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In intuitionistic linear logic, a proposition A can be thought of as a resource
which can (and must) be used exactly one time. Linear logic also has the
persistent modality !A, which represents persistent propositions that can
be used any number of times. The midterm asked you to think about an
affine modality @A = A N 1, representing resources that could be used at
most once, and a strict modality #A = A⊗ !A, representing resources that
you must use, but may use one more more times.

In this note, we’ll look at another way to think about the relationship
between persistent, affine, strict, and linear logics, based on Gentzen’s orig-
inal presentation of a sequent calculus for persistent intuitionistic logic.
Then, we’ll use that discussion to motivate ordered logic.

1 Gentzen’s presentation of logic

In 1935, Gentzen presented the first sequent calculus for (persistent) in-
tuitionistic and classical logic [Gen35]. That paper is in German, but the
various English translations (the translated title is “Investigations into Log-
ical Deduction”) are extraordinarily readable for a modern audience. We’ll
write Gentzen-style sequents as Ψ −→ A. One important distinction is that
Gentzen treated Ψ not as a bag or multiset, the way we do, but as a sequence
– so when we write the usual implication and initial rules as they appear in
Gentzen’s paper. . .

A −→ A
init

A,Ψ −→ A ⊃ B
Ψ −→ A ⊃ B

⊃R
Ψ1 −→ A B,Ψ2 −→ C

A ⊃ B,Ψ1,Ψ2 −→ C
⊃L
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. . . it is not the case that we can immediately prove the sequent C,A,A ⊃
B −→ B, which is true in persistent intuitionistic logic, using rule ⊃L,
because C,A,A ⊃ B does not match the pattern A ⊃ B,Ψ1,Ψ2.

The way Gentzen deals with this is by introducing structural rules of
weakening (sW), contraction (sC), and exchange (sE).

Ψ −→ C

A,Ψ −→ C
sW

A,A,Ψ −→ C

A,Ψ −→ C
sC

Ψ1, B,A,Ψ2 −→ C

Ψ1, A,B,Ψ2 −→ C
sE

By using two instances of the exchange rule, we can apply the ⊃L rule, let-
ting Ψ1 = C,A and letting Ψ2 = ·, and thereby prove our example sequent:

A −→ A
init

C,A −→ A
sW

B −→ B
init

A ⊃ B,C,A −→ B
⊃L

C,A ⊃ B,A −→ B
sE

C,A,A ⊃ B −→ B
sE

1.1 Structural properties as explicit or admissible rules

The approach that we’ve taken in this class is to let weakening, contrac-
tion, and exchange be admissible rules that don’t change the structure of a
derivation. Remember that, when we used the induction hypothesis in the
cut admissibility proof for linear logic, either the principal formula A had
to get smaller, or else the principal formula had to stay the same while one
of the derivations got smaller and the other derivation stayed the same size.
At one point in this cut admissibility proof, we’re given a proofD of the se-
quent Γ; ∆ ` A and we need a proof of Γ, B; ∆ ` A. Because of the way our
system works, we can weaken D to obtain D′, a proof of Γ, B; ∆ ` A with
the same structure as D. This allows us to call the induction hypothesis on
D′, because it is the same size as D.

Gentzen’s system doesn’t work this way. Weakening is not admissible,
because we cannot prove A,B −→ A directly with the init rule; we can
only prove A −→ A with init , then B,A −→ A with the weakening rule W ,
then A,B −→ A with the exchange rule E. And that resulting derivation is
not structurally the same as one that just uses an init rule. These extra rules
complicate the cut admissibility theorem for Gentzen-style sequent calculi.
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1.2 Multicut

Gentzen’s proof ultimately still proceeds by lexicographic induction, first
over the size of the principal cut formula A and second over the rank of the
two derivations, which is a metric that is related to their structure.

The cut admissibility principle as we usually formulate it – “If Ψ −→ A
andA,Ψ′ −→ C then Ψ,Ψ′ −→ C” – is not general enough in Gentzen-style
logics due to the contraction rule sC. Given that formulation of cut, we are
unable to handle this case:

D
Ψ −→ A

E1
A,A,Ψ′ −→ C

A,Ψ′ −→ C
sC

Ψ,Ψ′ −→ C
cutA

If we cut D against E1, we would get a derivation F1 of Ψ, A,Ψ′ −→ C.
We can’t apply the induction hypothesis a second time, because F1 may be
much larger than D or E1, and the principal cut formula A is still the same
size.

