15-411 Compiler Design, Fall 2014
Lab 6 - Implementing C1

Instructor: Frank Pfenning
TAs: Flavio Cruz, Tae Gyun Kim, Rokhini Prabhu, Max Serrano

Tests due 11:59pm, Tuesday, November 25, 2014
Compilers due 11:59pm, Thursday, December 4, 2014
Papers due 11:59pm, Tuesday, December 9, 2014
Update 1, Mon Nov 17: Your compiler does not need to provide unsafe mode.
Update 2, Mon Nov 17: The library interface and data layout has been specified.

1 Introduction

The main goal of the lab is to explore compiling additional advanced language features of C0O and
also in C1. In CO, we have characters and strings; in C1 we have void#* and function pointers. We
code-name the language L5 because it still lacks support for contracts and #use compiler directives
(the latter being handle by command-line arguments as in L4). With a preprocessor that collects
and inline compiler directives, your implementation should be able to compile all code from 15-122
and more, including generic implementations of the data structures we discussed.

2 The L5 Language

We have two new primitive types, char and string, and two new compound types, void* and
function types.

2.1 Characters

Characters are a special type to represent components of strings. They are written in the form ’c?’,
where ¢ can be any printable ASCII character, as well as the following escape sequences \t (tab),
\r (return), \f (formfeed), \a (alert), \b (backspace), \n (newline), \v (vertical tab), \’ (quote),
\" (doublequote), \0 (null). The default value for characters is \0. Characters can be compared
with ==, 1=, < <=, >= > according to their ASCII value, which is always in the range from 0 to
127, inclusively.

For the purpose of correct interaction with libraries, characters should be represented by a
1-byte word. They do not need to be aligned.

2.2 Strings

Strings have the form "c1...cn", where c1,...,c, are ASCII characters as above, including the
legal escape sequences except for NUL (\0), which may not appear in strings. The double-quote

character itself " must be quoted as \" so it is not interpreted as the end of the string. The default
value for type string is the empty string "". Strings can not be compared directly with comparison
operators, because in a language such as C the comparison would actually apply to the addresses of
the strings in memory, with unpredictable results. Appropriate comparison functions are provided
by the string library.

For the purpose of correct interaction with libraries, strings should be represented as NUL-
terminated character sequences as in C, stored on the heap. Hence, strings are a small type, where
a value of type string is the address of the string in memory. Strings are always write-only and not
synonymous with character arrays as in C. Library functions support explicit conversion between
string and character arrays.

2.3 Compiler Directives

Your compiler should ignore, as comments, #use <1lib> or #use "filename" compiler directives.
Instead, it should accept a command-line argument -1 <1ib> as in Lab 4.

2.4 Generic Pointers

We have a new form expression, a cast, which is used only in a very specific way.
<exp> ::= ... | (<tp>) <exp>

The form (void*)e casts the expression e of type t* to be of type void*. Operationally, this
new pointer references a pair consisting of a runtime representation of the type ¢ * (the tag) and
the pointer value of e.

The second form (t*)e where t # void casts an expression e of type void* to have type t *. If
the tag agrees with the type t *, it strips off the tag and returns the underlying pointer of type ¢ *.
If the tags do not agree, an appropriate runtime exception (SIGSEGV) is raised and the program is
terminated.

Casting does not affect the null pointer, which remains NULL and serves as the default value of
type voidx.

In unsafe mode, the casts only have significance at compile-time and no tagging or untagging
will be performed, because it is assumed that the tag would match. This behavior is consistent
with C. You do not need to implement unsafe mode since it creates difficulties with respect to the
standard library.

Files in the tests0/ directory provide some examples of correct and incorrect uses of casts.

2.5 Function Pointers

We add a new unary prefix operator & pronounced “address of”, which can only be applied to
functions and has the same precedence as other unary prefix operators such as *. We can dereference
a function pointer and apply it to a sequence of arguments with a new form of function call.

<unop> ::= ... | &
<exp> ::= ... | (x <exp>) ([<exp> (, <exp>)*])

In order to use function pointers we need to be able to assign them types. For this purpose, we
allow a particular idiomatic use of typedef which is consistent with but much more restrictive than
C and declares a function type name <fnid> which occupies the same name space as (ordinary)
type names.

