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In this lecture we continue our investigation of the resource semantics
for linear logic from the previous lecture. We first consider the so-called
additive connectives of linear logic. While we will be able to develop a re-
source sequent calculus which is still in bijective correspondence with the
linear sequent calculus, it suggests a more elementary resource semantics
which also has an elegant natural deduction formulation. This can be ac-
complished by “untethering” the left rules of the resource sequent calculus
as much as possible.

The material in this lecture is based on work by Jason Reed [Ree07,
Ree09] or joint work with Jason Reed [RP10], although I do not believe
it has previously been presented in this exact form.

1 Additive Connectives

In linear logic, there are two forms of conjunction. Besides the simulta-
neous conjunction (called multiplicative), there is an alternative conjunction
(called additive), writtenANB. We can achieveANB as a goal with the cur-
rent resources, if we can achieve both A and B with the current resources.
This means that if we have a resource ANB we can choose to convert this
to either A or B.

∆; Γ ` A ∆; Γ ` B
∆; Γ ` ANB

NR

∆; Γ, A ` C
∆; Γ, ANB ` C

NL1

∆; Γ, B ` C
∆; Γ, ANB ` C

NL2
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The resource representation is straightforward, and the proof of the previ-
ous lecture will extend naturally.

Γ ` A@p Γ ` B@p

Γ ` ANB@p
NR

Γ, ANB@α,A@β ` C@p ∗ β
Γ, ANB@α ` C@p ∗ α

NLβ1
Γ, ANB@α,B@β ` C@p ∗ β

Γ, ANB@α ` C@p ∗ α
NLβ2

While the alternative conjunction embodies one form of choice, the dis-
junction (A ⊕ B) represents another form of choice. When we have a re-
source A ⊕ B we do not know whether A or B will be provided and we
have to account for both possibilities.

∆; Γ ` A
∆; Γ ` A⊕B

⊕R1

∆; Γ ` B
∆; Γ ` A⊕B

⊕R2

∆; Γ, A ` C ∆; Γ, B ` C
∆; Γ, A⊕B ` C

⊕L

Note that the apparent violation of linearity is not a mistake, as can be seen
by verifying the appropriate cases of cut elimination: only one of either A
or B can be inferred by a right rule, so only one of the premises of the left
rule will come into play in any situation.

Γ ` A@p

Γ ` A⊕B@p
⊕R1

Γ ` B@p

Γ ` A⊕B@p
⊕R2

Γ, A⊕B@α,A@β ` C@p ∗ β Γ, A⊕B@α,B@γ ` C@p ∗ γ
Γ, A⊕B@α ` C@p ∗ α ⊕Lβ,γ

The identity elements for N and ⊕ are > and 0. While N has only a
right rule,⊕ has only a left rule. We summarize the rules and their resource
formulation.

∆; Γ ` >
>R

Γ ` >@p
>R

∆; Γ,0 ` C
0L

Γ,0@α ` C@p ∗ α
0L

It is important to remember that 0 must be tethered to the succedent, so we
have license to use it.
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2 Untethering

While the rules we have presented so far are isomorphic to the sequent
calculus rules for linear logic, taken by themselves they have several some-
what questionable aspects. We should three examples and then try to find
a unified reformulation that eliminates these.

copy. The copy rule

Γ, A@ε, A@α ` C@p ∗ α
Γ, A@ε ` C@p

copyα

is sound from the resource perspective, but its necessity can only be ex-
plained by reference to the linear sequent calculus. It seems we should be
able to directly use any assumption A@ε instead of having to copy it! This
suggest a revision where we change all left rules to have a conclusion of the
form

Γ, A@p ` C@p ∗ q

where A is the principal formula, p = ε or p = α, and p is consumed as part
of the inference.

This seems possible, although we have not verified the details at present.

NLi. We have not discussed a calculus of natural deduction, but clearly
the natural rules for the alternative conjunction would be

Γ ` A@p Γ ` B@p

Γ ` ANB@p
NI

Γ ` ANB@p

Γ ` A@p
NE1

Γ ` ANB@p

Γ ` B@p
NE2

These rules do not quite match our left rules in the resource sequent calcu-
lus. The natural rules would be

Γ, ANB@p,A@p ` C@r

Γ, ANB@p ` C@r
NL1

Γ, ANB@p,B@p ` C@r

Γ, ANB@p ` C@r
NL2

where p = α or p = ε (if we take the previous remark about the copy rule
into account).

This rule changes one of the fundamental invariants of the system, namely
that all resource parameters in the antecedent have at most one occurrence.
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This affects the translation from the resource calculus to the linear sequent
calculus. Recall that if Γ ` C@p then Γ|p ` C, where

(·)|ε = (·)
(Γ,Γ′)|p∗q = Γ|p,Γ′|q
(A@α)|α = A eph
(A@α)|ε = (·)
(A@ε)|ε = A pers

This definition remains unchanged, but it is now nondeterministic because
if there are multiple assumptions at α, where α occurs in p, then one of
them has to be selected (third clause) while all others are ignfored (fourth
clause).

