Final Exam

15-814 Types and Programming Languages
Frank Pfenning
December 13, 2018

Name: Sample Solution Andrew ID: fp

Instructions

• This exam is closed-book, closed-notes.
• You have 180 minutes to complete the exam.
• There are 5 problems.
• For reference, on pages 15–18 there is an appendix with sections on the syntax, statics, and dynamics.

<table>
<thead>
<tr>
<th></th>
<th>Parametric Polymorphism</th>
<th>Data Abstraction</th>
<th>Exceptions</th>
<th>Quotation</th>
<th>Session Types</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>50</td>
<td>55</td>
<td>50</td>
<td>45</td>
<td>50</td>
<td>250</td>
</tr>
<tr>
<td>Max</td>
<td>50</td>
<td>55</td>
<td>50</td>
<td>45</td>
<td>50</td>
<td>250</td>
</tr>
</tbody>
</table>
1 Parametric Polymorphism (50 pts)

In this problem we use the implicit form of parametric polymorphism and we only allow pure
\(\lambda \)-expressions (in particular, we disallow fixed points \(\text{fix } x. e \)). As a reminder, we have the following
typing rules, with the usual provisos:

\[
\frac{\Delta, \alpha \text{ type } ; \Gamma \vdash e : \tau}{\Delta \vdash e : \forall \alpha. \tau} \quad (I-\forall) \\
\frac{\Delta ; \Gamma \vdash e : \forall \alpha. \tau \quad \Delta \vdash \sigma \text{ type}}{\Delta ; \Gamma \vdash e : \sigma/\alpha[\tau]} \quad (E-\forall)
\]

We define the a family of types only \(\tau \) by
\[
\text{only } \tau = \forall \gamma. (\tau \to \gamma) \to \gamma
\]

Task 1 (10 pts). Define
\[
in : \forall \alpha. \alpha \to \text{only } \alpha
\]

\[
in = \lambda x. \lambda f. f \, x
\]

Task 2 (10 pts). Define
\[
\text{out} : \forall \alpha. \text{only } \alpha \to \alpha
\]

\[
\text{out} = \lambda y. y \, (\lambda x. x)
\]

Task 3 (10 pts). Evaluate \(\text{out} \, (\text{in } v) \) for a closed value \(v : \tau \).

\[
\text{out} \, (\text{in } v) \\
\mapsto \text{out} \, (\lambda f. f \, v) \\
\mapsto (\lambda f. f \, v) \, (\lambda x. x) \\
\mapsto (\lambda x. x) \, v \\
\mapsto v
\]

Task 4 (10 pts). Evaluate \(\text{in} \, (\text{out } w) \) for a closed value \(w : \text{only } \tau \)
Task 5 (10 pts). Circle all statements that are true in the setting of this problem as explained at the beginning of this section.

(i) Any closed well-typed expression evaluates to a value.
(ii) There is no closed expression of type $\forall \alpha. \alpha$.
(iii) We can conclude without knowing the definitions of out and in that

$$(\text{out} \circ \text{in}) \sim (\lambda x. x) : \forall \alpha. \alpha \rightarrow \alpha$$

(iv) We can conclude without knowing the definitions of out and in that for any closed value $v : \tau$ we have

$$\text{out} \ (\text{in} \ v) \rightarrow^* v$$

(v) For any closed expression of type $e : \tau$ we have $e \sim e : \tau$.

(i)–(v) are all true.
2 Data Abstraction (55 points)

In this problem we explore data abstraction. More specifically, we consider whether the usual
convention in C-like languages that 0 = false and n = true for n > 0 is somehow defensible.

For this enterprise we use existential types to represent abstraction and logical equality to
reason about representation independence. Recall that the baseline for logical equality is Kleene
equality, $e \simeq e'$ which means that there is a value v such that $e \mapsto^* v$ and $e' \mapsto^* v$. As during
lectures, we assume that all expressions we are concerned with terminate.

