:o. nd (exists A)→ (Πa:i. nd (A a)→ nd C)→ nd C.

Once again, we will not formally state or proof the adequacy theorem for this en-
coding. We only mention the three substitution properties which will be important
in the formalization of reduction in the next section.

p[t/a]Dq = [ptq/a]pDq and p[C/p]Dq= [pCq/p]pDq and p[E/u]Dq = [pEq/u]pDq.

Each of the rules that may be added to obtain classical logic can be easily
represented with the techniques from above. They are left as Exercise 7.7.

224 CHAPTER 7. NATURAL DEDUCTION

7.3 Implementation in Elf

In this section we summarize the LF encoding of natural deduction from the previous
section as an Elf signature, and also give the representation of the local reduction
rules from Section 7.1. We will make a few cosmetic changes that reflect common Elf
programming practice. The first is the use of infix and prefix notation in the use of
the logical connectives. According to our conventions, conjunction, disjunction, and
implication are all right associative, and conjunction and disjunction bind stronger
than implication. Negation is treated as a prefix operator binding tighter than the
binary connectives. For example,

A ∧ (A ⊃B) ⊃ ¬B ⊃ C

is the same formula as

(A ∧ (A ⊃B)) ⊃ ((¬B) ⊃C).

As an arbitrary baseline in the pragmas below we pick a binding strength of 10 for
implication.

i : type. % individuals

o : type. % formulas

%name i T S

%name o A B C

and : o -> o -> o. %infix right 11 and

imp : o -> o -> o. %infix right 10 imp

or : o -> o -> o. %infix right 11 or

not : o -> o. %prefix 12 not

true : o.

false : o.

forall : (i -> o) -> o.

exists : (i -> o) -> o.

The %name declarations instruct Elf’s printing routines to prefer names T and S for
unnamed variables of type i, and names A, B, and C for unnamed variables of type
o. This serves to improve the readability of Elf’s output.

The second simplification in the concrete presentation is to leave some Π-quantifiers
implicit. The type reconstruction algorithm always interprets free variables in a dec-
laration as a schematic variables (which are therefore implicitly Π-quantified) and
determines their type from the context in which they appear.1

1[pointer to full discussion]

7.3. IMPLEMENTATION IN ELF 225

nd : o -> type. % proofs

%name nd D E

andi : nd A -> nd B -> nd (A and B).

andel : nd (A and B) -> nd A.

ander : nd (A and B) -> nd B.

impi : (nd A -> nd B) -> nd (A imp B).

impe : nd (A imp B) -> nd A -> nd B.

oril : nd A -> nd (A or B).

orir : nd B -> nd (A or B).

ore : nd (A or B) -> (nd A -> nd C) -> (nd B -> nd C) -> nd C.

noti : ({p:o} nd A -> nd p) -> nd (not A).

note : nd (not A) -> {C:o} nd A -> nd C.

truei : nd (true).

falsee : nd (false) -> nd C.

foralli : ({a:i} nd (A a)) -> nd (forall A).

foralle : nd (forall A) -> {T:i} nd (A T).

existsi : {T:i} nd (A T) -> nd (exists A).

existse : nd (exists A) -> ({a:i} nd (A a) -> nd C) -> nd C.

As a consequence of omitting the quantifiers on some variables in these declara-
tions, the corresponding arguments to the constants also have to be omitted. For
example, in the input language the constant andi now appears to take only two
arguments (the representation of the derivations of A and B), rather than four like
the LF constant

andi : ΠA:o. ΠB:o. nd A→ nd B → nd (and A B).

The type reconstruction algorithm will determine the two remaining implicit argu-
ments from context. The derivation of A∧ (A⊃B)⊃B from Page 220 has this very
concise Elf representation:

impi [u:nd (A and (A imp B))] (impe (ander u) (andel u))

where A and B are free variables of type o. The use of variable A and B indicates the
generic nature of this derivation: we can substitute any two objects of type o for A

226 CHAPTER 7. NATURAL DEDUCTION

and B and still obtain the representation of a valid derivation. Incidentally, in this
example the type of u is also redundant and could also have been omitted.

Next we turn to the local reduction judgment

D :: ` A =⇒L D′ :: ` A.