We believe the remaining system is still sound and complete, even though
we have not checked the details at present. One noteworthy aspect of this
system is that the left rule for conjunction is no longer tethered. If we have
an assumption ANB@α where α does not appear in r while proving C@r,
then we can still apply the rule, but with no bad consequence. Strengthen-
ing will erase all assumptions labeled with α.

With this generalization we can, for example, directly deduce unre-
stricted assumptions from others. For example, when mapped back to the
linear sequent calculus, the instance of NL1 with p = ε is

∆, ANB,A; Γ ` C
∆, ANB; Γ ` C

which is not otherwise derivable (although it is, of course, admissible).

(L. Again, in linear natural deduction we would expect the rule

Γ ` A( B@p Γ ` A@q

Γ ` B@p ∗ q
(E

Compare this with the cumbersome

Γ, A( B@α ` A@q Γ, A( B@α,B@β ` C@p ∗ β
Γ, A( B@α ` C@p ∗ q ∗ α (Lβ

A more direct translation following the connection between natural deduc-
tion might be the (untethered)

Γ, A( B@p ` A@q Γ, A( B@p,B@p ∗ q ` C@r

Γ, A( B@p ` C@r
(Lβ
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To write this rule, we must losen our invariants further, allowing not only
hypotheses A@α and A@ε but more generally A@p for arbitrary p.

If we allow that, we have to revisit the translation that maps resource
hypotheses to linear hypotheses.

(·)|ε = (·)
(Γ,Γ′)|p∗q = Γ|p,Γ′|q
(A@p)|p = A eph
(A@p)|ε = (·)
(A@ε)|ε = A pers

There are several sources of nondeterminism; the important part is the total
preservation of resources. We expect the following property:

If Γ ` C@p then for some Ψ = Γ|p we have Ψ ` C.

With these observations, we can rewrite the inference rules as shown
in Figure 1. We conjecture (but have not checked the details at present)
that this resource semantics is sound and complete with respect to linear
sequent calculus.

A few observations about this calculus. The rules that require a co-
ordination between the resources in the antecedent and succedent are init
(which applies to atomic formulas) as well as the left rules for so-called pos-
itive propositions (A⊗B, 1, !A, A⊕B, and 0). The left rules for the negative
propositions (A ( B, A N B, >) are untethered and can be applied with-
out reference to the succedent. This means that the negative fragment is
particular elegant, as can be seen from its dependent form worked out be
Reed [Ree07, Ree09].

A second observation is that the structure of proofs in the untethered se-
quent calculus is different from the linear sequent calculus. This difference
is particularly apparent for the exponentials (empty resource).

We can further modify or extend this calculus in ways which is impos-
sible in linear logic. For example, we can define

Γ, ANB@p,A@p,B@p ` C@r

Γ, ANB@p ` C@r
NL

This single rule can replace two rules, NL1 and NL2. Unlike those two
rules, this one is asynchronous and we can indeed drop A N B@p in a so-
called focused version of this system. This kind of left-invertible rule is im-
possible for ANB in linear logic, because we cannot represent the ties of A
and B (when A is used, B becomes unusable, and vice versa).
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Γ, P@p ` P@p
init

Γ ` A@p Γ ` B@q

Γ ` A⊗B@p ∗ q
⊗R

Γ, A⊗B@q, A@β,B@γ ` C@p ∗ β ∗ γ
Γ, A⊗B@q ` C@p ∗ q ⊗Lβ,γ

Γ, A@α ` B@p ∗ α
Γ ` A( B@p

(Rα

Γ, A( B@p ` A@q Γ, A( B@p,B@p ∗ q ` C@r

Γ, A( B@p ` C@r
(L

Γ ` 1@ε
1R

Γ,1@q ` C@p

Γ,1@q ` C@p ∗ q
1L

Γ ` A@ε

Γ ` !A@ε
!R

Γ, !A@q, A@ε ` C@p

Γ, !A@q ` C@p ∗ q
!L

Γ ` A@p Γ ` B@p

Γ ` ANB@p
NR

Γ, ANB@p,A@p ` C@r

Γ, ANB@p ` C@r
NL1

Γ, ANB@p,B@p ` C@r

Γ, ANB@p ` C@r
NL2

Γ ` >@p
>R

no >L

Γ ` A@p

Γ ` A⊕B@p
⊕R1

Γ ` B@p

Γ ` A⊕B@p
⊕R2

Γ, A⊕B@q, A@β ` C@p ∗ β Γ, A⊕B@q,B@γ ` C@p ∗ γ
Γ, A⊕B@q ` C@p ∗ q ⊕Lβ,γ

no 0R Γ,0@q ` C@p ∗ q
0L

Figure 1: Untethered resource sequent calculus
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The fact that we have explicit resources means that we can also define
some new connectives that do not exist in linear logic. For example,

Γ, A@p ` B@p

Γ ` A→ B@p
→R

Γ, A→ B@p ` A@p Γ, A→ B@p,B@p ` C@r

Γ, A→ B@p ` C@r
→L

Whether the connective above really makes sense, and which other ones
might be interesting is a topic for future research. Some hints can be found
in the above-cited work by Reed.