Therefore, Gentzen used the following generalization of the induction
hypothesis:

Theorem 1 If Ψ −→ A, Ψ′ −→ C, and if Ψ′/A is Ψ′ with all occurrences of A
removed, then Ψ,Ψ′/A −→ C.

2 The family of substructural logics

Let’s return to our ordinary linear logic in which contexts are multisets
and add a weakening rule and a contraction rule. We’ll also go back to
treating the contexts as multisets, though, which means the exchange rule
is trivially admissible, just like it’s been all along. We’ll distinguish this
strange linear logic with explicit weakening and exchange from the linear
logic we know and love by writing down the sequents as ∆ ẁc A.

∆ ẁc C

∆, A ẁc C
sW

∆, A,A ẁc C

∆, A ẁc C
sC

By the same token, ∆ ẁ A just has the weakening rule sW, and ∆ c̀ A just
has the contraction rule sC.
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∆ ẁ A is affine logic, which we can easily verify by showing that the
affine modality see because @A = A N 1 is interprovable with A when we
have the weakening rule.

A ẁ A
idA

AN 1 ẁ A
NL1

A ẁ A
idA

· ẁ 1
1R

A ẁ 1
sW

A ẁ AN 1
NR

∆ c̀ A is strict logic, as each assumption in ∆ can be copied but must
be used at least once. However, it is not the case that #A = A ⊗ !A is
interprovable with A.

Similarly, ∆ ẁc A is essentially just a different version of Gentzen’s pre-
sentation of persistent intuitionistic logic where exchange is built in. In
persistent intuitionistic logic, the two different versions of conjunction are
interprovable: by using weakening, we can prove A ⊗ B ẁ A N B, and by
using contraction, we can prove ANB c̀ A⊗B.

A ẁ A
idA

A,B ẁ A
sW

B ẁ B
idB

A,B ẁ B
sW

A,B ẁ ANB
NR

A⊗B ẁ ANB
⊗L

A c̀ A
idA

ANB c̀ A
NL1

B c̀ B
idB

ANB c̀ B
NL2

ANB,ANB c̀ A⊗B
⊗R

ANB c̀ A⊗B
sC

This is interesting because, as we have seen in the course’s previous discus-
sions of focusing,A⊗B is a positive proposition whereasANB is a negative
proposition. In plain-vanilla persistent intuitionistic logic, we can treat in-
dividual instances of conjunction A∧B as having a positive character (like
A⊗B) or as having a negative character (like ANB).

It is straightforward to prove that ∆ ` A implies ∆ c̀ A, ∆ ẁ A, and
∆ ẁc A, that ∆ ẁ A implies ∆ ẁc A (but not ∆ c̀ A or ∆ ` A), and so on.
But what about exchange? Linear logic as we have been using it includes
exchange as an admissible concept, but it’s also possible to come up with an
even more primitive logic that denies not just weakening and contraction,
but also exchange. In the next section, we will look at a well-formed logic
that admits none of Gentzen’s structural rules, not even exchange. The
relationship between all of these logics in terms of which structural rules
they admit is shown in Figure 1.
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Persistent – ∆ ẁc A
(sE,sC,sW)

Affine – ∆ ẁ A
(sE,sW)

Strict – ∆ c̀ A
(sE,sC)

Linear – ∆ ` A
(sE)

Ordered – Ω ` A
(none)

Figure 1: The relationship between persistent, affine, strict, linear, and or-
dered logics in terms of structural rules.

3 Ordered logic

Ordered logic was first developed by Lambek [Lam58], and was connected
to linear logic by Polakow and Pfenning [PP99]. In linear logic we think
of propositions in a context as resources to be consumed or processes to
be utilized. In ordered logic, we look at propositions in context as tokens
in a sequence or sentence; the order in which these tokens appear limits
the ways in which they can interact. Sequents in ordered logic are written
Ω ` A, where the context Ω is either the empty context · or a sequence of
comma-separated propositions A1, . . . , An that are not subject to permuta-
tion.