We used this judgment to check that the introduction and elimination rules for
each logical connective and quantifier match up. This higher-level judgment relates
derivations of the same formula A. We have already seen such judgments in Sec-
tion 3.7 and subsequent representations of meta-theoretic proofs. The representing
LF type family would be declared as

redl : ΠA:o. nd A→ nd A→ type.

We will not show this representation in pure LF, but immediately give its concrete
syntax in Elf.

==>L : nd A -> nd A -> type. %infix none 14 ==>L

%name ==>L L

Note that the quantifier over A is once again implicit and that ==>L must be read
as one symbol.

Conjunction. The local reductions have the form

D
A

E
B
∧I

A ∧B
∧EL

A

=⇒L
D
A

and symmetrically

D
A

E
B
∧I

A ∧B
∧ER

B

=⇒L
E
B

.

Because of type reconstruction, we can omit the formulas entirely from the straight-
forward representations of these two rules.

redl_andl : (andel (andi D E)) ==>L D.

redl_andr : (ander (andi D E)) ==>L E.

7.3. IMPLEMENTATION IN ELF 227

Implication. This reduction involves a substitution of a derivation for an as-
sumption.

u
A
D
B

⊃Iu

A ⊃B
E
A
⊃E

B

=⇒L

E
u

A
D
B

The representation of the left-hand side in Elf is

(impe (impi D) E)

where E = pEq and D = λu:nd pAq. pDq. The derivation on the right-hand side can
be written more succinctly as [E/u]D. The substitution property for derivations
(see Page 7.2) yields

p[E/u]Dq= [pEq/u]pDq≡ (λu:nd pAq. pDq) pEq.

Thus the representation of the right-hand side will be β-equivalent to (D E) and
we formulate the rule as

redl_imp : (impe (impi D) E) ==>L (D E).

Disjunction. The two reductions for disjunction introduction followed by elimi-
nation are

D
A
∨IL

A ∨B

u1

A
E1
C

u2

B
E2
C
∨Eu1,u2

C

=⇒L

D
u1

A
E1
C

and
D
B

∨IR
A ∨B

u1

A
E1
C

u2

B
E2
C
∨Eu1,u2

C

=⇒L

D
u2

B
E2
C

.

Their representation follows the pattern from the previous case to model the sub-
stitution of derivations.

redl_orl : (ore (oril D) E1 E2) ==>L (E1 D).

redl_orr : (ore (orir D) E1 E2) ==>L (E2 D).

228 CHAPTER 7. NATURAL DEDUCTION

Negation. This is similar to implication.

u
A
D
p
¬Ip,u

¬A
E
A
¬E

C

=⇒L

E
u

A
[C/p]D
C

redl_not : (note (noti D) C E) ==>L (D C E).

Universal Quantification. The universal introduction rule involves a paramet-
ric judgment. Consequently, the substitution to be carried out during reduction
replaces a parameter by a term.

D
[a/x]A

∀Ia
∀x. A

∀E
[t/x]A

=⇒L
[t/a]D
[t/x]A

In the representation we exploit the first part of the substitution property for deriva-
tions (see page 223):

p[t/a]Dq = [ptq/a]pDq≡ (λa:i. pDq) ptq.

This gives rise to the declaration

redl_forall : (foralle (foralli D) T) ==>L (D T).

Existential Quantification. This involves both a parametric and hypothetical
judgments, and we combine the techniques used for implication and universal quan-
tification.

D
[t/x]A

∃I
∃x. A

u
[a/x]A
E
C

∃Ea,u
C

=⇒L

D
u

[t/x]A
[t/a]E
C

The crucial equations for the adequacy of the encoding below are

p[D/u][t/a]Eq= [pDq/u][ptq/a]pEq≡ (λa:i. λu:nd p[a/x]Aq. pEq) ptq pDq.

redl_exists : (existse (existsi T D) E) ==>L (E T D).

