
Lecture Notes on
Functional Computation

15-816: Linear Logic
Frank Pfenning

Lecture 11
February 22, 2012

In the linear λ-calculus from last lecture, we interpreted proof reductions
as term reductions in an underlying language of proof terms. This is the
original insight behind the Curry-Howard isomorphism [How69], albeit on
an natural deduction for (non-linear) intuitionistic logic and simply-typed
(non-linear) λ-terms. But there is still a significant step between proof term
reduction and an operational semantics. For example, in functional pro-
gramming languages such as ML or Haskell, we do not evaluate under
λ-abstractions, and we impose a specific order of evaluation for functions
such as call-by-value or call-by-name. Finding compelling logical under-
pinnnings for these is still an active area of research.

In this lecture we investigate a specific possibility for analyzing the
computational content of linear natural deductions, using two pieces al-
ready in place: the translation from natural deduction to sequent calculus,
and the interpretation of sequent proofs as concurrent processes. Combin-
ing these two will give us a concurrent operational semantics for the linear
λ-calculus. More details and additional material on this translation can be
found in Toninho et al. [TCP12]. This is definitely not the end of the story,
however, because other interpretations are possible. We may return to them
later in the course.

1 From Natural Deduction to Sequent Calculus

In the last lecture we stated that every natural deduction can be translated
to a sequent calculus proof. Annotating the resulting sequent calculus
proofs with their process interpretations will therefore provide us with a

LECTURE NOTES FEBRUARY 22, 2012

Functional Computation L11.2

compilation of linear λ-terms to the session-typed π-calculus. The realiza-
tion of this idea is remarkably similar to Milner’s interpretation of functions
as processes [Mil92], even though Milner’s work was rooted in the untyped
λ-calculus and π-calculus.

Recall that linear hypothetical judgments of natural deduction have the
form

Γ ; ∆ `̀ M : A

where Γ consists of unrestricted variable declarations uj :Bj while ∆ con-
sists of linear variable declarations xi:Ai. Similarly, sequents annotated
with process terms have the form

Γ ; ∆ ` P :: x : A

where Γ consists of shared channels uj :Bj , ∆ consists of linear channels
xi:Ai, and x:A is also a linear channel.

Therefore, our goal is to translate proof terms M to processes P that
preserves typing. We see that the processes use one additional channel,
along which they offer a service, so the translation will have to take this as
a parameter. We write

[M]x = P

and expect the theorem

From Functions to Processes.
If Γ ; ∆ `̀ M : A then Γ ; ∆ ` [M]x :: x : A.

We also expect some connection between reductions onM , as shown in the
last lecture, and process reduction on [M]x, but we will not try to antici-
pate it and instead extract it from the translation itself. We now proceed
construct by construct to see what we obtain.

2 Variables

Variables are translated to channels, and even in the statement of our de-
sired theorem we did not formally distinguish between them. We restate
the case in the proof, now with proof terms.

x:A `̀ x : A
hyp

LECTURE NOTES FEBRUARY 22, 2012

Functional Computation L11.3

We construct:

x:A ` [x↔ w] :: w : A
idA

This means
[x]w = [x↔ w]

3 Additive Pairs

Next, we consider additive pairs, typed by A N B. First, the introduction
rule:

∆ `̀ M : A ∆ `̀ N : B

∆ `̀ 〈M,N〉 : ANB
NI

The introduction rules correspond directly to right rules and we obtain

∆ ` [M]x :: x : A ∆ ` [N]x :: x : B

∆ ` x.case([M]x, [N]x) :: x : ANB
NR

So [〈M,N〉]x = x.case([M]x, [N]x). A pair therefore offers a choice between
its components along the channel x. The client should be able to select the
first or second component.