As usual, we can restrict initial sequents to atomic propositions P and
demand that cut and identity will both be admissible rules.

P ` P
idP

A ` A
idA

Ω ` A ΩL, A,ΩR ` C

ΩL,Ω,ΩR ` C
cutA

The identity theorem in ordered logic is the usual one; the cut admissibility
theorem indicates that we can use cut out any proposition A in the context,
which in ordered logic means that the context can have the form ΩL, A,ΩR.
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This pattern – the interesting part of the context being surrounded by an
outer ΩL and ΩR context – will be repeated for all the left rules in ordered
logic. This makes ordered logic different from Gentzen’s system, which
only applied left rules to propositions on one side of the context. That
didn’t become a problem for Gentzen, of course, because exchange could
be used to permute any proposition to the correct part of the context.

As we introduce the connectives of ordered logic in turn, we will give
the associated cases of identity and the principal cuts; left and right com-
mutative cuts also must to be considered in order to actually prove that cut
is admissible.

3.1 Fuse

The multiplicative conjunction A ⊗ B in linear logic is replaced by the
proposition A • B in ordered logic, which embodies concatenation and is
pronounced “A fuse B.”

Ω1 ` A Ω2 ` B
Ω1,Ω2 ` A •B

•R
ΩL, A,B,ΩR ` C
ΩL, A •B,ΩR ` C

•L

Like tensor in linear logic, fuse is asynchronous on the left, so we prove
the relevant case of the identity theorem by decomposing the proposition
on the left first:

A ` A B ` B

A,B ` A •B
•R

A •B ` A •B
•L

As in linear logic, a principal cut on A • B reduces to a cut on A and a
cut on B.

D1

Ω1 ` A
D2

Ω2 ` B
Ω1,Ω2 ` A •B

•R

E1
ΩL, A,B,ΩR ` C
ΩL, A •B,ΩR ` C

•L

ΩL,Ω1,Ω2,ΩR ` C
cutA•B

=⇒

D1

Ω1 ` A

D2

Ω2 ` B
E1

ΩL, A,B,ΩR ` C

ΩL, A,Ω2,ΩR ` C
cutB

ΩL,Ω1,Ω2,ΩR ` C
cutA

LECTURE NOTES MARCH 12, 2012



Ordered Logic L15.7

3.2 Implication

One surprise is that ordered logic has two implications! The right ordered
implication A � B throws propositions onto the right side of the context
and the left ordered implication A � B throws propositions on the left
side of the context.

Ω, A ` B
Ω ` A� B

�R
A,Ω ` B

Ω ` A� B
�R

The easiest way to figure out what the correct left rules will be is to look at
how the identity theorem will have to work:

A ` A
idA

B ` B
idB

A� B,A ` B
�L

A� B ` A� B
�R

This indicates that the right ordered implication needs to be able to prove
the premise A using a piece of the context ΩA immediately to the right of
the implication; the left ordered implication, we may safely suspect, works
the other way around.

ΩA ` A ΩL, B,ΩR ` C
ΩL, A� B,ΩA,ΩR ` C

�L
ΩA ` A ΩL, B,ΩR ` C
ΩL,ΩA, A� B,ΩR ` C

�L

Cut admissibility for both right and left ordered implication are similar,
and assuming that we got the left rules correct, it follows the pattern from
linear logic.

D1

Ω, A ` B
Ω ` A� B

�R

E1
ΩA ` A

E2
ΩL, B,ΩR ` C

ΩL, A� B,ΩA,ΩR ` C
�L

ΩL,Ω,ΩA,ΩR ` C
cutA�B

=⇒

E1
ΩA ` A

D1

Ω, A ` B

Ω,ΩA ` B
cutA

E2
ΩL, B,ΩR ` C

ΩL,Ω,ΩA,ΩR ` C
cutB
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3.3 Of course!

By uniformly extending our sequents with the same persistent context Γ
from linear logic, we can add the “of course!” or “bang” modality from
linear logic. We also need a copy rule, analogous to the copy rule from
linear logic, which takes a proposition in the persistent context Γ and places
a copy of it in the ordered context.