7.4. THE CURRY-HOWARD ISOMORPHISM 229

7.4 The Curry-Howard Isomorphism

The basic judgment of the system of natural deduction is the derivability of a
formula A, written as ` A. If we wish to make the derivation explicit we write D ::
` A. It has been noted by Howard [How80] that there is a strong correspondence

between the (intuitionistic) derivations D and λ-terms. The formulas A then act
as types classifying those λ-terms. In the propositional case, this correspondence is
an isomorphism: formulas are isomorphic to types and derivations are isomorphic
to simply-typed λ-terms. These isomorphisms are often called the propositions-as-
types and proofs-as-programs paradigms.

If we stopped at this observation, we would have obtained only a fresh inter-
pretation of familiar deductive systems, but we would not be any closer to the goal
of providing a language for reasoning about properties of programs. However, the
correspondences can be extended to first-order and higher-order logics. Interpret-
ing first-order (or higher-order) formulas as types yields a significant increase in
expressive power of the type system. However, maintaining an isomorphism dur-
ing the generalization to first-order logic is somewhat unnatural and cumbersome.
One might expect that a proof contains more information than the corresponding
program. Thus the literature often talks about extracting programs from proofs or
contracting proofs to programs.

The first step will be to introduce a notation for derivations to be carried along
in deductions. For example, if M represents a proof of A and N represents a proof
of B, then the pair 〈M,N〉 can be seen as a representation of the proof of A∧B by
∧-introduction. We write M : · A to express the judgment M is a proof term for A.
We also repeat the local reductions from the previous section in the new notation.

Conjunction. The proof term for a conjunction is simply the pair of proofs of
the premisses.

M : · A N : · B
∧I

〈M,N〉 : · A ∧B
M : · A ∧B ∧EL
fstM : · A

M : · A ∧B ∧ER
sndM : · B

The local reductions now lead to two obvious local reductions of the proof terms.

fst 〈M,N〉 −→L M
snd 〈M,N〉 −→L N

Implication. The proof of an implication A⊃B will be represented by a function
which maps proofs of A to proofs of B. The introduction rule explicitly forms
such a function by λ-abstraction and the elimination rule applies the function to an

230 CHAPTER 7. NATURAL DEDUCTION

argument.

u′
u : · A

...
M : · B

⊃Iu,u
′

(λu:A. M) : · A⊃B
M : · A ⊃B N : · A

⊃E
M N : · B

The binding of the variable u in the conclusion of ⊃I correctly models the intuition
that the hypothesis is discharged and not available outside deduction of the premiss.
The abstraction is labelled with the proposition A so that we can later show that
the proof term uniquely determines a natural deduction. If A were not given then,
for example, λu. u would be ambigous and serve as a proof term for A⊃A for any
formula A. The local reduction rule is β-reduction.

(λu:A. M)N −→L [N/u]M

Here bound variables in M that are free in N must be renamed in order to avoid
variable capture.

Disjunction. The proof term for disjunction introduction is the proof of the pre-
miss together with an indication whether it was inferred by introduction on the left
or on the right. We also annotate the proof term with the formula which did not
occur in the premiss so that a proof terms always proves exactly one proposition.

M : · A ∨IL

inlBM : · A ∨B
N : · B ∨IR

inrAN : · A ∨B
The elimination rule corresponds to a case construction.

M : · A ∨B

u′1
u1 : · A

...
N1 : · C

u′2
u2 : · B

...
N2 : · C

∨Eu1,u2,u
′
1,u
′
2

(caseM of inlu1⇒ N1 | inru2 ⇒ N2) : · C
Since the variables u1 and u2 label assumptions, the corresponding proof term
variables are bound in N1 and N2, respectively. The two reduction rules now also
look like rules of computation in a λ-calculus.

case inlBM of inlu1 ⇒ N1 | inru2 ⇒ N2 −→L [M/u1]N1

case inrAM of inlu1 ⇒ N1 | inru2 ⇒ N2 −→L [M/u2]N2

The substitution of a deduction for a hypothesis is represented by the substitution
of a proof term for a variable.

7.4. THE CURRY-HOWARD ISOMORPHISM 231

Negation. This is similar to implication. Since the premise of the rule is para-
metric in p the corresponding proof constructor must bind a propositional variable
p, indicated by µp. Similar, the elimination construct must record the formula so
we can substitute for p in the reduction. This is indicated as a subscript in ·C.

u′
u : · A

...
M : · p

¬Ip,u,u
′

µpu:A. M : · ¬A
M : · ¬A N : · A

¬E
M ·C N : · C

The reduction performs formula and proof term substitutions.

