15-816
Substructural Logics

Fall 2016
Frank Pfenning
Carnegie Mellon University
My Responsibility

• Lectures Tue and Thu, 1:30-2:50
• Piazza cmu/fall2016/15816
• Office Hour, Tue 3:00-4:00 (GHC 7019)
 – Starting next week
• Website www.cs.cmu.edu/~fp/courses/15816-f16/
Your Responsibility

• Class participation
• Piazza participation
• Homework assignments (60%)
 – 6 weekly assignments up to midterm (individual)
 – 3 biweekly assignments after midterm (pairs)
• Midterm exam (15%), Tue Oct 18
 – Closed notes, in class (80 minutes)
• Final exam (25%), date TBA
• Waiting list
About Substructural Logics

• Linear Logic: Jean-Yves Girard (1987)
 – Inspired by a mathematical semantics
 – Changed the way we view logic and computation
 – Changed the way we approach proof theory

• My approach
 – Inspired by Dummett (1976) and Martin-Löf (1983)
 – Systematic internal justification of logical laws

• The family of substructural logics
 – Lambek calculus, affine logic, strict logic, relevance logic, ordered logic, bunched logic, separation logic, ...
About Linear Logic

• A logic of state or resources
• Numerous applications in computer science
 – Logic programming (imperative, concurrent)
 – Functional programming (machines, complexity)
 – Concurrency (session types, geometry of interaction)
 – Object-oriented programming (typestate)
• Numerous applications in logic
 – Understanding structural rules
 – Focusing and polarization
 – Resource semantics
 – Knowledge and possession
Learning Objectives

• After taking this course, students can
 – Model stateful, concurrent, and resource-aware systems in substructural logic
 – Define and reason about programming languages using substructural operational semantics (SSOS)
 – Capture computational phenomena in substructural type theories
 – Apply judgmental methods to define logics and type theories
 – Appreciate the deep connections between logic and computation
Course Outline

• Part I: Fundamentals
 – Systematic development of substructural logics
 – Understanding their intrinsic properties
 – Intuition from guiding examples and applications

• Part II: Applications
 – Study selected applications

• Part III: The frontier

• Today: Deductive Inference