
Lecture Notes on
The Lambda Calculus

15-814: Types and Programming Languages
Frank Pfenning

Lecture 1
Tuesday, September 3, 2019

1 Introduction

This course is about the principles of programming language design, many
of which derive from the notion of type. Nevertheless, we will start by
studying an exceedingly pure notion of computation based only on the
notion of function, that is, Church’s λ-calculus [CR36]. There are several
reasons to do so.

• We will see a number of important concepts in their simplest possible
form, which means we can discuss them in full detail. We will then
reuse these notions frequently throughout the course without the same
level of detail.

• The λ-calculus is of great historical and foundational significance. The
independent and nearly simultaneous development of Turing Ma-
chines [Tur36] and the λ-Calculus [CR36] as universal computational
mechanisms led to the Church-Turing Thesis, which states that the ef-
fectively computable (partial) functions are exactly those that can be
implemented by Turing Machines or, equivalently, in the λ-calculus.

• The notion of function is the most basic abstraction present in nearly all
programming languages. If we are to study programming languages,
we therefore must strive to understand the notion of function.

• It’s cool!

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2019

L1.2 The Lambda Calculus

2 The λ-Calculus

In ordinary mathematical practice, functions are ubiquitous. For example,
we might define

f(x) = x+ 5
g(y) = 2 ∗ y + 7

Oddly, we never state what f or g actually are, we only state what happens
when we apply them to arbitrary arguments such as x or y. The λ-calculus
starts with the simple idea that we should have notation for the function
itself, the so-called λ-abstraction.

f = λx. x+ 5
g = λy. 2 ∗ y + 7

In general, λx. e for some arbitrary expression e stands for the function
which, when applied to some e′ becomes [e′/x]e, that is, the result of substi-
tuting or plugging in e′ for occurrences of the variable x in e. For now, we
will use this notion of substitution informally—in the next lecture we will
define it formally.

We can already see that in a pure calculus of functions we will need
at least three different kinds of expressions: λ-abstractions λx. e to form
function, application e1 e2 to apply a function e1 to an argument e2, and
variables x, y, z, etc. We summarize this in the following form

Variables x
Expressions e ::= λx. e | e1 e2 | x

This is not the definition of the concrete syntax of a programming language,
but a slightly more abstract form called abstract syntax. When we write down
concrete expressions there are additional conventions and notations such as
parentheses to avoid ambiguity.

1. Juxtaposition (which expresses application) is left-associative so that
x y z is read as (x y) z

2. λx. is a prefix whose scope extends as far as possible while remain-
ing consistent with the parentheses that are present. For example,
λx. (λy. x y z)x is read as λx. ((λy. (x y) z)x).

We say λx. e binds the variable x with scope e. Variables that occur in
e but are not bound are called free variables, and we say that a variable x
may occur free in an expression e. For example, y is free in λx. x y but not

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2019

The Lambda Calculus L1.3

x. Bound variables can be renamed consistently in a term So λx. x + 5 =
λy. y+5 = λwhatever .whatever +5. Generally, we rename variables silently
because we identify terms that differ only in the names of λ-bound variables.
But, if we want to make the step explicit, we call it α-conversion.

λx. e =α λy.[y/x]e provided y not free in e

The proviso is necessary, for example, because λx.x y 6= λy.y y.
We capture the rule for function application with

(λx. e2) e1 =β [e1/x]e2

and call it β-conversion. Some care has to be taken for the substitution to be
carried our correctly—we will return to this point later.

If we think beyond mere equality at computation, we see that β-conversion
has a definitive direction: we apply is from left to right. We call this β-
reduction and it is the engine of computation in the λ-calculus.