(µpu:A. M) ·C N −→L [N/u][C/p]M

Truth. The proof term for >I is written 〈 〉.

>I
〈 〉 : · >

Of course, there is no reduction rule.

Absurdity. Here we need to annotate the proof term abort with the formula
being proved to avoid ambiguity.

M : · ⊥
⊥E

abortCM : · C

Again, there is no reduction rule.

In summary, we have

Terms M ::= u Hypotheses
| 〈M1,M2〉 | fstM | sndM Conjunction
| λu:A. M |M1M2 Implication

| inlAM | inrAM Disjunction
| (caseM1 of inlu1 ⇒M2 | inru1 ⇒M3)
| µpu:A. M |M ·C N Negation
| 〈 〉 Truth

| abortAM Falsehood

232 CHAPTER 7. NATURAL DEDUCTION

and the reduction rules

π1 fst 〈M,N〉 −→L M
π2 snd 〈M,N〉 −→L N
β (λu:A. M)N −→L [N/u]M

ρ1 case inlBM of inlu1 ⇒ N1 | inru2 ⇒ N2 −→L [M/u1]N1

ρ2 case inrAM of inlu1 ⇒ N1 | inru2 ⇒ N2 −→L [M/u2]N2

µ (µpu:A. M) ·C N −→L [N/u][C/p]M

We can now see that the formulas act as types for proof terms. Shifting to the
usual presentation of the typed λ-calculus we use τ and σ as symbols for types,
and τ × σ for the product type, τ → σ for the function type, τ + σ for the disjoint
sum type, 1 for the unit type and 0 for the empty or void type. Base types b re-
main unspecified, just as the basic propositions of the propositional calculus remain
unspecified. Types and propositions then correspond to each other as indicated
below.

Types τ ::= b | τ1 × τ2 | τ1 → τ2 | τ1 + τ2 | 1 | 0
Propositions A ::= p | A1 ∧A2 | A1 ⊃ A2 | A1 ∨A2 | > | ⊥

We omit here the negation type which is typically not used in functional pro-
gramming and thus does not have a well-known counterpart. We can ¬A as corre-
sponding to τ → 0, where τ corresponds to A (see Exercise ??). In addition to the
terms, shown above, the current set of hypotheses which are available in a subde-
duction are usually made explicit in a context Γ. These are simply a list of variables
with their types. We assume that no variable is declared twice in a context.

Contexts Γ ::= · | Γ, u:A

We omit the · at the beginning of a context or to the left of the typing judgment.
The typing rules for the λ-calculus are the rules for natural deduction under a shift
of notation and with explicit contexts. The typing judgment has the form

Γ . M : τ M has type τ in context Γ

7.5. GENERALIZATION TO FIRST-ORDER ARITHMETIC 233

Γ . M : τ Γ . N : σ
pair

Γ . 〈M,N〉 : τ × σ

Γ . M : τ × σ
fst

Γ . fstM : τ

Γ . M : τ × σ
snd

Γ . sndM : σ

Γ, u:τ . M : σ
lam

Γ . (λu:τ. M) : τ → σ

u : τ in Γ
var

Γ . u : τ

Γ . M : τ → σ Γ . N : τ
app

Γ . M N : σ

Γ . M : τ
inl

Γ . inlσM : τ + σ

Γ . N : σ
inr

Γ . inrτ N : τ + σ

Γ . M : τ + σ Γ, u:τ . N1 : ν Γ, u:σ . N2 : ν
case

Γ . (caseM of inlu1 ⇒ N1 | inru2 ⇒ N2) : ν

unit
Γ . 〈 〉 : 1

Γ . M : 0
abort

Γ . abortνM : ν

7.5 Generalization to First-Order Arithmetic

We have not yet made the connection between local reduction and computation
in a functional programming language. Before we examine this relationship, we
investigate how the Curry-Howard isomorphism might be generalized to first-order
arithmetic. This involves two principal steps: one to account for quantifiers, and
one to account for natural numbers and proofs by induction. The natural numbers
here stand in for arbitrary inductively defined datatypes, which are beyond the scope
of these notes. We begin by generalizing to first-order logic, that is, without any
particular built-in datatype such as the natural numbers.

