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When performing proof search in linear logic in the presence of quantifiers,
we have to find ways to handle the two rules

Ψ `M : τ Ψ ; Γ ; ∆, A(M) ` C

Ψ ; Γ ; ∆, ∀x:τ.A(x) ` C
∀L

Ψ `M : τ Ψ ; Γ ; ∆ ` A(M)

Ψ ; Γ ; ∆ ` ∃x:τ.A(x)
∃R

The difficulty here is to know which term M of type τ to use to instantiante
the quantifier. This problem is not specific to linear logic but arises in all
logics that permit quantification.

The general idea is simply to postpone the choice of M , just as we post-
poned splitting the resources in the multiplicative rules. M , in effect, be-
comes a metavariable or logic variable or existential variable whose value will
be determined by constraints imposed upon it later on during proof search.
Solving equational constraints imposed upon metavariables during proof
search is called unification.

By the rule above we can see that the values of metavariables are con-
strained already by the first premise of both rules, Ψ ` M : τ . For this
lecture, we assume that this constraint will always be respected, but we
do not explicitly discuss mechanisms to do so. Some care is needed: not
only must the eventual value of X have the right type, but it must make
sense in the right context Ψ. Relevant techniques are discussed in the litera-
ture [Mil92], including extensions to rich type theories where terms include
binders [Mil91, NPP08].
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1 Simple Terms

We assume there is a single base type ι, all variables have type ι, and func-
tion symbols all have type ι× · · · × ι→ ι, indicating their arity. It is conve-
nient to stipulate that predicates have type ι × · · · × ι → o, where o is the
type of propositions, used only in this special role. Corresponding terms
have the follow form:

Simple Terms t ::= x | f t | (t1, t2) | ()

where x are metavariables and f are term constructors, that is, predicate
or function symbols. We write f() as f , thinking of constants as nullary
functions, f with a single argument just as f(t), and associate pairs to the
right so that (t1, t2, t3) stands for (t1, (t2, t3)). Variables will always have
type ι.

2 Equality

Before we address solving equations with variables, we would like to de-
fine equality between simple terms. Since there is no interesting equational
theory, this can be trivially stated as t .= t. Such a definition does not give
rise to an algorithm for solving equations with variables, so we look instead
to a structural characterization of equality. First, a backward-chaining def-
inition. We omit variables, since they are subject to instantiation.

eq(f(s), f(t)) ◦− eq(s, t).
eq((s1, s2), (t1, t2)) ◦− eq(s1, s2)⊗ eq(t1, t2).
eq((), ()).

Developing an algorithm for unification from this definition leads us to a
presentation of Robinson’s original algorithm [Rob65], which has exponen-
tial complexity but is practical in many cases.

Here, we pursue a different path that leads us to a version of Huet’s
algorithm [Hue76] which actually originated from the problem of unifying
higher-order terms. Knight [Kni89] has written a useful survey on various
unification algorithms and their relationship.

In order to best understand Huet’s algorithm we need a different pre-
sentation of equality. Fortunately, just rewriting it into a forward-chaining
presentation does the trick! We assume that two terms are equal and signal
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a contradiction if that was wrong. If we are right, we just consume all as-
sumptions and are left with the empty context. We assume that disequality
between function symbols (and later variables) is primitive.

eq(f(s), f(t)) ( eq(s, t).
eq(f(s), g(t))⊗ f 6= g ( 0.
eq((), ()) ( 1.
eq((s1, s2), (t1, t2)) ( eq(s1, t1)⊗ eq(s2, t2).

This program conveniently assumes that when we assert eq(s, t), s and t
are well-typed and have the same type. Otherwise, we would have to add
further rules, such as

eq((), (t1, t2)) ( 0.

which we reject as meaningless rather than contradictory.

3 Some Examples

Let’s look at some simple unification examples to examine phenomena be-
yond equality.

The result of unification is usually presented as a substitution for the
metavariables in the equations under consideration. For example,

f(x, c)
.
= f(g(c), y)

has the solution θ = (g(c)/x, c/y), since

f(x, c)[θ] = f(g(c), y)[θ]

Generally, unification is defined this way: given two terms s and t, find a
substitution θ such that s[θ] = t[θ]. As we will see, there are other means
for presenting the answer than returning a substitution, but they must still
be related to the above specification.