3 Embedding into Intuitionistic Logic

We can now exploit the ideas detailed above to provide a whole-sale trans-
lation of linear logic into intuitionistic logic with equality. We present this
only for the negative fragment of the language, where it is particularly el-
egant. Positive connectives can be added [RP10], but present difficulties.
In lecture, we attempted a slightly different and simpler translation which,
however, ended up being unsound.

The idea is to give a compositional translation with respect to a given
set of resources. The target of our translation is plain old intuitionistic logic
(not linear), where one of the types consists of the resource terms and is
subject to the resource equations. The translation is

(A)@p = B

where A comes from linear logic, p is a resource expression, and B is a
proposition in intuitionistic logic.

Motivated by the right rule for linear implication, we translate implica-
tion as follows

(A( B)@p = ∀α. (A)@α ⊃ (B)@p ∗ α

To translate atomic propositions, we give them an additional argument
which is of resource type.

(P )@p = P p

Under this interpretation, the linear initial sequents P ` P will be trans-
lated to intuitionistic initial sequents Γ, P p ` P q where p = q.
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Additive conjunction exploits the ideas developed earlier in these notes.

(ANB)@p = (A)@p ∧ (B)@p

Let’s translate an example:

(a ( (a ( b) ( b)@ε
= ∀α1. a(α1) ⊃ ((a ( b) ( b)@α1

= ∀α1. a(α1) ⊃ (∀α2. (a ( b)@α2 ⊃ (b)@α1 ∗ α2)
= ∀α1. a(α1) ⊃ ∀α2.(∀α3. a(α3) ⊃ b(α2 ∗ α3)) ⊃ b(α1 ∗ α2)

Now we can to prove that, but rather than using small steps, we prove it
with focusing. In many cases of translations, focusing is the key to control
nondeterminism in the target of the translation in the proof of: if ` (A)@ε
in intuitionistic logic, then ` A in linear logic.

At first, we have an inversion phase that requires new parameters α1

and α2 to be introduced, leaving us with the sequent

...
a(α1),∀α3. a(α3) ⊃ b(α2 ∗ α3)→ b(α1 ∗ α2)

We assume all atoms are negative, and focus on the universally quanti-
fied proposition. We haven’t formally introduced focusing for intuitionis-
tic logic, but its behavior is quite analogous to the linear case. In particular,
when focused on a universal quantifier, we instantiate it with a new vari-
able. We write Q here for an appropriate resource variable.

...
a(α1), [a(Q) ⊃ b(α2 ∗Q)]→ b(α1 ∗ α2)

a(α1), [∀α3. a(α3) ⊃ b(α2 ∗ α3)]→ b(α1 ∗ α2)
∀L

a(α1),∀α3. a(α3) ⊃ b(α2 ∗ α3)→ b(α1 ∗ α2)
focL

With the left rule for implication, we get two subgoals

...
a(α1), [b(α2 ∗Q)]→ b(α1 ∗ α2)

...
a(α1)→ [a(Q)]

a(α1), [a(Q) ⊃ b(α2 ∗Q)]→ b(α1 ∗ α2)
⊃L

a(α1), [∀α3. a(α3) ⊃ b(α2 ∗ α3)]→ b(α1 ∗ α2)
∀L

a(α1),∀α3. a(α3) ⊃ b(α2 ∗ α3)→ b(α1 ∗ α2)
focL

LECTURE NOTES APRIL 18, 2012



Embedding Linear Logic in Intuitionstic Logic L24.9

Now the first subgoal succeeds, under the constraint α2∗Q = α1∗α2. In two
more steps, the second subgoal also succeeds, with the constraint α1 = Q.

α2 ∗Q = α1 ∗ α2

a(α1), [b(α2 ∗Q)]→ b(α1 ∗ α2)
id

α1 = Q

[a(α1)]→ a(Q)
id

a(α1)→ a(Q)
focL

a(α1)→ [a(Q)]
blur

a(α1), [a(Q) ⊃ b(α2 ∗Q)]→ b(α1 ∗ α2)
⊃L

a(α1), [∀α3. a(α3) ⊃ b(α2 ∗ α3)]→ b(α1 ∗ α2)
∀L

a(α1),∀α3. a(α3) ⊃ b(α2 ∗ α3)→ b(α1 ∗ α2)
focL

Fortunately, we can solve all the constraints with the substitution Q = α1,
so the above is a proof.

Note that its structure is identical to the proof if carried out in linear
logic directly, except that one step may be replaced by two.

[b]→ b
id

[a]→ a
id

a→ a focL

a→ [a]
blur

a, [a ( b]→ b
(L

a, a ( b→ b
focL

In this presentation we have taken the liberty of guessing the split of re-
sources in the (L rule. We could have done the same by guessing Q in the
intuitionistic derivation above.

This correspondence can be made precise: our translation induces a bi-
jective correspondence between focusing proofs in the source and the tar-
get. This theorem, for a larger fragment of linear logic, is proven in [RP10].

This kind of result allows us to use a theorem prover for, say, intuition-
istic logic that can handle equations, to work as a theorem prover for linear
logic.
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