Terms and Atomic Formulas. A well-formed first-order term f(t1, . . . , tn) where
f is an n-ary function symbol corresponds to the application f t1 . . . tn, where f has
been declared to be a constant of type i → · · · → i. In the propositional case,
atomic formulas are drawn from some basic propositions and propositional vari-
ables. In first-order logic, well-formed atomic formulas have the form P (t1, . . . , tn),
where P is an n-ary predicate. This corresponds directly to the familiar notion of
a type family p indexed by terms t1, . . . , tn, all of type i. In summary: under the
Curry-Howard isomorphism, predicates correspond to type families.

234 CHAPTER 7. NATURAL DEDUCTION

Universal Quantification. Recall the introduction and elimination rules for uni-
versal quantification:

[a/x]A
∀Ia

∀x. A
∀x. A

∀E
[t/x]A

where a is a new parameter. This suggests that the proof term should be a function
which, when given a well-formed first-order term t returns a proof of [t/x]A. It is
exactly this reading of the introduction rule for ∀ that motivated its representation
in LF. The elimination rule then applies this function to the argument t. This
reasoning yields the following formulation of the rules with explicit proof terms.

[a/x]M : · [a/x]A
∀I

(λx:i. M) : · ∀x. A
M : · ∀x. A

∀E
M t : · [t/x]A

This formulation glosses over that we ought to check that t is actually well-formed,
that is, has type i. Similarly, we may need the assumption that a is of type i while
deriving the premiss of the introduction rule. This leads to the following versions.

u
a : i

...
[a/x]M : · [a/x]A

∀Ia,u
(λx:i. M) : · ∀x. A

M : · ∀x. A t : i
∀E

M t : · [t/x]A

It has now become apparent, that we have not unified the notions of propositions
and types: these rules employ a typing judgment t : i as well as a proof term
judgment M : · A. The restriction of the universal quantifier to terms of type
i is quite artificial from the point of view of the Curry-Howard isomorphism. If
we drop this distinction and further eliminate the distinction between variables and
parameters we obtain the rules for abstraction and application in the LF type theory,
written in the style of natural deduction rather than with an explicit context.

u
x : B

...
M : A

∀Ix,u
(λx:B. M) : ∀x:B. A

M : ∀x:B. A N : B
∀E

MN : [N/x]A

Thus the universal quantifier corresponds to a dependent function type constructor
Π under a modified Curry-Howard isomorphism. Following this line of develop-
ment to its logical conclusion leads to a type theory in the tradition of Martin-Löf.
Thompson [Tho91] provides a good introduction to this complex subject. We will

7.5. GENERALIZATION TO FIRST-ORDER ARITHMETIC 235

only return to it briefly when discussing the existential quantifier below; instead we
pursue an alternative whereby we contract proofs to programs rather than insisting
on an isomorphism.

The local reduction rule for the universal quantifier

D
[a/x]A

∀I
∀x. A

∀E
[t/x]A

=⇒L
[t/a]D
[t/x]A

corresponds to β-reduction on the proof terms.

(λx:i. M) t −→L [t/x]M

The language of proof terms now has two forms of abstraction: abstraction over
individuals (which yields proof terms for universal formulas) and abstraction over
proof terms (which yields proof terms for implications). In a type theory such as
LF, these are identified and the latter is seen as a special case of the former where
there is no dependency (see Exercise 3.9).

Existential Quantification. The proof term for existential introduction must
record both the witness term t and the proof term for [t/x]A. That is, we have

[t/x]A
∃I

∃x. A

M : · [t/x]A
∃I

〈t,M〉 : · ∃x. A
In the type-theoretic version of this rule, we generalize the existential quantifier to
range over arbitrary types, and we must check that the witness has the requested
type.

N : B M : [N/x]A
∃I

〈N,M〉 : ∃x:B. A

In analogy to the dependent function type, the existential forms a type for dependent
pairs: the type of the second component M depends on the first component N . This
is refered to as a sum type or Σ-type, since it is most commonly written as Σx:A. B.
There are some variations on the sum type, depending on how one can access the
components of its elements, that is, depending on the form of the elimination rule.
If we directly equip the logical elimination rule

∃x. A

u
[a/x]A

...
C

∃Ea,u
C

236 CHAPTER 7. NATURAL DEDUCTION

with proof objects we obtain a case construct for pairs (with only one branch).