Sometimes, unifying substitutions are not unique. For example,

x
.
= y

has solutions
θ1 = y/x
θ2 = x/y
θ3 = z/x, z/y
θ4 = c/x, c/y

. . .
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assuming that we have a constant c. Of these, there are several equivalent
most general substitutions which make both terms equal but keep the result
as general as possible. θ1, θ2 and θ3 are most general in the sense that any
other unifying substitution is an instance of any of them. θ4 is not: since c
is a constant, we cannot obtain θ3 from it. And, indeed, it is an unnecessary
commitment to fix both x and y to be a constant just because they are equal.

We will not develop this notion formally, because in our approach we
can characterize most general solutions in a different way.

Before proposing algorithms, let’s look at some further examples. Vari-
ables represent a form of communication between different parts of the
term, because multiple occurrences of the same variable must be substi-
tuted by the same term. For example,

f(x, x)
.
= f(g(c), g(d))

must fail since c 6= d.
Another mode of failure arises from the so-called occurs-check:

x
.
= f(x)

This equation cannot have a solution. Assume there is a unifying substitu-
tion θ. Then x[θ] = f(x[θ]). But that’s impossible, since the right-hand side
has always one more function symbol than the left-hand side.

Sometimes this failure can be indirect, as in

x
.
= g(y), y

.
= g(x)

This can happen even with a single equation:

f(x, y)
.
= f(g(y), g(x))

which has no solution.

4 Constraint Simplification

We now try to turn the intuition from the example above into an algorithm
for determining whether two terms are unifiable. We start with the for-
ward chaining equality rules from before. Since we might need to perform
transitive chain of inferences for situations such as

t1
.
= x, x

.
= t2, t3

.
= x

that require t1, t2 and t3 all to be equal we make all equations persistent.
The interface to our algorithm will be:
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1. Assume !eq(s, t) and saturate.

2. If we have derived a contradiction 0, s and t are not unifiable.

3. If we saturate without a contradiction, s and t are unifiable.

The saturated context represents the solution to the unification problem as
discussed in Section 8. We reiterate the rules for equality that are relevant
in the persistent setting.

!eq(f(s), f(t)) ( !eq(s, t).
!eq(f(s), g(t))⊗ f 6= g ( 0.
!eq((s1, s2), (t1, t2)) ( !eq(s1, t1)⊗ !eq(s2, t2).

Next we add symmetry and transitivity.

!eq(s, t) ( !eq(t, s)
!eq(s, t)⊗ !eq(t, r) ( !eq(s, r)

Reflexivity (encoded as !eq(s, s) ( 1) would not be useful, since it does
not change the state. But because of symmetry and transitivity, !eq(t, t)
will be derivable for any subterm in the original equation (if they are not
contradictory).

At this point we are almost finished. We can derive any structural in-
consistency between the terms claimed to be unifiable. However, a single
equation such as x .

= f(x) would just saturate into four equations. We need
to add the occurs-check. We do this with a new predicate notin(x, t).

!eq(x, f(t)) ( !notin(x, t)

This predicate now traverses the term, collecting other constraints regard-
ing the occurs-check, or failing.

!notin(x, f(t)) ( !notin(x, t)
!notin(x, (t1, t2)) ( !notin(x, t1)⊗ !notin(x, t2)
!notin(x, x) ( 0

!notin(x, s)⊗ !eq(s, t) ( !notin(x, t)

!notin(x, y)⊗ !notin(y, z) ( !notin(x, z)

These rules are not minimal in various respects. For example, if we start
with only a single equation and no notin constraint, the last rule might
be redundant. And the second-to-last rule could be restricted to the case
where s is a variable. The particular rules are selected for the simplicity of
their correctness proof.
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5 Termination

First, we note that the program is stratified in that the absence of pres-
ence of !notin cannot affect equality !eq. This means we can proceed in two
phases: in the first we saturate equality, in the second we saturate the occur-
rence condition. A crude analysis, following Ganzinger and McAllester [?]
yields a complexity bound ofO(n3) where n is the size of the original equa-
tion. This is because we can only build O(n2) distinct equations !eq(s, t),
since s and t must be subterm of the original equation, and the transitivity
rule has therefore O(n3) so-called prefix firings. A more detailed analysis
shows the algorithm to be implementable using a union-find data struc-
ture to maintain equivalence classes with an O(n) occurs-check as a second
phase, which yields a complexity ofO(nlog(n)) which can be improved fur-
ther to O(nα(n)), where α(n) is the inverse of the Ackermann function and
for all practical purposes as small constant.

6 Preservation of Solutions

Next, we want to show that any of the forward-chaining rules preserve
the set of unifying substitutions exactly. Let Γ be a persistent collection
of equations eq(s, t) and notin(x, t). We say that a substitution for all the
variables in Γ simultaneously satisfies all constraints in Γ

1. s[θ] = t[θ] for any equation eq(s, t), and

2. |x[θ]| > |t[θ]| for any constraint notin(x, t) where |s| is the size of a
term, counting up function symbols and variables.