As a reminder, we define $e \sim e'$ inductively on the structure of τ, assuming e and e' are
closed and of type τ. We then close the relation on both sides under Kleene equality. Here are two
cases in the definition:

- $(\rightarrow) e \sim e' : \tau_1 \rightarrow \tau_2$ iff for all $v_1 \sim v_1' : \tau_1$ we have $e v_1 \sim e' v_1' : \tau_2$
- $(+) v \sim v' : \tau_1 + \tau_2$ iff either $v = l \cdot v_1$, $v' = l \cdot v_1'$, and $v_1 \sim v_1' : \tau_1$ or $v = r \cdot v_2$, $v' = r \cdot v_2'$, and $v_2 \sim v_2' : \tau_2$

Task 1 (5 pts). We define as usual, $bool = (false : 1) + (true : 1)$. Give a necessary and sufficient
condition for

$v \sim v' : bool$

for closed values v and v' of type $bool$ (which is then closed under Kleene equality to obtain
$e \sim e' : bool$).

Option 1: $v \sim v' : bool$ iff $v = v'$.
Option 2: $v \sim v' : bool$ iff either $v = true \cdot (\cdot) = v'$ or $v = false \cdot (\cdot) = v'$.

Task 2 (5 pts). We define as usual, $nat = \rho \alpha. (z : 1) + (s : \alpha)$. Give a necessary and sufficient
condition for

$v \sim v' : nat$

for closed values v and v' of type nat (which is then closed under Kleene equality to obtain
$e \sim e' : nat$).

Option 1: $v \sim v' : nat$ iff $v = v'$.
Option 2: we define (inductively)

\[
\begin{align*}
 x \sim y : nat \\
 fold (z \cdot (\cdot)) & \sim fold (z \cdot (\cdot)) : nat \\
 fold (s \cdot x) & \sim fold (s \cdot y) : nat
\end{align*}
\]
Now we consider the type

$$BOOL = \exists \alpha. (bool \to \alpha) \otimes (\alpha \to \alpha) \otimes (\alpha \to bool)$$

which represents a module with hidden implementation type τ for α and functions

$$\begin{align*}
to & : bool \to \tau \quad \text{map a boolean to its representation} \\
neg & : \tau \to \tau \quad \text{negate the representation} \\
from & : \tau \to bool \quad \text{map a representation back to a boolean}
\end{align*}$$

In the first implementation, booleans are represented with type $bool$. For our own reasons, a Boolean value is internally represented by its negation.

$\begin{align*}
\text{Impl}_1 : BOOL \\
\text{Impl}_1 = \langle bool, \text{not}, \text{not}, \text{not} \rangle
\end{align*}$

In the second implementation, booleans are represented with type \mathbb{N} where 0 represents false and all non-zero numbers represent true.

$\begin{align*}
\text{Impl}_2 : BOOL \\
\text{Impl}_2 = \langle \mathbb{N}, \text{rep}, \text{neg}, \text{unrep} \rangle
\end{align*}$

Task 3 (15 pts). Provide definitions for rep, neg and unrep. You may use the following constructors and also pattern-match against them.

$$\begin{align*}
\text{False} &= \text{false} \cdot \langle \rangle \\
\text{True} &= \text{true} \cdot \langle \rangle \\
Z &= \text{fold} (z \cdot \langle \rangle) \\
S \; x &= \text{fold} (s \cdot x)
\end{align*}$$

Please make sure to explicitly state the type and the definition of each function.

$$\begin{align*}
\text{rep} &: bool \to \mathbb{N} \\
\text{rep} \; \text{False} &= Z \\
\text{rep} \; \text{True} &= S \; Z \\
\text{neg} &: \mathbb{N} \to \mathbb{N} \\
\text{neg} \; Z &= S \; Z \\
\text{neg} \; (S \; x) &= Z \\
\text{unrep} &: \mathbb{N} \to bool \\
\text{unrep} \; Z &= \text{false} \\
\text{unrep} \; (S \; x) &= \text{true}
\end{align*}$$

Now we want to prove that these two implementations are logically equivalent and therefore indistinguishable in a language satisfying parametricity.