M : · ∃x. A

u′
u : · [a/x]A

...
[a/x]N : · C

∃Ea,u,u′
(case M of 〈x, u〉 ⇒ N) : · C

Here, x and u are bound in N which reflects that the right premiss of the existential
elimination rule is parametric in a and u. In type theory, this construct is sometimes
called split or spread. The local proof reduction

D
[t/x]A

∃I
∃x. A

u
[a/x]A
E
C

∃Ea,u
C

=⇒L

D
u

[t/x]A
[t/a]E
C

translates to the expected reduction rule on proof terms

case 〈t,M〉 of 〈x, u〉 ⇒ N −→L [t/x][M/u]N.

The language of proof terms now has two different forms of pairs: those that pair a
first-order term with a proof term (which form proof terms of existential formulas)
and those that pair two proof terms (which form proof terms of conjunctions). In
type theory these are identified, and the latter is seen as a special case of the former
where there is no dependency.

Certain subtle problems arise in connection with the existential type. Because
of the difference in the elimination rules for conjunction and existential, we cannot
apply fst and snd to pairs of the form 〈t,M〉. Moreover, snd cannot be defined in
general from case for dependently typed pairs (see Exercise 7.8). Perhaps even more
significantly, proof terms no longer uniquely determine the formula they prove (see
Exercise 7.9). In the theory of programming languages, existential and sum types
can be used to model abstract data types and modules; the problems mentioned
above must be addressed carefully in each such application.

Natural Numbers. If we fix the domain of individuals to be the natural numbers,
we arrive at first-order arithmetic. We write nat instead of i and we have a constant
z (denoting 0) and a unary function symbol s (denoting the successor function). The
fact that these are the only ways to construct natural numbers is usual captured by
Peano’s axiom schema of induction:

For any formula A with free variable x,

[z/x]A∧ (∀x. A ⊃ [s(x)/x]A)⊃ ∀x. A.

7.5. GENERALIZATION TO FIRST-ORDER ARITHMETIC 237

Our approach has been to explain the semantics of language constructs by inference
rules, rather than axioms in a logic. If we look at the rules

NIz
z : nat

t : nat
NIs

s(t) : nat

as introduction rules for elements of the type nat, then we arrive at the following
elimination rule.

t : nat [z/x]A

u
[a/x]A

...
[s(a)/x]A

NEa,u
[t/x]A

Here, the judgment of the third premiss is parametric in a and hypothetical in u.
The local reductions follow from this view. If t was inferred by NIz (and thus t = z),
the conclusion [z/x]A is proved directly by the second premiss.

NIz
z : nat

E1
[z/x]A

u
[a/x]A
E2

[s(a)/x]A
NEa,u

[z/x]A
=⇒L

E1
[z/x]A

If t was inferred by NIs (and thus t = s(t′)), then we can obtain a derivation E ′
of [t′/x]A by NE. To obtain a derivation of [s(t′)/x]A we use the parametric and
hypothetical derivation of the rightmost premiss: we substitute t′ for a and D′ for
the hypothesis u.

D′
t′ : nat

NIs
s(t′) : nat

E1
[z/x]A

u
[a/x]A
E2

[s(a)/x]A
NEa,u

[s(t′)/x]A

=⇒L

D′
t′ : nat

E1
[z/x]A

u
[a/x]A
E2

[s(a)/x]A
NEa,u

[t′/x]A
[t′/a]E2

[s(t′)/x]A

238 CHAPTER 7. NATURAL DEDUCTION

In order to write out proof terms for the NE rule, we need a new proof term
constructor prim.