The elimination rules use cut in the target of the translation, so we can
transport the formula to which we apply the elimination to the left-hand
side of a sequent. The rule

∆ `̀ M : ANB

∆ `̀ π1M : A
NE1

therefore becomes

∆ ` ANB

A ` A
idA

ANB ` A
NL1

∆ ` A
cutANB

Now we annotate this with process terms:

∆ ` [M]x :: x : ANB

x:A ` [x↔ w] :: w : A
idA

x:ANB ` x.inl; [x↔ w] :: w : A
NL1

∆ ` (νx)([M]x | x.inl; [x↔ w]) :: w : A
cutANB

LECTURE NOTES FEBRUARY 22, 2012

Functional Computation L11.4

So, indeed, the client of a pair [M]x selects the first component by send-
ing inl along x and forwarding the result. Summarizing the three cases for
pairs:

[〈M,N〉]x = x.case([M]x, [N]x)
[π1M]w = (νx)([M]x | x.inl; [x↔ w])
[π2M]w = (νx)([M]x | x.inr; [x↔ w])

Now we should examine the reduction that arises when a destructor (such
as π1 or π2) meets a constructor (such as 〈−,−〉). We obtain:

[π1〈M,N〉]w = (νx)([〈M,N〉]x | x.inl; [x↔ w]) defn. of []w

= (νx)(x.case([M]x, [N]x) | x.inl; [x↔ w]) defn. of []x

−→ (νx)([M]x | [x↔ w]) process reduction
−→ [M]w structural reduction

The last reduction here comes from a cut where the first premise is anno-
tated with [M]x and the second premise is the identity. This reduces to the
first premise under some renaming to make sure the offer takes place along
the correct channel.

We can see from this that the induced operational semantics on natural
deduction proof terms is lazy for pairs of type ANB, since the x.case(−,−)
prefix protects it from reduction. As predicted, we can project out the de-
sired component. It also corresponds directly to the term reduction

π1〈M,N〉 −→R M

4 Multiplicative Pairs

Recall
∆ `̀ M : A ∆′ `̀ N : B

∆,∆′ `̀ M ⊗N : A⊗B
⊗I

Under the translation, and writing in process terms immediately, we obtain

∆ ` [M]y :: y : A ∆′ ` [N]x :: x : B

∆,∆′ ` (νy)x〈y〉.([M]y | [N]x) :: x : A⊗B
⊗R

At this point it is not clear what to make of this. In the synchronous π-
calculus the output prefix means that neither [M]y nor [N]x can reduce. So
this form of pair also appears to be lazy.

LECTURE NOTES FEBRUARY 22, 2012

Functional Computation L11.5

Perhaps the elimination rule will shed more light on the situation. We
index terms here with the explicitly mentioned variables or channels that
they may depend on, because it clarifies the communication patterns. We
have:

∆ `̀ M : A⊗B ∆′, y:A, x:B `̀ Ny,x : C

∆,∆′ `̀ let y ⊗ x = M in Ny,x : C
⊗E

Here is the translation, first without process terms:

∆ ` A⊗B

∆′, A,B ` C

∆′, A⊗B ` C
⊗L

∆,∆′ ` C
cutA⊗B

Annotating this now with process terms we get:

∆ ` [M]x :: x : A⊗B

∆′, y:A, x:B ` [N]wy,x :: w : C

∆′, x:A⊗B ` x(y).[N]wy,x :: w : C
⊗L

∆,∆′ ` (νx)([M]x | x(y).[N]wy,x) :: w : C
cutA⊗B

In summary:

[M ⊗N]x = (νy)x〈y〉.([M]y | [N]x)
[let y ⊗ x = M in N]w = (νx)([M]x | x(y).[N]wy,x)

Checking out the reduction between the two:

[let y ⊗ x = M1 ⊗M2 in N]w = (νx)([M1 ⊗M2]
x | x(y).[N]wy,x)

= (νx)((νy)x〈y〉.([M1]
y | [M2]

x) | x(y).[N]wy,x)

−→ (νx)(νy)([M1]
y | [M2]

x | [N]wy,x)

This reduction results in three parallel processes: [M1]
y, communicating

along y, [M2]
x, communicating along x, and the body of the let-term [N]wy,x

which depends on both y and x. Even though the multiplicative pairs
themselves have some aspect of lazy evaluation, they actually evaluate in
parallel with the body, synchronizing on the variables y and x along which
they communicate. For example, when the variable y is needed during
the computation of N , it will have to wait until M1 offers communication
(either input or output, depending on the type of y).

LECTURE NOTES FEBRUARY 22, 2012

Functional Computation L11.6

5 Functions

Now we turn our attention to functions, keeping in mind that they must
use their argument exactly once. First, the introduction rule corresponds to
a right rule, as usual.

