
Assignment 6

15-816: Substructural Logics
Frank Pfenning

Due
Tuesday, November 15, 2016

This assignment consists of several, somewhat open-ended problems. You
should pick one of them to do. If you would like to do a half-semester
project instead, please submit your project proposal instead of the assign-
ment. A project proposal should be 2–5 pages and map out background,
motivation, technical approach, and expected outcome of your project.

You may do this assignment by yourself or in pairs. They are some-
what open-ended, so you have to use your judgment as to when you con-
sider the homework completed. Feel free to contact the instructor when
you have questions about the extent of a problem.

As usual, you are allowed and encouraged to use all resources (papers,
lecture notes, technical reports) that you can find, but you must properly
cite and acknowledge any resources you use.

Please submit this assignment as a PDF by email. LaTeX templates and
macros that may be helpful are available on the course web pages, but you
are not required to use them.

Exercise 1 (Nondeterminism) Consider a nondeterministic extension of sub-
singleton logic where multiple branches of a caseL and caseR expression
can have the same label. Follow our typical methodology and assess iden-
tity expansion, cut reduction, and rules of computation derived from them.
Can we use this to faithfully model nondeterministic versions of finite au-
tomata, pushdown automata, and Turing machines? Explore the conse-
quences of generalizing even further to allow redundant labels (not men-
tioned in the type) or missing labels (required by the type, but without a
matching branch).

Exercise 2 (Full Ordered Focusing) Prove full focusing for ordered logic
by adapting Simmons’s structural focalization technique [Sim14]. You should

ASSIGNMENTS NOVEMBER 4, 2016



Assignment 6 A6.2

present inversion in a deterministic manner and avoid the use of proof
terms for the purpose of this exercise. You may assume the correctness
of polarization, so that the result comes down the a completeness theorem
as well as admissibility of cut and identity in the focused sequent calculus.

Exercise 3 (Ordered Theorem Proving) Build several theorem provers for
ordered logic in an implementation language of your choice. The different
theorem provers should integrate different techniques for limiting nonde-
terminism in proof search so you can compare the results. Create a suite of
test problems, both provable and not provable, drawing from two domains:
internal laws such as associativity, distributivity, idempotence and similar
properties, and grammars and parsing problems presented as proposed by
Lambek [Lam58].

Exercise 4 (Concurrent Data Structure Library) Develop a small library of
concurrent data structures in either SILL1 or Concurrent C02. Examples
could range from various forms of heaps, to binary trees of some form (e.g.,
treaps), or other data structures and concurrent algorithms of your choice.
Make sure your code includes some nontrivial clients for illustration and
testing purposes. Do not be concerned with practical efficiency, but analyze
parallel complexity (reaction time, latency, throughput, work) where you
can.

Exercise 5 (Strict Logic) Strict logic is the stepchild of substructural logics
and does not seem to get much attention. Strict logic is easily defined as
a substructural logic in which we have contraction but not weakening. In
other words, every antecedent must be use at least once. Give a sequent
calculus for strict logic which is amenable to a structural proof of the ad-
missibility of cut and show the key cases in the proof. Are there any sur-
prising interactions once you integrate it with linearity using shifts? How
do the available connectives compare to linear and structural logics? Fur-
ther, consider and discuss either focusing (conjecture the rules, which you
do not need to prove) or a concurrent operational semantics.

Exercise 6 (Garbage Collection) In the purely ordered and linear process
calculi, no garbage collection is necessary (even though a looping process
may prevent termination and overall freeing of resources). If we add an

1a functional implementation of session-typed concurrency [Gri16] in OCaml, available
at https://github.com/ISANobody/sill

2an imperative implementation of session-typed concurrency [WPP16], available at
https://svn.concert.cs.cmu.edu/c0

ASSIGNMENTS NOVEMBER 4, 2016

https://github.com/ISANobody/sill
https://svn.concert.cs.cmu.edu/c0


Assignment 6 A6.3

affine mode F, processes that no longer have a client should be explicitly
terminated. Develop a clean type assignment system and operational se-
mantics such that upon termination of an initial process of type · ` main ::
(c0 : 1) the process configuration is guaranteed to clean up all resources.
Sketch how your design might be extended to a reference-counted garbage
collector for an extension with a structural mode U with the only proposi-
tions of this mode being ↑UFAF, or explain why it would not work.

ASSIGNMENTS NOVEMBER 4, 2016



Assignment 6 A6.4

References

[Gri16] Dennis Griffith. Polarized Substructural Session Types. PhD the-
sis, University of Illinois at Urbana-Champaign, April 2016. In
preparation.

[Lam58] Joachim Lambek. The mathematics of sentence structure. The
American Mathematical Monthly, 65(3):154–170, 1958.

[Sim14] Robert J. Simmons. Structural focalization. ACM Transactions on
Computational Logic, 15(3):21:1–21:33, 2014.

[WPP16] Max Willsey, Rokhini Prabhu, and Frank Pfenning. Design and
implementation of Concurrent C0. In Fourth International Work-
shop on Linearity, June 2016.

ASSIGNMENTS NOVEMBER 4, 2016


	References