Task 4 (10 pts). Define an appropriate relation $R : bool \leftrightarrow \mathbb{N}$ between the representations.
Task 5 (10 pts). Prove that \(\text{not} \sim \text{rep} : \text{bool} \to R\).

\[
\begin{array}{c}
\text{True} R Z \\
\text{False} R S w
\end{array}
\]

\[
\begin{array}{c}
\text{val} \\
\text{w}
\end{array}
\]

\[
\begin{array}{c}
R_t \\
R_f
\end{array}
\]

\[
\begin{align*}
v & \sim v' : \text{bool} & \text{Assumption} \\
v = \text{False} & = v' \text{ or } v = \text{True} = v' & \text{By definition of } \sim \text{ at type } \text{bool} \\
v = \text{False} & = v' & \text{First subcase} \\
\text{True} R Z & & \text{By rule } R_t \\
(\text{not False}) R (\text{rep False}) & & \text{By closure under } \simeq \\
\text{not} & \sim \text{rep} & \text{By definition of } \sim \text{ at type } \text{bool} \to R \\
v = \text{True} & = v' & \text{Second subcase} \\
\text{False} R (S Z) & & \text{By rule } R_f \\
(\text{not True}) R (\text{rep True}) & & \text{By closure under } \simeq \\
\text{not} & \sim \text{rep} & \text{By definition of } \sim \text{ at type } \text{bool} \to R
\end{align*}
\]
Task 6 (10 pts). Proof that not \sim neg : $R \rightarrow R$.

\[
\begin{array}{ll}
v \sim v' : R & \text{Assumption} \\
v R v' & \text{Assumption} \\
v = \text{True} \text{ and } v' = Z & \text{By definition of } \sim \text{ at } R \\
\text{False } R (S Z) & \text{First case (rule } R_t) \\
(not v) R (neg v') & \text{By rule } R_f \\
not \sim \neg & \text{By closure under } \simeq \\
v = \text{False and } v' = S v'' \text{ for some value } v'' & \text{Second case (rule } R_f) \\
\text{True } R Z & \text{By rule } R_t \\
(not v) R (neg v') & \text{By closure under } \simeq \\
not \sim \neg & \text{By definition of } \sim \\
\end{array}
\]

It should also be true that not \sim unrep : $R \rightarrow \text{bool}$ but you do not have to prove this.
3 Exceptions in the K Machine (50 points)

In this problem we explore extending our functional language with exceptions. For simplicity, we have just two new forms of expressions:

\[
\begin{align*}
\text{Expressions} & \quad e & \ ::= & \quad \ldots \mid \text{fail} \mid \text{try } e \text{ catch } e'
\end{align*}
\]

The intended semantics is as follows.

- \textbf{try } e \textbf{ catch } e' \textbf{ evaluates } e. If it returns normally with value \(v \) we ignore the exception handler \(e' \) and return \(v \). If \(e \) raises an exception we handle this exception and continue evaluation with \(e' \).

- \textbf{fail} raises an exception instead of returning a value. The innermost enclosing handler (if there is one) will catch this exception; otherwise the whole computation will simply fail.

We do not formalize the usual dynamics, but here are some examples:

\[
\begin{align*}
\text{try } v_1 \text{ catch } v_2 & \mapsto^* v_1 \\
\text{try fail } v_2 & \mapsto^* v_2 \\
\text{try (try fail catch } v_1) \text{ catch } v_2 & \mapsto^* v_1 \\
\text{try fail catch fail} & \mapsto^* \text{fail} \\
\text{(try } \lambda x. \text{fail } \text{ catch } v_2) v_1 & \mapsto^* \text{fail}
\end{align*}
\]

The last example illustrates the scoping of the try/catch blocks.