We write θ |= Γ. Initially we just have a single equation eq(s, t), so θ |=
eq(s, t) iff θ is a unifier for s and t.

We want to show that the exact set of solutions is preserved under all
forward chaining steps.

Theorem 1 (Preservation of Unifiers) For all substitutions θ and all forward-
chaining transitions Γ→ Γ′, we have that θ |= Γ iff θ |= Γ′.

Proof: Since all propositions are persistent, any substitution satisfying Γ′

will trivially satisfy Γ.
Now assume θ |= Γ. It remains to show that θ |= P for any new con-

straints that are added as part of the transition. By the definition of equality,
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this is very easy to see for the following structural rules:

!eq(f(s), f(t)) ( !eq(s, t).
!eq(f(s), g(t))⊗ f 6= g ( 0.
!eq((s1, s2), (t1, t2)) ( !eq(s1, t1)⊗ !eq(s2, t2).
!eq(s, t) ( !eq(t, s)
!eq(s, t)⊗ !eq(t, r) ( !eq(s, r)

Note that in the second rule, the assumption θ |= Γ is contradictory, so the
conclusion follows trivially.

Next, we consider

!eq(x, f(t)) ( !notin(x, t)

By assumption x[θ] = f(t)[θ], so |x[θ]| = |f(t[θ])| = |t[θ]|+ 1, so the |x[θ]| >
|t[θ]|.

In the next two rules

!notin(x, f(t)) ( !notin(x, t)
!notin(x, (t1, t2)) ( !notin(x, t1)⊗ !notin(x, t2)

the property is trivially preserved, since the second argument of notin(x, t)
in the conclusion is subterm of the one in the premises.

The assumption θ |= notin(x, x) is contradictory, since |x[θ]| = |x[θ]|, so

!notin(x, x) ( 0

trivially preserves all solutions (of which there are none).
Finally, for the rules

!notin(x, s)⊗ !eq(s, t) ( !notin(x, t)

!notin(x, y)⊗ !notin(y, z) ( !notin(x, z)

we exploit that s[θ] = t[θ] because θ |= eq(s, t). So |x[θ]| > |s[θ]| = |t[θ]|. A
similar argument applies to the second rule. 2

7 Unsatisfiability of Inconsistent States

So far we know that forward-chaining will always saturate, and that it pre-
serves the set of unifying substitutions exactly. We say that Γ is inconsistent,
if (Γ ; ·)→ (Γ ; 0). Taking some liberty with notation, we write Γ→ 0.
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Theorem 2 (Unsatisfiability of Inconsistent States) If Γ is inconsistent (that
is, Γ→ 0) then Γ is unsatisfiable (that is, there is no θ such that θ |= Γ).

Proof: Here are the two rules that can produce a contradiction:

!eq(f(s), g(t))⊗ f 6= g ( 0.
!notin(x, x) ( 0.

But there are no θ, s, and t such that f(s)[θ] = g(t)[θ] when f 6= g. Similarly,
there are no θ and x such that |x[θ]| > |x[θ]|. 2

8 Satisfiability of Consistent Saturated States

The last piece of the puzzle is more difficult. We need to show that if we
reach saturation, and there is no contradiction, then the set of equations
is simultaneously unifiable. Clearly, this is necessary. For example, if we
had forgotten the occurs-check altogether, we would still have termination
and preservation, but there are final states for which there are not unifying
substitutions. In essence, we need to devise a method to read off a unifying
substitution from a saturated state. By preservation, we know this will be
a correct answer to the original equation.

A first naive attempt we be to take an arbitrary equation in the satu-
rated state, say, eq(x, t) and postulate the substitution t/x. This won’t work,
however, because in equations such as eq(x, f(y)), eq(y, c) the substitution
f(y)/x, c/y does not actually unify the first equation! It would end up as
eq(f(y), c). This shows that we first have to build up a substitution θ1 for
y, here c/y, then then set θ2 = (f(y)[θ1]/x, θ1) = (f(c)/x, c/y). But why
can we always find some order in which to construct the final substitution?
Here is where the occurs-check comes in crucially.

We say that a substitution on a set of variables X is a partial solution for
Γ on X if for any x ∈ X , we have x[θ] = t[θ] for any equation eq(x, t) or
eq(t, x), and |x[θ]| > |t[θ]| for any constraint notin(x, t). Clearly, the empty
substitution is a partial solution on the empty set of variables, and a partial
solution on all variables is a unifier.