∆, y:A `̀ My : B

∆ `̀ λy.My : A(B
(I

Translated (already with the proof terms):

∆, y:A ` [M]xy :: x : B

∆ ` x(y).[M]xy :: x : A(B
(R

We see that the the translation of a function [λy.M]x = x(y).[M]xy first re-
ceives the function argument along x and then evaluates the body. How-
ever, the “function argument” here is not a value, but the name of a chan-
nel along which we can communicate with the argument. Let’s look at the
evaluation of function application.

∆ `̀ M : A(B ∆′ `̀ N : A

∆,∆′ `̀ M N : B
(E

Here is what we construct, first without process terms.

∆ ` A(B

∆′ ` A B ` B
idB

∆′, A(B ` B
(L

∆,∆′ ` B
cutA(B

Filling in process terms, we get:

∆ ` [M]x :: x : A(B

∆′ ` [N]y :: y : A x:B ` [x↔ w] :: w : B
idB

∆′, x:A(B ` (νy)x〈y〉.([N]y | [x↔ w]) :: w : B
(L

∆,∆′ ` (νx)([M]x | (νy)x〈y〉.([N]y | [x↔ w])) :: w : B
cutA(B

We can see that the evaluation of the argument N is blocked until M is
ready to receive an input. This will be the case when it has reduced to the

LECTURE NOTES FEBRUARY 22, 2012

Functional Computation L11.7

translation of a function. Let’s calculate:

[(λy.M)N]w = (νx)([λy.M]x | (νy)x〈y〉.([N]y | [x↔ w]))
= (νx)(x(y).[M]xy | (νy)x〈y〉.([N]y | [x↔ w]))

−→ (νx)(νy)([M]xy | [N]y | [x↔ w])

−→ (νy)([M]wy | [N]y)

We see that the function body is evaluated in parallel with the function
argument, synchronizing on the uses of the variable y. Writing the natural
deduction reduction

(λy.M)N −→ [N/y]M

we see that instead of carrying out a substitution over the term M we tie
the computation of N to y, now viewed as a channel. In general, when a
term is typed as

∆ `̀ M : A

then [M]x will compute in an environment where each channel xi:Ai de-
clared in ∆ will be tied to process communicating along it, implementing
the concurrent evaluation of a process [Ni]

xi .
To relate reduction to the translation, we expect some relation

[[N/y]M]w ' (νy)([N]y | [M]wy)

Of course, this does not hold has an equality, since N may be deeply em-
bedded in [N/y]M while it is available at the top-level of the process on the
right. Still, the process term on the right (logically a cut) can be seen as an
implementation of the term on the left (logically a substitution).

The evaluation strategy that this corresponds to is futures [Hal85]: we
evaluate the argument at the same time as the function body, synchroniz-
ing on accesses to variables. This can be specialized into call-by-value and
call-by-need. If we always schedule reduction on the argument (called N
above) first, then it becomes call-by-value. If we always schedule reduction
on the body first, then it becomes call-by-need. Linearity of the variable en-
sures not only that it will be needed, but that its value is needed only once.

6 Persistence

So far, all variables and corresponding channels have been linear. How do
unrestricted variables (which correspond to shared channels) fit into the
picture?

LECTURE NOTES FEBRUARY 22, 2012

Functional Computation L11.8

First, the unrestricted hypothesis rule.

u:A ∈ Γ

Γ ; · `̀ u : A
uhyp

Without process terms, we construct the sequent proof as follows:

Γ ; A ` A
id

A ∈ Γ

Γ ; · ` A
copy

Assigning proof terms:

Γ ; y:A ` [y ↔ x] :: x : A
id

u:A ∈ Γ

Γ ; · ` (νy)u〈y〉.[y ↔ x] :: x : A
copy

So the translation of an unrestricted variable appearing as a term, [u]x, cre-
ates a new channel and sends it to u, tying the result to x.

Translating the !I rule should tell us which form of process is listening
on this channel.

Γ ; · `M : A

Γ ; · ` !M : !A
!I

Translating the proof

Γ ; · ` [M]y :: y : A

Γ ; · ` !x(y).[M]y :: x : !A
!R

reveals that the process is a replicating input that can create arbitrarily
many copies of a term [M]y.

The elimination rule will set up the communcation channel along u.