\textbf{Task 1} (10 pts). Give typing rules for the new expressions such that type preservation holds.

\[
\begin{array}{c}
\frac{\Gamma \vdash e : \tau \quad \Gamma \vdash e' : \tau}{\Gamma \vdash \text{try } e \text{ catch } e' : \tau} \\
\hline
\frac{\Gamma \vdash \text{fail} : \tau}{\Gamma \vdash \text{fail} : \tau}
\end{array}
\]
Task 2 (15 pts). Extend the K machine so that there are three possible forms of states s:

- $k \triangleright e$: evaluate e with continuation k
- $k \triangleleft v$: return value v to continuation k
- $k \triangledown$ fail: signal an exception to continuation k

In addition to the new rules, indicate if any of the existing rules need to be changed.

The existing rules remain unchanged.

$$
\begin{align*}
 k \triangleright \text{fail} & \quad \mapsto \quad k \triangleleft \text{fail} \\
 k \triangleright (\text{try } e \text{ catch } e') & \quad \mapsto \quad k \circ (\text{try } _ \text{ catch } e') \triangleright e \\
 k \circ (\text{try } _ \text{ catch } e') \triangleleft v & \quad \mapsto \quad k \triangleleft v \\
 k \circ (\text{try } _ \text{ catch } e') \triangledown \text{fail} & \quad \mapsto \quad k \triangleright e' \\
 k \circ f \triangledown \text{fail} & \quad \mapsto \quad k \triangleleft \text{fail} \quad \text{for } f \neq (\text{try } _ \text{ catch } e')
\end{align*}
$$

Task 3 (5 pts). Recall that we typed continuations as $k \div \tau \Rightarrow \sigma$, expressing that k maps a value of type τ to a final answer of type σ. Provide the typing rules for all new forms of continuation from your answer in Task 2.

$$
\frac{ k \div \tau \Rightarrow \sigma \quad \vdash e' : \tau }{ k \circ (\text{try } _ \text{ catch } e') \div \tau \Rightarrow \sigma }
$$
Task 4 (10 pts). We write $s: \sigma$ if state s returns a final answer of type σ if it terminates. There are three typing rules, one for each kind of state. We have filled in one for you already supply the other two.

$$\frac{k \vdash \tau \Rightarrow \sigma \quad \vdash e : \tau}{k \triangleright e : \sigma}$$

\[
\begin{array}{ll}
k \vdash \tau \Rightarrow \sigma \quad \vdash v : \tau \quad v \text{val} & \quad k \vdash \tau \Rightarrow \sigma \\
\hline
k \lhd v : \sigma & k \triangleright \text{fail} : \sigma
\end{array}
\]

Task 5 (10 pts). State the progress theorem for the extended K machine.

If $s: \sigma$ then either (i) $s \rightarrow s'$ for some s' or (ii) $s = \epsilon \lhd v$ for some v val or (iii) $s = \epsilon \triangleright \text{fail}$.
4 Quotation (45 points)

In this problem we explore quotation and staged computation. Recall the judgment $\Psi ; \Gamma \vdash e : \tau$ where Ψ contains expression variables $u : \tau$ and Γ contains ordinary value variables $x : \tau$. We have one new type constructor $\Box \tau$ with the following statics:

$$\frac{\Psi ; \vdash e : \tau}{\Psi ; \Gamma \vdash \text{box } e : \Box \tau} \quad (\text{I-}\Box) \quad \frac{\Psi ; \Gamma \vdash e : \Box \tau \quad \Psi, u : \tau ; \Gamma \vdash e' : \tau'}{\Psi ; \Gamma \vdash \text{case } e \{ \text{box } u \Rightarrow e' \} : \tau'} \quad (\text{E-}\Box)$$

We define the booleans as usual as $\text{bool} = (\text{false} : 1) + (\text{true} : 1)$ and allow definitions by pattern matching that can be desugared into the usual case constructs as in Problem 2. In particular:

- $\text{not} : \text{bool} \to \text{bool}$
- $\text{not False} = \text{True}$
- $\text{not True} = \text{False}$
- $\text{and} : \text{bool} \to \text{bool} \to \text{bool}$
- $\text{or} : \text{bool} \to \text{bool} \to \text{bool}$

We have omitted the definitions of and and or. We assume these three functions as well as the constructors False and True can be used freely, including inside quoted expressions $\text{box } e$.