Assume we already have a substitution θk that is a partial solution for
Γ on a set of variables Xk. If it covers all variables already, we are done and
have a unifier. Otherwise we construct a substitution θk+1 in the following
way.

The notin relation is irreflexive and transitive in a saturated state that’s
not contradictory, because we have explicit rules to that effect. We can
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therefore pick a variable z such that notin(z, x) implies that x ∈ Xk. Now
define Yk = {y | eq(z, y) ∈ Γ}. There exists a term t0 such that for all non-
variable s and equations eq(yi, s) we have s[θk] = t0. To show this we use
an auxiliary induction on the number of such equations. If there are zero,
we pick a fresh variablew and set t0 = w. If there is only one such equation,
pick t0 = s. If there are two such equations with s and s′ we can pick either
one, because s[θk] = s′[θk]. We obtain this by constructing an explicit proof
of equality of these terms by using the fact that the state is saturated and
that θk is a partial solution on Xk.

Now define the substitution θk+1 as the extension of θk with t0/y for all
y ∈ Yk. Then θk+1 is a partial solution for Γ on Xk+1 = Xk ∪ Yk.

Since we pick up at least one variable on each step, this process must
finish after a finite number of steps, with the final Xk being a unifier, if we
start X0 = { } and θ0 the empty substitution.

Theorem 3 (Satisfiability of Consistent Saturated States) If Γ is saturated
and consistent (that is, does not generate 0), then there exists a substitution θ on
the variables in Γ such that θ |= Γ.

Proof: Following the proof sketch above, by an induction on the number
of variables in the saturated state. 2

9 Example Revisited

Here is a standard example which illustrates that the complexity of unifi-
cation, if we are expected to fully write out the unifying substitution as a
term, is exponential.

x0
.
= f(x1, x1),

x1
.
= f(x2, x2),

. . . ,
xn−1

.
= f(xn, xn)

In the unifying substitution term for x0, there are 2n−1 occurrences of f.
However, when seen as a directed acyclic graph, it is rather compact and
linear in n. The saturating forward-chaining algorithm captures the sharing
that is necessary to obtain a polynomial bound.

If we express each equation as eq(xi, f(xi+1, xi+1)), the set will saturate
rather quickly. We obtain its symmetric form and also eq(xi, xi) by transi-
tivity, as well as eq(f(xi+1, xi+1), f(xi+1, xi+1)). There are also some unin-
teresting intermediate equations, such as eq((xi+1, xi+1), (xi+1, xi+1)).
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Next we start phase two, generating and saturating the occurs-check
constraints. At first, we generate (essentially) notin(xi, xi+1). Using transi-
tivity, we obtain notin(xi, xj) whenever 0 ≤ i < j ≤ n, plus a few uninter-
esting ones like notin(xi, f(xj+1, xj+1)) for i < j. This shows unifiability in
polynomial time (based on the results by Ganzinger and McAllester), even
if the unifier has exponential size if written out.

10 Incrementality

During proof search, every focusing phase will generate a set of equations
that match clause heads against atomic propositions in the contexts. Some
care must be taken to make sure appropriately fresh variables are gener-
ated when universal (∀L) or existential (∃R) quantifiers are traversed, but
otherwise we can essentially just add any new equations to the context and
saturate immediately. If the equations are inconsistent, we fail and back-
track. If they are consistent, we keep the context in its saturated state and
continue, just adding further equations and re-saturating each time. This
guarantees that we are never going down a branch that is impossible, be-
cause saturation of the equations only checks unifiability without any over-
commitment.

This kind of structure generalizes smoothly when the equations are sub-
ject to an equational theory. The resource semantics presented in Lecture
23 provides an example of this kind.
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Exercises

Exercise 1 (Optimizations) The rules we give generate more equations than
necessary to guarantee unifiability for a saturated state. Consider some op-
timization to generate fewer persistent constraints eq(s, t) and notin(x, s),
or have fewer applicable rules even if the final set of constraints is the same.

Argue informally for the correctness of your optimizations.

Exercise 2 (Satisfiability of Saturated State) A crucial step in the proof of
satisfiability for a consistent saturated state (Theorem 3) is the following:

If there are two such equations with s and s′ we can pick either one, be-
cause s[θk] = s′[θk]. We obtain this by constructing an explicit proof
of equality of these terms by using the fact that the state is saturated
and that θk is a partial solution on Xk.

Carry out this argument rigorously. If you need additional invariants for
the state or the algorithm to recover a unifier from the saturated state,
please make them explicit.
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