A ∈ Γ Γ; ΩL, A,ΩR ` C
Γ; ΩL,ΩR ` C

copy
Γ; · ` A
Γ; · ` !A

!R
Γ, A; ΩL,ΩR ` C
Γ; ΩL, !A,ΩR ` C

!L

3.4 Somewhere¡

We can also extend our contexts with the mobile modality ¡A, usually pro-
nounced “A mobile” or, unfortunately, “gnab A.” Mobile propositions are
still resources, but they can move from one part of the ordered context to
another. This can be done by extending sequents with a linear context ∆.
Importantly, ∆ is not a sequence like the ordered context Ω, it is a multiset,
as in all our previous discussions of linear logic.

The analogue of the copy rule is a place rule that allows propositions in
∆ to be placed at any point in the ordered context.

Γ; ∆; ΩL, A,ΩR ` C
Γ; ∆, A; ΩL,ΩR ` C

place
Γ; ∆; · ` A
Γ; ∆; · ` ¡A

¡R
Γ; ∆, A; ΩL,ΩR ` C
Γ; ∆; ΩL, ¡A,ΩR ` C

¡L

3.5 Metatheory with the modalities

The identity theorem changes in an obvious way when we add persistent
and linear contexts to ordered logic. Cut admissibility for the modalities
!A and ¡A requires a generalization of the induction hypothesis. The three
parts of the cut admissibility theorem can be seen as three derivable rules
cut, cut¡, and cut! (respectively).

Theorem 2 (Identity) For all A and Γ, we can prove Γ; ·;A ` A.

Proof: By induction on the structure of A. 2

Theorem 3 (Cut admissibility)

• If Γ; ∆; Ω ` A and Γ; ∆′; ΩL, A,ΩR ` C, then Γ; ∆,∆′; ΩL,Ω,ΩR ` C.

• If Γ; ∆; · ` A and Γ; ∆′, A; ΩL,ΩR ` C, then Γ; ∆,∆′; ΩL,ΩR ` C.
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• If Γ; ·; · ` A and Γ, A; ∆′; ΩL,ΩR ` C, then Γ; ∆′; ΩL,ΩR ` C.

Proof: By lexicographic induction: either the principal cut formula A gets
smaller, or else A stays the same and we call from the cut¡ and cut! cases
(which are “bigger”) to the cut case (which is “smaller”), or elseA stays the
same, we stay within the same case, and one of the two given derivations
gets smaller while the other stays the same. 2

3.6 Other connectives

Ordered logic has other connectives like those in linear logic, the additive
(negative) conjunction ANB and disjunction A⊕B and the units 1,>, and
0. Some presentations of ordered logic also include a second multiplicative
conjunction A ◦ B, or “A esuf B.” This second conjunction is definable in
terms of fuse: A ◦B = B •A.

4 Focusing

As before, we get a (weakly) focused sequent calculus first by assigning
propositions as positive or negative based on whether the left or right rules
(respectively) can be applied eagerly during proof search. Atomic proposi-
tions P can be assigned an arbitrary polarity as long as the same proposi-
tion always gets the same polarity.

A+ ::= P+ | !A | ¡A | 1 | A •B | A ◦B | 0 | A⊕B
A− ::= P− | A� B | A� B | > | ANB

We then extend our sequents Γ; ∆; Ω ` C to allow at most one proposi-
tion in Ω or the conclusion C to be in focus, written as [A]. Now that there
are two varieties of atomic proposition, we need two corresponding initial
rules to replace the one initial rule from before:

Γ; ·;P+ ` [P+]
idP+

Γ; ·; [P−] ` P−
idP−

We also need rules for entering into and leaving focus, the focus and blur
rules:

Γ; ∆; Ω ` [A+]

Γ; ∆; Ω ` A+
focusR

Γ; ∆; Ω ` A−

Γ; ∆; Ω ` [A−]
blurR

Γ; ∆; ΩL, [A
−],ΩR ` C

Γ; ∆; ΩL, A
−,ΩR ` C

focusL
Γ; ∆; ΩL, A

+,ΩR ` C

Γ; ∆; ΩL, [A
+],ΩR ` C

blurR
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Initial

Γ; ·;P+ ` [P+]
idP+

Γ; ·; [P−] ` P−
idP−

Focusing
Γ; ∆; Ω ` [A+]