Task 1 (10 pts). Write a well-typed (that is, properly staged) function

$$\text{and}' : \text{bool} \to \Box(\text{bool} \to \text{bool})$$

$$\begin{align*}
\text{and}' \text{ True} &= \text{box } (\lambda y. y) \\
\text{and}' \text{ False} &= \text{box } (\lambda y. \text{False})
\end{align*}$$

Task 2 (5 pts). The proposed staged definition for equivalence of booleans,

$$\text{equiv}' : \text{bool} \to \Box(\text{bool} \to \text{bool})$$

$$\text{equiv}' x = \text{box } (\lambda y. \text{or } (\text{and } x y) (\text{and } (\text{not } x) (\text{not } y)))$$

is not well-typed. Explain where and why typing fails.

The two occurrences of x in the right-hand side are ordinary variables bound outside the box but used inside, which is prohibited.
Task 3 (10 pts). Restage the definition of $equiv'$ so it is correctly typed, using and' from Task 1 wherever possible.

\[
aux : \square(bool \rightarrow bool) \rightarrow \square(bool \rightarrow bool) \rightarrow \square(bool \rightarrow bool)
\]
\[
aux(box\,u)\,(box\,w) = box(\lambda y.\,or\,(u\,x)\,(w\,(not\,y)))
\]
\[
equiv'\,x = aux\,(and'\,x)\,(and'\,(not\,x))
\]

Task 4 (10 pts). Implement directly an even more streamlined staged version of equivalence.

\[
equiv'' : bool \rightarrow \square(bool \rightarrow bool)
\]

\[
equiv''\,False = box(\lambda y.\,not\,y)
\]
\[
equiv''\,True = box(\lambda y.y)
\]

Task 5 (10 pts). Circle all true statements.

(i) We can define a function $bool \rightarrow \square bool$.

(ii) We can define a function $\forall \alpha.\,\alpha \rightarrow \square \alpha$.

(iii) We can define a function $\forall \alpha.\,\square \alpha \rightarrow \alpha$.

(iv) We can define a function $\forall \alpha.\,\forall \beta.\,(\square \alpha) \otimes (\square \beta) \rightarrow \square (\alpha \otimes \beta)$.

(v) We can define a function $\forall \alpha.\,\forall \beta.\,\square (\alpha \otimes \beta) \rightarrow (\square \alpha) \otimes (\square \beta)$

(i), (iii), (iv), and (v) are true; (ii) is false.
5 Session Types (50 points)

For a quick reference on session types and processes, see page 18 in the appendix. As usual in this course, we define numbers in binary representation as

\[\text{bin} = \oplus \{ b_0 : \text{bin}, b_1 : \text{bin}, \epsilon : 1 \} \]

Task 1 (10 pts). Complete the following definition of zero.

\[\vdash \text{zero} :: (z : \text{bin}) \]
\[z \leftarrow \text{zero} = \]

\[z \leftarrow \text{zero} = \]
\[z.\epsilon ; \text{close} \ z \]

Task 2 (10 pts). Complete the following definition of succ, which produces on y the sequence of bits representing the successor of x.

\[x : \text{bin} \vdash \text{succ} :: (y : \text{bin}) \]
\[y \leftarrow \text{succ} \leftarrow x = \]
\[\text{case } x (b_0 \Rightarrow \]
\[| b_1 \Rightarrow \]
\[| \epsilon \Rightarrow \]
\[) \]

\[x : \text{bin} \vdash \text{succ} :: (y : \text{pos}) \]
\[y \leftarrow \text{succ} \leftarrow x = \]
\[\text{case } x (b_0 \Rightarrow y.b_1 ; y \leftarrow x \]
\[| b_1 \Rightarrow y.b_0 ; y \leftarrow \text{succ} \leftarrow x \]
\[| \epsilon \Rightarrow y.b_1 ; y.\epsilon ; \text{wait } y ; \text{close } x) \]