t : nat N1 : · [z/x]A

u′
u : · [a/x]A

...
[a/x]N2 : · [s(a)/x]A

NEa,u,u
′

prim t N1 (x, u. N2) : · [t/x]A

Here, x and u are bound in N2. The local reductions can then be written as

prim z N1 (x, u. N2) −→L N1

prim (s(t′)) N1 (x, u. N2) −→L [t/x][(prim t′ N1 (x, u. N2))/u]N2

An analogous construct of primitive recursion at the level of first-order terms
(rather than proof terms) is also usually assumed in the treatment of arithmetic in
order to define new functions such as addition, multiplication, exponentiation, etc.
From the point of view of type theory, this is a special case of the above, where A
does not depend on x. The typing rule has the form

t : nat t1 : τ

u1,
x : τ

u2

y : τ
...

t2 : τ
NEx,y,u1,u2

prim t t1 (x, y. t2) : τ

and the local reduction are

prim z t1 (x, y. t2) −→L t1
prim (s(t′)) t1 (x, y. t2) −→L [t′/x][(prim t′ t1 (x, y. t2))/y]t2

Here we followed the convention for type systems where parameters are not used
explicitly, but the same name is used for a bound variable and its corresponding
parameter.

In ordinary primitive recursion we also have λ-abstraction and application, but
the result type τ of the prim constructor is restricted to be nat. The more general
definition above is the basis for the language of primitive recursive functionals, which
is at the core of Gödel’s system T [Göd90]. Strictly more functions can be defined
by using primitive recursion at higher types. A famous example is the Ackermann
function, which is not primitive recursive, but lies within Gödel’s system T. The
surface syntax of terms defined by prim can be rather opaque, their properties are
illustrated by the following formulation. Define

f = λx. prim x t1 (x, y. t2)
g = λx. λy. t2.

7.6. CONTRACTING PROOFS TO PROGRAMS∗ 239

Then f satisfies (using a notion of equivalence ≡ not made precise here)

f(z) ≡ t1
f(s(x)) ≡ g x (f(x)).

If we think in terms of evaluation, then x will be bound to the predecessor of the
argument to f , and y will be bound to the result of the recursive call to f on x
when evaluating t2.

In order to make arithmetic useful as a specification language, we also need some
primitive predicates such as equality or inequality between natural numbers. An
equality should satisfy the usual axioms (reflexivity, symmetry, transitivity, con-
gruence), but it should also allow computation with functions defined by primitive
recursion. Furthermore, we need to consider Peano’s third and fourth axioms.2

∀x. ¬s(x)
.
= z

∀x. ∀y. s(x)
.
= s(y) ⊃ x .

= y

These axioms insure that we can prove that different natural numbers are in fact
distinct; all the other axioms would also hold if, for example, we interpreted the
type nat as the natural numbers modulo 5. We can formulate these additional
axioms as inference rules and write out appropriate proof terms. We postpone the
detailed treatment until the next section, since some of these rules will have no
computational significance.

In the realm of Martin-Löf type theories, the best treatment of equality is also
a difficult and controversial subject. Built into the theory is an equality judgment
that relates objects based on the rules of computation. We have an equality type
which may or may not be extensional. For further discussion, the interested reader
is referred to [Tho91].

[insert equality rules here, but which formulation?]

7.6 Contracting Proofs to Programs∗

In this section we presume that we are only interested in data values as results
of computations, rather than proof terms. Then a proof may contain significantly
more information than the program extracted from it. This phenomenon should
not come unexpectedly: it usually requires much more effort to prove a program
correct than to write it. As a first approximation toward program extraction, we
postulate that the type extracted from an equality formula should be the unit type
1, and that the proof object extracted from any proof of an equality should be the

2[a note on negation]

240 CHAPTER 7. NATURAL DEDUCTION

unit element 〈 〉. The extraction function |·| for types then has the following shape.

|t1
.
= t2| = 1

A ∧B	=	A	×	B
A ∨B	=	A	+	B
A ⊃B	=	A	→	B
>	= 1			
⊥	= 0			

|∀x. A| = nat→ |A|
|∃x. A| = nat× |A|

As examples we consider two simple specifications: one for the predecessor func-
tion on natural numbers, and one for the integer division of a number by 2. For the
first example, recall that ¬A is merely an abbreviation for A ⊃⊥.3

Pred = ∀x. ∃y. ¬x .
= z ⊃ x .

= s(y)
|Pred | = nat→ (nat × ((1→ 0)→ 1))

double = lam x. prim x z (x′, y. s (s y))
Half = ∀x. ∃y. x .