(λx. e2) e1 −→β [e1/x]e2

3 Function Composition

One the most fundamental operation on functions in mathematics is to
compose them. We might write

(f ◦ g)(x) = f(g(x))

Having λ-notation we can first explicitly denote the result of composition
(with some redundant parentheses)

f ◦ g = λx. f(g(x))

As a second step, we realize that ◦ itself is a function, taking two functions
as arguments and returning another function. Ignoring the fact that it is
usually written in infix notation, we define

◦ = λf. λg. λx. f(g(x))

Now we can calculate, for example, the composition of the two functions
we had at the beginning of the lecture. We note the steps where we apply

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2019

L1.4 The Lambda Calculus

β-conversion.

(◦ (λx. x+ 5)) (λy. 2 ∗ y + 7)
= ((λf. λg. λx. f(g(x)))(λx. x+ 5)) (λy. 2 ∗ y + 7)
=β (λg. λx. (λx. x+ 5)(g(x))) (λy. 2 ∗ y + 7)
=β λx. (λx. x+ 5) ((λy. 2 ∗ y + 7)(x))
=β λx. (λx. x+ 5) (2 ∗ x+ 7)
=β λx. (2 ∗ x+ 7) + 5
= λx. 2 ∗ x+ 12

While this appears to go beyond the pure λ-calculus, we will see in Section 6
that we can actually encode natural numbers, addition, and multiplication.
We can see that ◦ as an operator is not commutative because, in general,
◦ f g 6= ◦ g f . You may test your understanding by calculating (◦ (λy. 2 ∗ y +
7)) (λx. x+ 5) and observing that it is different.

4 Summary of λ-Calculus

λ-Expressions.

Variables x
Expressions e ::= λx. e | e1 e2 | x

λx. e binds x with scope e, which is as large as possible while remaining
consistent with the given parentheses. Juxtaposition e1 e2 is left-associative.

Equality.

Substitution [e1/x]e2 (capture-avoiding, see Lecture 2)
α-conversion λx. e =α λy.[y/x]e provided y not free in e
β-conversion (λx. e2) e1 =β [e1/x]e2

We generally apply α-conversion silently, identifying terms that differ only
in the names of the bound variables.

Reduction.

β-reduction (λx. e2) e1 −→β [e1/x]e2

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2019

The Lambda Calculus L1.5

5 Representing Booleans

Before we can claim the λ-calculus as a universal language for computation,
we need to be able to represent data. The simplest nontrivial data type
are the Booleans, a type with two elements: true and false. The general
technique is to represent the values of a given type by normal forms, that is,
expressions that cannot be reduced. Furthermore, they should be closed, that
is, not contain any free variables. We need to be able to distinguish between
two values, and in a closed expression that suggest introducing two bound
variables. We then define rather arbitrarily one to be true and the other to be
false

true = λx. λy. x
false = λx. λy. y

The next step will be to define functions on values of the type. Let’s start
with negation: we are trying to define a λ-expression not such that

not true =β false
not false =β true

We start with the obvious:
not = λb. . . .

Now there are two possibilities: we could either try to apply b to some
arguments, or we could build some λ-abstractions. In lecture, we followed
both paths. Let’s first try the one where b is applied to some arguments.

not = λb. b (. . .) (. . .)

We suggest two arguments to b, because b stands for a Boolean, and Booleans
true and false both take two arguments. true = λx. λy. x will pick out the
first of these two arguments and discard the second, so since we specified
not true = false, the first argument to b should be false!

not = λb. b false (. . .)

Since false = λx. λy. y picks out the second argument and not false = true,
the second argument to b should be true.

not = λb. b false true

Now it is a simple matter to calculate that the computation of not applied to
true or false completes in three steps and obtain the correct result.

not true −→3
β false

not false −→3
β true

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2019

L1.6 The Lambda Calculus

We write−→n
β for reduction in n steps, and−→∗β for reduction in an arbitrary

number of steps, including zero steps. In other words, −→∗β is the reflexive
and transitive closure of −→β .

An alternative solution hinted at above is to start with

not′ = λb. λx. λy. . . .