Task 3 (10 pts). Complete the following definition of the predecessor process pred. It produces on y a sequence of bits representing the predecessor of x, where x must represent a strictly positive number. This constraint is expressed by the type

\[\text{pos} = \oplus \{ b_0 : \text{pos}, b_1 : \text{bin} \} \]
\[\text{x : pos \vdash pred :: (y : bin)} \]

\[\text{y \leftarrow pred \leftarrow x =} \]

\[
\begin{array}{l}
\text{y \leftarrow pred \leftarrow x =} \\
\text{\hspace{1em} case x (b0 \Rightarrow y.b1 ; y \leftarrow pred \leftarrow x} \\
\text{\hspace{2em} | b1 \Rightarrow y.b0 ; y \leftarrow x)} \\
\end{array}
\]

Task 4 (15 pts). Define the following process that calculates the number of bits in \(x \) and outputs that number along \(y \). We define this as the number of \(b0 \) and \(b1 \) labels, and not counting \(\epsilon \). You may use \(\text{zero} \), \(\text{succ} \), and \(\text{pred} \) as needed, at the indicated types.

\[\text{x : bin \vdash numbits :: (y : bin)} \]

\[\text{y \leftarrow numbits \leftarrow x =} \]

\[
\begin{array}{l}
\text{y \leftarrow numbits \leftarrow x =} \\
\text{\hspace{1em} case x (b0 \Rightarrow y' \leftarrow numbits \leftarrow x ;} \\
\text{\hspace{2em} y \leftarrow succ \leftarrow y'} \\
\text{\hspace{2em} | b1 \Rightarrow y' \leftarrow numbits \leftarrow x ;} \\
\text{\hspace{2em} y \leftarrow succ \leftarrow y'} \\
\text{\hspace{2em} | \epsilon \Rightarrow \text{wait} \ x \ ; \ y \leftarrow \text{zero})} \\
\end{array}
\]

Task 5 (5 pts). We might conjecture that the number of bits in a strictly positive binary number is equal to the floor of the logarithm of that number plus one, that is \(\text{numbits}(n) = \lfloor \log_2(n) \rfloor + 1 \) provided \(n > 0 \). However, this is not the case. Explain briefly why, and how you might write the logarithm function (you do not need to write any code).

\[\text{The number could have leading zeroes.} \]
\[\text{We could fix this by ensuring in the representation that there are never any leading zeros.} \]
\[\text{This could be enforced, for example, by changing the type \text{bin} to be more strict.} \]
\[\text{Or we could write a new function \text{numbits}' that avoids counting leading zeroes.} \]
Appendix: Some Inference Rules

A Syntax

Types τ and terms e are given by the following grammars, where I ranges over finite index sets. We present disjoint sums in their n-ary form and lazy pairs in their binary form, because it is these forms we use in this exam.

$$
\tau ::= \alpha \mid \tau_1 \rightarrow \tau_2 \mid \tau_1 \otimes \tau_2 \mid 1 \mid \sum_{i \in I} (i : \tau_i) \mid \tau_1 \& \tau_2 \mid \rho(\alpha, \tau)
$$

$$
e ::= x \mid \lambda x. e \mid e_1 e_2 \mid i \cdot e \mid \text{case } e \{i \cdot x_i \Rightarrow e_i\}_{i \in I} \mid \langle e_1, e_2 \rangle \mid \text{case } e_0 \{\langle x_1, x_2 \rangle \Rightarrow e'\} \mid \langle\rangle \mid \text{case } e_0 \{\langle\rangle \Rightarrow e'\} \mid \langle e_1, e_2 \rangle \mid e \cdot l \mid e \cdot r \mid \text{fold}(e) \mid \text{unfold}(e) \mid \text{fix}(x. e) \mid\text{recursion}
$$
B Statics, Expressions: $\Gamma \vdash e : \tau$

\[
\begin{array}{c}
x : \tau \in \Gamma \\
\Gamma \vdash x : \tau \quad (\text{VAR})
\end{array}
\]