Γ ; ∆ `̀ M : !A Γ, u:A ; ∆′ `̀ N : C

Γ ; ∆,∆′ `̀ let !u = M in N : C
!E

Translated as

Γ ; ∆ ` !A

Γ, A ; ∆′ ` C

Γ ; ∆′, !A ` C
!L

Γ ; ∆,∆′ ` C
cut!A

LECTURE NOTES FEBRUARY 22, 2012

Functional Computation L11.9

and with process terms:

Γ ; ∆ ` [M]x :: x : !A

Γ, u:A ; ∆′ ` [N]wu :: w : C

Γ ; ∆′, x:!A ` x/u.[N]wu :: w : C
!L

Γ ; ∆,∆′ ` (νx)([M]x | x/u.[N]wu) :: w : C
cut!A

Let’s summarize these translations:
[u]x = (νy)u〈y〉.[y ↔ x]
[!M]x = !x(y).[M]y

[let !u = M in N]w = (νx)([M]x | x/u.[N]wu)

Again, we calculate the reductions to obtain a reading for the operational
semantics under the process interpretation.

[let !u = !M in N]w = (νx)([!M]x | x/u.[N]wu)
= (νx)(!x(y).[M]y | x/u.[N]wu)
−→ (νu)(!u(y).[M]y | [N]wu)

We see that u is tied to a replicating input along u, as expected, and that the
body of the let will evaluate. This will happen as soon as the argument was
prepared to receive along x, that is, had been reduced to a replicating input
along x.

Comparing this to the term reduction

let !u = !M in N −→ [M/u]N

we see that substitution for unrestricted variables is implemented differ-
ently than linear substitution. We expect some relation

[[M/u]N]w ' (νu)(!u(y).[M]y | [N]wu)

where the left-hand side is unrestricted substitution and the right-hand side
is cut!.

Together, these reductions give us a copying interpretation for !A. We
compute a value !M , where a fresh copy of M is evaluated every time it is
used. This is like a call-by-name interpretation of function calls, except that
here it is tied to a let-elimination (see Exercise 3).

For now, we just have the preservation of types across the translation.

Theorem 1 (From Functions to Processes)
If Γ ; ∆ `̀ M : A then Γ ; ∆ ` [M]x :: x : A.

Proof: By induction on the structure of the given deduction. The reasoning
in each case is contained in the proof translations constructed in this lecture.
2

LECTURE NOTES FEBRUARY 22, 2012

Functional Computation L11.10

Exercises

Exercise 1 Play through the computational interpretation of disjunctionA⊕
B via an interpretation into the session-typed π-calculus in the manner of
this lecture.

Exercise 2 Play through the computation interpretation of the multiplica-
tive unit 1 via an interpretation into the session-typed π-calculus in the
manner of this lecture.

Exercise 3 A simple embedding of (unrestricted) functions into the linear
functional language is by defining A ⊃ B = (!A) (B. Explore this defini-
tion. Specifically:

(i) Give derived term assignments for introduction and elimination rules
for A ⊃ B under the above definition.

(ii) Translate the derived term assignments into process terms for the se-
quent calculus.

(iii) Explain the evaluation strategy that corresponds to this embedding
of unrestricted functions into the linear λ-calculus.

LECTURE NOTES FEBRUARY 22, 2012

Functional Computation L11.11

References

[Hal85] Robert H. Halstead. Multilisp: A language for parallel symbolic
computation. ACM Transactions on Programming Languages and
Systems, 7(4):501–539, October 1985.

[How69] W. A. Howard. The formulae-as-types notion of construction.
Unpublished note. An annotated version appeared in: To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-
ism, 479–490, Academic Press (1980), 1969.

[Mil92] Robin Milner. Functions as processes. Mathematical Structures in
Computer Science, 2(2):119–141, 1992.

[TCP12] Bernardo Toninho, Luı́s Caires, and Frank Pfenning. Functions as
session-typed processes. In L. Birkedal, editor, 15th International
Conference on Foundations of Software Science and Computation Struc-
tures, FoSSaCS’12, Tallinn, Estonia, March 2012. Springer LNCS.
To appear.

LECTURE NOTES FEBRUARY 22, 2012

	From Natural Deduction to Sequent Calculus
	Variables
	Additive Pairs
	Multiplicative Pairs
	Functions
	Persistence
	Exercises
	References