We pose this because the result of not b should be a Boolean, and the two
Booleans both start with two λ-abstractions. Now we reuse the previous
idea, but apply b not to false and true, but to y and x.

not′ = λb. λx. λy. b y x

Again, we calculate
not′ true −→3

β false
not′ false −→3

β true

An important observation here is that

not = λb. b (λx. λy. y) (λx. λy. x) 6= λb. λx. λy. b y x = not′

Both of these are normal forms (they cannot be reduced) and therefore repre-
sent values (the results of computation). Both correctly implement negation
on Booleans, but they are different. This is evidence that when computing
with particular data representations in the λ-calculus it is not extensional:
even though the functions behave the same on all the arguments we care
about (here just true and false), the are not convertible. To actually see that
they are not convertible we need the Church-Rosser theorem which says
if e1 and e2 are αβ-convertible then there is a common reduct e such that
e1 −→∗β e and e2 −→∗β e.

As a next exercise we try exclusive or. We want to define a λ-expression
xor such that

xor true true =β false
xor true false =β true
xor false true =β true
xor false false =β false

Learning from the negation, we start by guessing

xor = λb. λc. b (. . .) (. . .)

where we arbitrarily put b first. Looking at the equations, we see that if b is
true then the result is always negation of c.

xor = λb. λc. b (not c) (. . .)

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2019

The Lambda Calculus L1.7

If b is false the result is always just c, no matter what c is.

xor = λb. λc. b (not c) c

Again, it is now a simple matter to verify the desired equations and that, in
fact, the right-hand side of these equations is obtained by reduction.

6 Representing Natural Numbers

Finite types such as Booleans are not particularly interesting. When we
think about the computational power of a calculus we generally consider
the natural numbers 0, 1, 2, We would like a representation n such that
they are all distinct. We obtain this by thinking of the natural numbers are
generated from zero by repeated application of the successor function. Since
we want our representations to be closed we start with two abstractions: one
(z) that stands for zero, and one (s) that stands for the successor function.

0 = λs. λz. z
1 = λs. λz. s z
2 = λs. λz. s (s z)
3 = λs. λz. s (s (s z))
. . .
n = λs. λz. s (. . . (s︸ ︷︷ ︸

n times

z))

In other words, the representation n iterates its first argument n times over
its second argument

n f x = fn(x)

where fn(x) = f(. . . (f︸ ︷︷ ︸
n times

(x)))

The first order of business now is to define a successor function that
satisfies succ n = n+ 1. As usual, there is more than one way to define it,
here is one (throwing in the definition of zero for uniformity):

zero = 0 = λs. λz. z
succ = λn. n+ 1 = λn. λs. λz. s (n s z)

We cannot carry out the correctness proof in closed form as we did for the
Booleans since there would be infinitely many cases to consider. Instead we

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2019

L1.8 The Lambda Calculus

calculate generically (using mathmetical notation and properties)

succ n
= λs. λz. s (n z s)
= λs. λz. s (sn(z))
= λs. λz. sn+1(z)
= n+ 1

A more formal argument might use mathematical induction over n.
Using the iteration property we can now define other mathematical

functions over the natural numbers. For example, addition of n and k
iterates the successor function n times on k.

plus = λn. λk. n succ k

You are invited to verify the correctness of this definition by calculation.
Similarly:

times = λn. λk. n (plus k) zero
exp = λb. λe. e (times b) (succ zero)

More about this and other properties and examples of the λ-calculus in
Lecture 2.

7 Exercises

Exercise 1 Define the following functions on Booleans in at least two distinct
ways.

1. Conjunction “and”.

2. The conditional “if” such that

if true e1 e2 =β e1
if false e1 e2 =β e2

References

[CR36] Alonzo Church and J.B. Rosser. Some properties of conversion.
Transactions of the American Mathematical Society, 39(3):472–482, May
1936.

[Tur36] Alan Turing. On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London Mathematical
Society, 42:230–265, 1936. Published 1937.

LECTURE NOTES TUESDAY, SEPTEMBER 3, 2019

	Introduction
	The -Calculus
	Function Composition
	Summary of -Calculus
	Representing Booleans
	Representing Natural Numbers
	Exercises