\[
\begin{array}{c}
\Gamma, x : \tau \vdash e : \tau' \\
\Gamma \vdash \lambda x. e : \tau \to \tau' \quad (I \to)
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash e_1 : \tau \to \tau' \\
\Gamma \vdash e_2 : \tau \\
\Gamma \vdash e_1 e_2 : \tau'
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash e : \tau_j \\
\Gamma \vdash j \cdot e : \sum_{i \in I} (i : \tau_i) \\
(I +)
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash e : \sum_{i \in I} (i : \tau_i) \\
\Gamma, x_i : \tau_i \vdash e_i : \tau \quad (\forall i \in I)
\Gamma \vdash \text{case} \ e \{i \cdot x_i \Rightarrow e_i\}_{i \in I} : \tau \\
\text{(E +)}
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash e_1 : \tau_1 \\
\Gamma \vdash e_2 : \tau_2 \\
\Gamma \vdash \langle e_1, e_2 \rangle : \tau_1 \otimes \tau_2 \\
\text{(I –)}
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash \text{fold}(e) : \rho(\alpha.\tau) \\
\text{(I -\rho)}
\end{array}
\]

\[
\begin{array}{c}
\Gamma, x : \tau \vdash e : \tau \\
\Gamma \vdash \text{fix}(x. e) : \tau \\
\text{(FI X)}
\end{array}
\]

C Statics, Closed Values: $v :: \tau$

\[
\begin{array}{c}
x : \tau \vdash e : \tau' \\
\text{\lambda x. e :: \tau \to \tau'} \quad (\text{IV –})
\end{array}
\]

\[
\begin{array}{c}
v :: \tau_j \\
\text{\{ j \in I \}} \\
\text{(IV +)}
\end{array}
\]

\[
\begin{array}{c}
v_1 :: \tau_1 \\
v_2 :: \tau_2 \\
\langle v_1, v_2 \rangle :: \tau_1 \otimes \tau_2 \\
\text{(IV -\otimes)}
\end{array}
\]

\[
\begin{array}{c}
\text{\cdot \vdash e_1 : \tau_1} \\
\text{\cdot \vdash e_2 : \tau_2} \\
\langle e_1, e_2 \rangle :: \tau_1 \& \tau_2 \\
\text{(IV -\&)}
\end{array}
\]

\[
\begin{array}{c}
v :: \rho(\alpha.\tau) \\
\text{\{ \}} :: 1 \\
\text{(IV -\1)}
\end{array}
\]

\[
\begin{array}{c}
v :: [\rho(\alpha.\tau)/\alpha]_\tau \\
\text{fold}(v) :: \rho(\alpha.\tau) \\
\text{(IV -\rho)}
\end{array}
\]
D Dynamics: $e \mapsto e'$ and v \textit{val}

\[
\begin{align*}
\frac{\lambda x.e \ \text{val}}{\lambda x.e \val} & \quad \frac{v_1 \val}{(V\rightarrow)} \\
\frac{e_1 \mapsto e'_1}{e_1 \mapsto e'_1} & \quad \frac{v_1 \mapsto e'_1}{(CE\rightarrow_1)} \\
\frac{e_1 \mapsto e'_1}{e_1 \ e_2 \mapsto e'_1 \ e_2} & \quad \frac{v_1 \ e_2 \mapsto e'_1 \ e_2}{(CE\rightarrow_2)} \\
\frac{v \ \text{val}}{i \cdot v \ \text{val}} & \quad \frac{e \mapsto e'}{(CI\rightarrow)} \quad \frac{\case e \ \{i \cdot x_i \Rightarrow e_i\}_{i \in I} \mapsto e'}{\textit{case} e' \ \{i \cdot x_i \Rightarrow e_i\}_{i \in I}} \\
\frac{v_1 \ e_2 \mapsto e'_1 \ e_2}{(R\rightarrow)} & \quad \frac{v_1 \ e_2 \mapsto e'_1 \ e_2}{(CE\rightarrow_2)}
\end{align*}
\]
Session Types

