
Lecture Notes on
Bisimulation

15-814: Types and Programming Languages
Frank Pfenning

Lecture 13
Tuesday, October 15, 2019

1 Introduction

In the last lecture we introduced the K Machine as an alternative way to
define the dynamics of programs in our language. We briefly summarize it
on functions only, first recalling their small-step dynamics.

λx. e val
val/lam

e1 7→ e′1

e1 e2 7→ e′1 e2
step/app1

v1 val e2 7→ e′2

v1 e2 7→ v1 e
′
2

step/app2

(λx. e′1) v2 7→ [v2/x]e′1
step/beta

The K Machine has two different forms of states

States s ::= k . e evaluate e with continuation k
| k / v return value v to continuation k

Continuations k ::= ε
| k ◦ (_ e2) | k ◦ (v1 _)

with the following transitions

k . λx. e 7→ k / λx. e
k . e1 e2 7→ k ◦ (_ e2) . e1

k ◦ (_ e2) / v1 7→ k ◦ (v1 _) . e2
k ◦ ((λx. e′1) _) / v2 7→ k . [v2/x]e′1

LECTURE NOTES TUESDAY, OCTOBER 15, 2019



L13.2 Bisimulation

One of our guiding principles was

For any continuation k, expression e and value v,
k . e 7→∗ k / v iff e 7→∗ v

2 Correctness of the K Machine

Given the relatively simple construction of the machine it is surprisingly
tricky to prove its correctness. We refer to the textbook [Har16, Chapter 28]
for a complete formal development. We already stated a key property

For any continuation k, expression e and value v,
k . e 7→∗ k / v iff e 7→∗ v

This implies that k . v 7→∗ k / v because v 7→0 v.
A key step in the proof is to find a relation between expressions and

machine states k . e and k / v. In this case we actually define this relation
as a function that unravels the state back into an expression. As stated in
the property above, the state k . e expects the value of e being passed to k.
When we unravel the state we don’t wait for evaluation finish, but we just
substitute expression e back into k. Consider, for example,

k . e1 e2 7→ k ◦ (_ e2) . e1

If we plug e1 into the hole of the continuation (_ e2) we recover e1 e2, which
we can then pass to k.

We write k(e) = e′ for the operation of reconstituting an expression from
the state k . e or k / e (ignoring the additional information that e is a value
in the second case). We define this inductively over the structure of k. First,
when the stack is empty we just take the expression.

ε(e) = e

Otherwise, we plug the expression into the frame on top of the stack (which
is the rightmost part of the continuation), and then recursively plug the
result into the remaining continuation.

ε(e) = e
(k ◦ (_ e2))(e1) = k(e1 e2)
(k ◦ (v1 _))(e2) = k(v1 e2)

We now observe that the rules of the K Machine that decompose an expres-
sion leave the unravelling of a state unchanged.

LECTURE NOTES TUESDAY, OCTOBER 15, 2019



Bisimulation L13.3

As a unifying notation for the two forms of machine state, we write
k ./ e to stand for either k . e or k / e. We relate machine states k ./ e to
expressions k(e) written in infix notation as k ./ e R k(e). This relation R is
weak bisimulation if it satisfies

(i) If k ./ e 7→ k′ ./ e′ then k(e) 7→∗ k′(e′)

(ii) If k(e) 7→ k′(e′) then k ./ e 7→∗ k′ ./ e′

While the first statement is transparent, the second statement here has to be
read carefully. In more detail, we are given an e0, e′0, and transition e0 7→ e′0.
Then for any k ./ e such that k ./ e R e0 there exist k′ and e′ such that
k ./ e 7→∗ k′ ./ e′ and k′ ./ e′ R e′0. Expanding the definition of R yields the
second assertion above.