Γ; ∆; Ω ` A+
focusR

Γ; ∆; Ω ` A−

Γ; ∆; Ω ` [A−]
blurR

Γ; ∆; ΩL, [A
−],ΩR ` C

Γ; ∆; ΩL, A
−,ΩR ` C

focusL
Γ; ∆; ΩL, A

+,ΩR ` C

Γ; ∆; ΩL, [A
+],ΩR ` C

blurR

Conjunction

Γ; ∆1; Ω1 ` [A] Γ; ∆2; Ω2 ` [B]

Γ; ∆1,∆2; Ω1,Ω2 ` [A •B]
•R

Γ; ∆; ΩL, A,B,ΩR ` C
Γ; ∆; ΩL, A •B,ΩR ` C

•L

Implication

Γ; ∆; Ω, A ` B
Γ; ∆; Ω ` A� B

�R
Γ; ∆; ΩA ` [A] Γ; ∆′; ΩL, [B],ΩR ` C

Γ; ∆,∆′; ΩL, [A� B],ΩA,ΩR ` C
�L

Γ; ∆;A,Ω ` B
Γ; ∆; Ω ` A� B

�R
Γ; ∆; ΩA ` [A] Γ; ∆′; ΩL, [B],ΩR ` C

Γ; ∆,∆′; ΩL,ΩA, [A� B],ΩR ` C
�L

Modalities

A ∈ Γ Γ; ∆; ΩL, [A],ΩR ` C

Γ; ∆; ΩL,ΩR ` C
copy

Γ; ·; · ` A

Γ; ·; · ` [!A]
!R

Γ, A; ∆; ΩL,ΩR ` C
Γ; ∆; ΩL, !A,ΩR ` C

!L

Γ; ∆; ΩL, [A],ΩR ` C

Γ; ∆, A; ΩL,ΩR ` C
place

Γ; ∆; · ` A

Γ; ∆; · ` [¡A]
¡R

Γ; ∆, A; ΩL,ΩR ` C
Γ; ∆; ΩL, ¡A,ΩR ` C

¡L

Figure 2: Focused ordered logic. Γ and ∆ are multisets, Ω is a sequence.
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The complete presentation of focused ordered logic is given in Figure 2.
With just the restriction that at most one proposition be in focus, we get
the chaining system. The fully focused system arises when we additionally
require that whenever a proposition is in focus Ω must contain only neg-
ative propositions and positive atomic propositions and the conclusion C
must be either a positive proposition or a negative atomic proposition. This
restriction can be phrased as a restriction on the focusR, focusL, copy, and
place rules.

4.1 The atom optimization

The system above is not quite the same as the chaining system for linear
logic presented in Lecture 9. In order to be consistent with that presenta-
tion, we need to make an extra restriction on the focused copy rule (which
is called focus! in Lecture 9) that we cannot copy and focus on a positive
atomic proposition:

A ∈ Γ A not P+ Γ; ∆; ΩL, [A],ΩR ` C

Γ; ∆; ΩL,ΩR ` C
copy′

Just making this one change would break the identity property, however:
it would be impossible to prove !P+ � P+. Therefore, this change to the
copy′/focus! rule must be made in tandem with adding the id!P+ rule.

P+ ∈ Γ

Γ; ·; · ` [P+]
id!P+

A similar change can be made to the place rule in tandem with the ad-
dition of a id¡P+ rule:

A not P+ Γ; ∆; ΩL, [A],ΩR ` C

Γ; ∆, A; ΩL,ΩR ` C
place′

Γ;P+; · ` [P+]
id¡P+

These changes essentially only have an effect on the way the focusing
system treats positive atomic propositions; the treatment described in Fig-
ure 2 is more faithful to Chaudhuri’s presentation of linear logic [Cha06],
and the modified treatment described in this section is more faithful to An-
dreoli’s presentation of linear logic [And92].