Process expressions: forward, spawn, and tail-call

\[c \leftarrow d \quad \text{implement } c \text{ by } d \text{ and terminate} \]
\[x \leftarrow f \leftarrow d_1, \ldots, d_n ; Q \quad \text{spawn } f, \text{ passing } \text{it channels } d_1, \ldots, d_n \]
\[f \text{ will provide a fresh channel } a \text{ to client } [a/x]Q \]
\[c \leftarrow f \leftarrow d_1, \ldots, d_n \quad \text{tail call to } f \text{ providing } c \text{ and using } d_1, \ldots, d_n \]

Session types and process expressions: message passing

<table>
<thead>
<tr>
<th>Type</th>
<th>Provider</th>
<th>Client</th>
<th>Continuation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c \oplus { \ell : A_\ell }_{\ell \in L})</td>
<td>((c.k : P))</td>
<td>\text{case } c { \ell \Rightarrow Q_\ell }_{\ell \in L} \</td>
<td>(c : A_k)</td>
</tr>
<tr>
<td>(c : & { \ell : A_\ell }_{\ell \in L})</td>
<td>case (c { \ell \Rightarrow P_\ell }_{\ell \in L})</td>
<td>((c.k : Q))</td>
<td>(c : A_k)</td>
</tr>
<tr>
<td>(c : 1)</td>
<td>\text{close } c</td>
<td>\text{wait } c ; Q</td>
<td>(none)</td>
</tr>
</tbody>
</table>

Statics (where \(|y_1 : A_1, \ldots, y_n : A_n| = y_1, \ldots, y_n|)

\[
\begin{align*}
\Delta_1 \vdash f :: (x : A) \quad \Delta_2, x : A \vdash Q :: (z : C) \\
\Delta_1, \Delta_2 \vdash (x \leftarrow f \leftarrow \Delta_1 ; Q) :: (z : C) & \quad \text{spawn} \\
\Delta \vdash (x \leftarrow f \leftarrow |\Delta|) :: (x : A) & \quad \text{tail call} \\
\end{align*}
\]

\[
\begin{align*}
k \in L \\
\Delta \vdash P :: (x : A_k) & \quad \oplus R \\
\Delta \vdash (x.k : P) :: (x : \oplus \{ \ell : A_\ell \}_{\ell \in L}) & \quad \oplus L \\
\text{(for all } \ell \in L) \quad \Delta \vdash P_\ell :: (x : A_\ell) & \quad \& R \\
\Delta \vdash (\text{case } x \{ \ell \Rightarrow P_\ell \}_{\ell \in L}) :: (x : \& \{ \ell : A_\ell \}_{\ell \in L}) & \quad \& L \\
\Delta \vdash Q :: (z : C) & \quad 1 R \\
\Delta, x : 1 \vdash (\text{wait } x ; Q) :: (z : C) & \quad 1 L
\end{align*}
\]

Dynamics

(idC) \(\text{proc } P \ c \leftarrow d, \text{proc } (c \leftarrow d) c \mapsto \text{proc } ([c/d]P) c \)

(spawnC) \(\text{proc } (x \leftarrow f \leftarrow \overline{d} ; Q) c \mapsto \text{proc } ([d/\overline{y}, a/x]P) a, \text{proc } ([a/x]Q) c \quad \text{(a fresh)} \)

where \(x \leftarrow f \leftarrow \overline{y} = P \)

(tailC) \(\text{proc } (c \leftarrow f \leftarrow \overline{d}) c \mapsto \text{proc } ([d/\overline{y}, c/x]P) c \quad \text{where } x \leftarrow f \leftarrow \overline{y} = P \)

(⊕C) \(\text{proc } (c.k : P) c, \text{proc } (\text{case } c \{ \ell \Rightarrow Q_\ell \}_{\ell \in L}) d \mapsto \text{proc } P c, \text{proc } Q_k d \)

(&C) \(\text{proc } (\text{case } c \{ \ell \Rightarrow P_\ell \}_{\ell \in L}) c, \text{proc } (c.k : Q) d \mapsto \text{proc } P_k c, \text{proc } Q d \)

(1C) \(\text{proc } (\text{close } c) c, \text{proc } (\text{wait } c ; Q) d \mapsto \text{proc } Q d \)