This form of relationship is often displayed in pictorial form, where solid
lines denote given relationship and dashed lines denote relationship whose
existence is to be proved. In this case we might display the two properties
as

k ./ e k(e)

k′ ./ e′ k′(e′)

R

∗

R

and

k ./ e k(e)

k′ ./ e′ k′(e′)

R

∗

R

This is an example of a weak bisimulation, where “weak” indicates that
the two side do not have to proceed in lockstep. In the diagram this is
represented by allowing zero or more steps 7→∗ in the transition we have
to construct. Sometimes (actually: today) we can be more precise than just
saying that there an unknown arbitrary number of steps. It is rare that a
transformation we might consider will preserve individual steps exactly,
so weak bisimulation is a more important notion that strong bisimulation.
A more generic depiction of a weak bisimulation that does not bake in the
definition of R from this particular situation might look like

s e

s′ e′

R

∗

R

and
s e

s′ e′

R

∗

R

We now turn to our specific example, proving the first direction of the weak
bisimulation.

Theorem 1 (Weak Bisimulation for the K Machine, Part 1, v1)
If k ./ e 7→ k′ ./ e′ then k(e) 7→∗ k′(e′).

LECTURE NOTES TUESDAY, OCTOBER 15, 2019



L13.4 Bisimulation

Proof: By cases on the definition of k ./ e 7→ k′ ./ e′. We write here “by
cases” instead of “by induction” because none of the transition rules have
any premises. A proof by cases is certainly a degenerate case of a proof by
induction, but we would like to express this stronger property of the proof.

Case: k . λx1. e2 7→ k / λx1. e2 where e = λx1. e2 = e′ and k′ = k. Then

k(e) = k(λx1. e2) = k′(e′)

and
k(e) 7→0 k′(e′)

Case: k . e1 e2 7→ k ◦ (_ e2) . e1 where e = e1 e2, k′ = k ◦ (_ e2) and e′ = e1.
Then

k(e1 e2) = (k ◦ (_ e2))(e1)

so
k(e) = k(e1 e2) 7→0 (k ◦ (_ e2))(e1) = k′(e′)

Case: k0 ◦ (_ e2) / v1 7→ k0 ◦ (v1 _) . e2 where k = k0 ◦ (_ e2), e = v1,
k′ = k0 ◦ (v1 _) and e′ = e2. Then

(k0 ◦ _ e2)(v1) = k0(v1 e2) = (k0 ◦ v1 _)(e2)

so
k(e) = (k0 ◦ _ e2)(v1) 7→0 (k0 ◦ v1 _)(e2) = k′(e′)

What we have seen so far is the rule for values, or the rules that decompose
expressions are actually identities as far as the global, small-step transitions
are concerned. That because these transition rules just find the place in the
expression where a “real reduction” (in this case, just β-reduction) can take
place.

The final case will require a lemma, but let’s see what that might be.

Case: k0 ◦ ((λx. e1) _) / v2 7→ k0 . [v2/x]e2. Then we need to show

k0 ◦ ((λx. e1) _)(v2) = k0((λx. e1) v2)
?

7→∗ k0([v2/x]e1)

The lemma that we need here, stated and proved below, expresses that
small-step reduction behaves as a congruence but only for continua-
tions k.

k0((λx. e1) v2) 7→1 k0([v2/x]e1) By Lemma 2
k(e) 7→1 k′(e′) By equality reasoning

LECTURE NOTES TUESDAY, OCTOBER 15, 2019



Bisimulation L13.5

�

Lemma 2 (Continuation Congruence)
If e 7→ e′ then k(e) 7→ k(e′) for any k.

Proof: We are given a reduction from e to e′, so the first instinct might be
to prove this by rule induction on the derivation of e 7→ e′. However, this
reduction will simply be embedded in the reduction of k(e) 7→ k(e′) rather
than analyzed and decomposed, so this cannot be right.

Instead, we prove it by induction on the structure of k which is “wrapped
around” e and e′.

Case: k = ε. Then

k(e) = ε(e) = e 7→ e′ = ε(e′) = k(e′)

Case: k = k1 ◦ _ e2. Then

k(e) = (k1 ◦ _ e2)(e) This case
(k1 ◦ _ e2)(e) = k1(e e2) By definition of k(−)
e 7→ e′ Assumption
e e2 7→ e′ e2 By rule step/app1
k1(e e2) 7→ k1(e

′ e2) By ind. hyp. on k1
k1(e

′ e2) = (k1 ◦ _ e2)(e′) = k(e′) By definition of k(−)

Case: k = k1 ◦ v1 _. Then

k(e) = (k1 ◦ v1 _)(e) This case
(k1 ◦ v1 _)(e) = k1(v1 e) By definition of k(−)
e 7→ e′ Assumption
v1 e 7→ v1 e

′ By rule step/app2
k1(v1 e) 7→ k1(v1 e

′) By ind. hyp. on k1
k1(v1 e

′) = (k1 ◦ v1 _)(e′) = k(e′) By definition of k(−)

�

We now refine the statement of the first direction of bisimulation to
express that each step of the K machine is simulated by zero or one steps of
reduction of our original dynamics. We write this in general as e 7→0,1 e′.