= double y ∨ x .
= s (double y)

|Half | = nat→ (nat × (1 + 1))

These types may be surprising. For example we would expect the predecessor
function to yield just a natural number. At this point we observe that there is only
one value of the unit type 1. Thus, for example, the function ((1 → 0) → 1) can
only ever return the unit element 〈 〉. Therefore it carries no new information can
can be contracted to 1. We reason further that a value of type nat×1 must be a pair
of a natural number and the unit element and carries no more information that nat
itself. In general we are taking advantage of the following intuitive isomorphisms
between types.4

τ × 1 ∼= τ 1× τ ∼= τ
τ → 1 ∼= 1 1→ τ ∼= τ

Some other isomorphisms do not hold. In particular, the type 1 + 1 cannot be
simplified: It contains two values (inl 〈 〉 and inr 〈 〉), while 1 contains only one. In
order to make programs more legible, we will abbreviate

1 + 1 = bool
inl 〈 〉 = true
inr 〈 〉 = false

if e1 then e2 else e3 = case e1 of inl x⇒ e2 | inr y ⇒ e3

3[this must be fixed for proper treatment of negation]
4Some further isomorphism may be observed regarding the void type 0, but we do not consider

it here. For a detailed treatment, see [And93].

7.7. PROOF REDUCTION AND COMPUTATION∗ 241

In the modified type extraction, we use the isomorphisms above in order to concen-
trate on computational contents.

[The remainder of this section and chapter is under construction.]

7.7 Proof Reduction and Computation∗

7.8 Termination∗

7.9 Exercises

Exercise 7.1 Prove the following by natural deduction using only intuitionistic
rules when possible. We use the convention that ⊃, ∧, and ∨ associate to the right,
that is, A⊃ B ⊃ C stands for A ⊃ (B ⊃ C). A ≡ B is a syntactic abbreviation for
(A ⊃B) ∧ (B ⊃ A). Also, we assume that ∧ and ∨ bind more tightly than ⊃, that
is, A∧B⊃C stands for (A∧B)⊃C. The scope of a quantifier extends as far to the
right as consistent with the present parentheses. For example, (∀x. P (x)⊃C)∧¬C
would be disambiguated to (∀x. (P (x)⊃C)) ∧ (¬C).

1. A⊃ B ⊃ A.

2. A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C).

3. (Peirce’s Law). ((A⊃ B) ⊃A) ⊃A.

4. A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C).

5. A⊃ (A ∧B) ∨ (A ∧ ¬B).

6. (A⊃ ∃x. P (x)) ≡ ∃x. (A ⊃ P (x)).

7. ((∀x. P (x))⊃C) ≡ ∃x. (P (x)⊃C).

8. ∃x. ∀y. (P (x)⊃ P (y)).

Exercise 7.2 Show that the three ways of extending the intuitionistic proof system
are equivalent, that is, the same formulas are deducible in all three systems.

Exercise 7.3 Assume we had omitted disjunction and existential quantification
and their introduction and elimination rules from the list of logical primitives. In
the classical system, give a definition of disjunction and existential quantification
(in terms of other logical constants) and show that the introduction and elimination
rules now become admissible rules of inference. A rule of inference is admissible if
any deduction using the rule can be transformed into one without using the rule.

242 CHAPTER 7. NATURAL DEDUCTION

Exercise 7.4 Carefully state and prove adequacy of the given representation for
for terms, formulas, and natural deductions in LF.

Exercise 7.5 Give an interpretation of the classical calculus in the intuitionistic
calculus, that is, define a function () from formulas to formulas such that A is
deducible in the classical calculus if and only if A is deducible in the intuitionistic
calculus.

Exercise 7.6 Give the representation of the natural deductions in Exercise 7.1 in
Elf.

Exercise 7.7 Give the LF representations of the rules of indirect proof, double
negation, and excluded middle from Page 214.

Exercise 7.8 [on problems with typing of snd on dependently typed
pairs]

Exercise 7.9 [failure of uniqueness of types with existential or Σ types
]

Exercise 7.10 Using the normalization theorem for intuitionistic natural deduc-
tion (Theorem ??) prove that the general law of excluded middle is not derivable
in intuitionistic logic.