<gdefn> ::= ...
| typedef <tp> <fnid> ([<tp> <vid> (, <tp> <vid>)*]) ;
<tp> ::= ... | <fnid>

Note that this is exactly the same form as a function declaration (also called a function proto-
type) preceded by the typedef keyword.

Function types, named by a <fnid> are large types and, moreover, function values cannot be
allocated on the stack or heap. That is, we store and pass only pointers to functions, not functions
themselves. Function type names are treated nominally, which means that two distinct function
type names are considered different, even if their definitions happen to be the same.

Files in the tests0/ directory provide some examples of correct and incorrect uses of function
pointers.

2.6 Library Interface

Several of the standard CO libraries, namely conio, string, and file, together with the earlier
L4 library called 15411 are collected into 15411c1l. So when we call you compiler we will supply
-1 15411c1.h0.

Because the library now contains characters, strings, and arrays, the layout of certain data
structures must be more precisely specified than in Lab 4. We have:

Co C

int int (4 bytes)

bool bool (1 byte, from stdbool.h)
char char (1 byte)

string | charx (NUL-terminated)

t[] (see below)

Arrays are represented as pointers to the beginning of a struct

struct cO_array_header {
cO_int count;
cO_int elt_size;

};

which is immediately followed in memory by an array of count * elt_size bytes. Please see the
library implementation in 15411c1.c for more detail.

If you find this representation inconvenient, you may substitute your own definition of 15411c1.c.
However, you cannot substitute 15411c1.h0, since it is used to type-check L5 sources. For this
reason, you must hand in a file 15411c1.c file in your compiler/ directory (which could just be a
copy of the one we supply in the runtime/ directory.

3 Requirements

You are required to hand in three separate items:
1. Additional test cases that explore the novel features of L5,
2. the working compiler and runtime system for L5,

3. a term paper describing and critically evaluating your project.

3.1 Tests

The tests should be concerned with verifying that your compiler is correct on characters, strings,
generic pointers, and function pointers.

3.2 Compilers
Your compilers should treat the language L5 as described below. You need only implement safe
mode. Unsafe mode is optional and may require a separate implementation of the library.

3.3 Term Paper

Your paper should follow this outline.

1. Introduction. This should provide an overview of your implementation and briefly summarize
the results you obtained.

2. Compilation. Describe the data structures, code, and information generated by the compiler
in order to support the new language features.

3. Analysis. Critically evaluate the language, your compiler and runtime system and sketch
future improvements one might make to its design.

The term paper will be graded. There is no hard limit on the number of pages, but we expect
that you will have approximately 5-10 pages of reasonably concise and interesting analysis to
present.

4 Deadlines and Deliverables

Your test cases and compilers must be committed into 1ab6c1 directory in the same way that you
submitted your tests and compilers in previous assignments.

4.1 Test Files (due 11:59pm on Tue Nov 25)

You should submit at least 20 test cases in a directory tests/ named $name.1l5 that explore
the new language features. Your compilers will be tested on the tests submitted by other teams
implementing this option for Lab 6, and all the collected test cases from Labs 1-4.

Note that the compiler for CO available on Andrew will not be able to handle *.15 files. You
should be able to use the compiler at

/afs/cs.cmu.edu/academic/class/15411-f14/bin/ccO

to validate your test cases.

4.2 Compiler Files (due 11:59pm on Thu Dec 4)

All files should be collected in a directory compiler/ which should contain a Makefile and a library
file 15411c1.c. Important: You should also update the README file and insert a roadmap to your
code. This will be a helpful guide for the grader.

Issuing the shell command

% make 15c

should generate the appropriate files so that
% bin/15c <args>

will run your L5 compiler with switches as for Lab 5 The command
% make clean

should remove all binaries, heaps, and other generated files.

4.3 Term Paper (due 11:59pm on Tue Dec 9)

Submit your term paper in PDF form via Autolab before the stated deadline. Early submissions are
much appreciated since it lessens the grading load of the course staff near the end of the semester.
You may not use any late days on the term paper describing your implementation of
Lab 6!

	Introduction
	The L5 Language
	Characters
	Strings
	Compiler Directives
	Generic Pointers
	Function Pointers
	Library Interface

	Requirements
	Tests
	Compilers
	Term Paper

	Deadlines and Deliverables
	Test Files (due 11:59pm on Tue Nov 25)
	Compiler Files (due 11:59pm on Thu Dec 4)
	Term Paper (due 11:59pm on Tue Dec 9)