Theorem 3 (Weak Bisimulation for the K Machine, Part 1, v2)
If k ./ e 7→ k′ ./ e′ then k(e) 7→0,1 k′(e′).

LECTURE NOTES TUESDAY, OCTOBER 15, 2019



L13.6 Bisimulation

Proof: See proof of Theorem 1. �

One ultimate end-to-end property we are interested in is for complete
computations. We call this the soundness of the K machine because it ex-
presses that if the K Machine returns a final answer, then this final answer is
correct.

Corollary 4 (Soundness of the K Machine)
If ε . e 7→∗ ε / v then e 7→∗ v.

Proof: We extend Theorem 1 to multistep reduction in the K Machine (by
induction on the length of the reduction sequence) and then obtain the
statement with k = k′ = ε. �

Unfortunately, the other direction of the bisimulation is more difficult to
prove, so it remains a conjecture.

Conjecture 5 (Weak Bisimulation for the K Machine, Part 2)
If e0 7→ e′0 where e0 = k(e) for some k and e. Then k ./ e 7→∗ k′ ./ e′ for some k′

and e′ with e′0 = k′(e′).

Fortunately, the end-to-end result in the other direction is not in question.
It states that if evaluation returns a value, then the K Machine will do so as
well.

Theorem 6 (Completeness of the K Machine)
If e 7→∗ v then ε . e 7→∗ ε / v.

Proof: See the textbook [Har16, Chapter 28]. The proof uses an intermediate
big-step dynamics. �

Exercises

Exercise 1 One unnecessary expense in the K Machine is that values v may
be evaluated many times. With recursive types values v can be arbitrarily
large, so we would like avoid re-evaluation. For this purpose we introduce
a separate syntactic class of values w and a new expression constructor ↓w
that includes a value w as an expression. It is typed with

w val Γ ` w : τ

Γ ` ↓w : τ
tp/down

LECTURE NOTES TUESDAY, OCTOBER 15, 2019



Bisimulation L13.7

and included in expressions with

Expressions e ::= . . . | ↓w
Closed values w ::= λx. e | 〈w1, w2〉 | 〈 〉 | i · w | fold w

1. Update the K Machine so that the two machine states are k . e and
k / ↓w. In order to avoid re-evaluation, only expressions ↓w should
be substituted for variables. Your rules should not appeal to the e val
judgment but simply construct closed values w as a natural part of the
machine’s operation. Only show the rules for functions and pairs.

2. Establish a weak bisimulation between the machine with marked
values and those without, limiting yourself to eager pairs. This means
you should

(a) Define relation R between the states in the two machines.
(b) Prove that R is a weak bisimulation, which requires two separate

properties to be shown.
(c) Sketch the proofs of any lemmas you might need regarding the

operation of each of the two machines.

3. Analyze your proof in Part 3(b) to see if you can make a statement
about how the number of steps in the two machines are related.

Exercise 2 Extend the K Machine to handle exceptions in the style of Section
L11.6. There are two common technique to add exceptions.

1. We add a new form of state, k J E expressing that an exception E has
been raised and must be propagated or handled by k.

2. We have a pair of continuations: one is for handling normal return
values, the other for handling exceptions directly. The goal is to avoid
explicit unwinding of the stack because the most recent handler is
directly accessible.

Write two extended versions of the K Machine following these two ap-
proaches, limiting yourself to functions, raising exceptions with raise E, and
the try e1 e2 construct. You should make sure that your machines remain
faithful to the original semantics in L11.6, but you do not need to prove it.

References

[Har16] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, second edition, April 2016.

LECTURE NOTES TUESDAY, OCTOBER 15, 2019


	Introduction
	Correctness of the K Machine