Let’s call this change the “atom optimization,” since it prevents us from
ever taking the extra step of focusing on a positive atomic proposition just
to get that proposition from the persistent or linear context into the ordered
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context. The atom optimization is helpful when we want write forward-
chaining logic programs, but it reveals that the way we treat positive atomic
propositions in linear and ordered logic is a bit ad-hoc. I currently believe
that focusing systems with and without this and other, similar optimiza-
tions can be given a uniform treatment through what Melliès and Tabareau
call tensor logic [MT10], but a discussion of this point would take us a bit
too far afield.
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Exercises

Exercise 1 Is there a ∆ and an A such that ∆ ẁ A and ∆ c̀ A is provable
but ∆ ` A is not? That is, are there any formulas that are true in both affine
and strict logic but not in linear logic?

Exercise 2 What goes wrong if we try to add the rules W and C to our
system of session types for the π-calculus?

Exercise 3 We added the W and C rules to linear logic, not ordered logic,
for a reason – Gentzen’s W and C rules as written ultimately depend on
their interaction with the exchange rule E for their sensibility.

(i) Propose an appropriate weakening principle for ordered logic, analo-
gous to the one we presented for linear logic in Section 2, that makes
sense in the absence of contraction and weakening.

(ii) Give two sequents that are provable in this “affordered” logic that are
not provable in ordered logic.

(iii) Show that affordered logic is consistent by extending the cut admis-
sibility argument (you’ll need to deal with one left commutative case
and at least one right commutative case).

(iv) Propose at least two appropriate (sets of) contraction rules for turning
ordered logic into “strict ordered” logic. Show how they differ in
what they allow you to prove.

Exercise 4 Are there any sequents that are provable in both linear logic
with contraction ∆ c̀ A and linear logic with weakening ∆ ẁ A but not in
linear logic ∆ ` A?

Exercise 5 Rigid logic, or nonassociative ordered logic, does not allow the
context combination operator Ω1,Ω2 to be associative; in rigid logic, A •
(B • C) � (A • B) • C is not provable in the empty context as it is in
ordered logic. Propose a cut admissibility property and rules for fuse and
right implication.

Exercise 6 Jason Reed once worked out a queue logic in which the only
proposition that can be decomposed is the leftmost proposition in the con-
text; this is an “ordered” logic that more superficially resembles Gentzen’s
original formulation without the exchange rule.
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(i) Formulate the rules for fuse and right ordered implication in queue
logic, as well as the cut admissibility and identity properties; prove
the identity property and the principal cases of cut admissibility. (For
spoilers, Reed’s note on queue logic can be found at http://www.cs.
cmu.edu/~jcreed/papers/queuelogic.pdf.)

(ii) Why doesn’t left ordered implication work in this formulation of queue
logic?

(iii) Does an affine queue logic, along the lines of the “affordered” logic
in Exercise 3, make sense? Why or why not? What would the explicit
weakening rule be?

Exercise 7 Give the rules, identity case, and principal cut elimination cases
for disjunction A⊕B in full ordered logic (sequents Γ; ∆; Ω ` C).

Exercise 8 In linear logic, the uncurried version of the proposition A (
B ( C ( D is (A ⊗ B ⊗ C) ( D. What is the uncurried version of
A � B � C � D in ordered logic? What about A� B � C � D? How
does this relate to the definable conjunction A ◦B = B •A?
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[MT10] Paul-André Melliès and Nicholas Tabareau. Resource modalities
in tensor logic. Annals of Pure and Applied Logic, 161(6):632–653,
2010.

[PP99] Jeff Polakow and Frank Pfenning. Relating natural deduction and
sequent calculus for intuitionistic non-commutative linear logic.
In Andre Scedrov and Achim Jung, editors, Proceedings of the 15th
Conference on Mathematical Foundations of Programming Semantics,
pages 449–466, New Orleans, Louisiana, April 1999. Electronic
Notes in Theoretical Computer Science, Volume 20.

LECTURE NOTES MARCH 12, 2012


	Gentzen's presentation of logic
	Structural properties as explicit or admissible rules
	Multicut

	The family of substructural logics
	Ordered logic
	Fuse
	Implication
	Of course!
	Somewhere¡
	Metatheory with the modalities
	Other connectives

	Focusing
	The atom optimization

	Exercises
	References

