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1 Introduction to This Lecture

In lecture 7, we have seen how axiomatics and semantics of modal logic
fit together in soundness proofs and correspondence proofs. We have seen
several examples of classes of Kripke frames that are characterized by for-
mulas of propositional modal logic. These were several special cases. But
we are looking for a general correspondence result.

Can we find a full correspondence result? For any formula of proposi-
tional modal logic, associate a class of Kripke frames that it characterizes?
And for any class of Kripke frames, associate a formula of propositional
modal logic that characterizes it? Certainly not! Even for Kripke frames
with countable sets of worlds, classes of Kripke frames are not countable,
and cannot possibly be matched with the countable set of formulas.

Let us try a more modest general correspondence between proposi-
tional modal logic and first-order definable classes of Kripke frames. For
any class of Kripke frames given by a first-order formula on the frame, as-
sociate a formula of propositional modal logic that characterizes it? And
for any formula of propositional modal logic, associate a class of Kripke
frames—defined by a formula in first-order logic—that it characterizes?

It turns out that even that is impossible!

2 Noncorrespondence

We will prove that the class of irreflexive Kripke frames that is defined by
the first-order formula Vx —p(x, z) cannot be characterized in propositional
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L13.2 Noncorrespondence

modal logic. For that we will find two Kripke structures that are indistin-
guishable in propositional modal logic, but one of them is irreflexive, while
the other one is not.

Theorem 1 The class of all irreflexive Kripke frames (defined by the first-order
formula Vx —p(x, x)) cannot be characterized by a formula in propositional modal
logic.

In order to prove this, we construct a “parallel universe” W* with copy
states and choose an accessibility relation p* that conceals whether a state
is real or part of the parallel reality, which are indistinguishable by propo-
sitional modal means.

Lemma 2 (Irreflexivization) For Kripke structure K = (W, p,v) we define the
irreflexively split Kripke structure K* = (W*, p*,v*) as
W+ = {s : se W,ie{1,2}}
sip*t) iff sptandi,j € {1,2} fors#t
sip*s? iff sptandi # j
v (s) (@) = v*(s)(q)

Then, for any propositional modal logic formula ¢ we have

K*s'=¢ iff KskE¢
K¢ iff KskEo
K'k¢ iff KE®

Proof: The proof is by simultaneous induction on ¢. The last equivalence
is a simple consequence of the first two equivalences.

0. For propositional letters g, the equivalence is by definition of v*.
1. The propositional operators are easy.

2. Let ¢ be of the form (1. For the one direction, assume K*, s' = (.
We have to show K, s = 0. Thus consider any ¢ with spt. The
construction of K* ensures that s!p*t* regardless of whether s = ¢ or
s # t. Thus, because of K*, s' = [0y we have that K*,t? |= 1. Now
the induction hypothesis on ¢ for 2 implies that K,t |= ¢. Yet t was
arbitrary, hence K, s = O4.

For the converse direction, assume K,s = ¢y. We want to show
K*, s = O for i € {1,2}. Consider any ¢/ with s’p*t/. We have to
show K*,t/ |= 1. We consider the two cases of the construction.
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e Caset # sand j € {1,2} and spt. Then because of K, s = [,
we have K, t = 9. Hence K*,#/ |= ¢ by induction hypothesis.

e Caset = s and sps. Then i # j by construction. Because of
K,s |= Oy, we have K, s |= 1. By induction hypothesis, we ob-
tain K*,s7 = ¢ aka. K* t = 1.

O

Proof: [of Theorem 1] Suppose ¢ was a formula characterizing irreflexive
Kripke frames. Consider the simple-most reflexive singleton Kripke frame
(W, p) = ({s}, p) with sps. Then (W, p) is reflexive, but, by construction in
Lemma 2, (W*, p*) is irreflexive. We supposed that, for any truth-map v:

for K = (W, p,v) we have K |= ¢

but
for K* = (W*, p*,v") we have K* [~ ¢

Yet this contradicts Lemma 2. O

Thus, not all first-order definable Kripke frames can be characterized in
propositional modal logic. Conversely, not all propositional modal formu-
las characterize first-order definable Kripke frames. Recall from lecture 7:

Theorem 3 (Lecture 7) The conjunction of the following two multimodal formu-
las

Oap — (p A OaDOep)
Oa(p = Opp) — (p — Oap)

characterizes the set of all multimodal Kripke frames (W, pq, pp) such that p, is the
reflexive, transitive closure of py,.

In particular, the above conjunction of propositional multimodal formulas
is not definable in first-order logic, by a simple consequence of the com-
pactness theorem.

Theorem 4 (Compactness) First-order logic is compact, i.e.
I'EA iff thereisafinite ECI EF A

Consequently, there can only be partial forms of general correspon-
dence results.
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3 A Simple Correspondence Result

We next consider a well-known (yet still special) class of correspondence
results of general confluence. It captures most of the correspondence re-
sults we have seen so far and is essentially an n-step generalization. By
0" we denote n nested O-operators, and by (" we abbreviate n nested
{-operators:

0% = ¢ 0o =9¢
|:|n+1¢)5|:”:|n¢) <>n+1¢5<><>n¢

Similarly, for the predicate p representing the accessibility relation, we ab-
breviate the n-fold composition of the relation by p":

p(x,y) = 3ar . 3 (pla,21) A p(xa,23) A p(Tp—2, Tn1) A p(Tn-1,9))
Proposition 5 For any natural numbers m,n, j, k the modal formula

om0 — 070k
characterizes the class of all Kripke frames satisfying

Va vy vy (o7 (@,y) A ) = 320 (5:2) AP, 2))

Figure 1: Principle behind general confluence property

Proof: See Fig. 1 for an illustration of the general confluence property that
we abbreviate as C'(m, n, j, k):

Cm.n, j,k) = VavyVy' (p™(@,y) Apl(e.y)) = 32 (0"(5,2) A pH (', 2)
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Consider a Kripke frame (W, p) with (W, p) = C(m,n, j, k). Let K = (W, p,v)
be any Kripke structure extending the Kripke frame with any v. Let s € W
with K, s = 0™O"q. We have to show K, s |= [170*q. From K, s = (™",
we know that there is a ¢ € W that is reachable from s in n steps such that
K,t = 0"¢q. Now consider any ¢' € W that is reachable from s in j steps.
By translating notations, it is easy to see that (W, p) = C(m, n, j, k) implies
that there is a z € W that is reachable from ¢ in n steps and that is reachable
from t' in k steps. Since K, t = (0"q, we have K, z |= ¢. Hence K, t' = O¥q.
Thus K, s = (07 0*q, because ¢’ was arbitrary. O
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Exercises

Exercise 1 Using your knowledge about first-order logic, give a simple proof of
the compactness theorem.
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