
15-411 Compiler Design, Fall 2014

Lab 3

Instructor: Frank Pfenning
TAs: Flávio Cruz, Tae Gyun Kim, Rokhini Prabhu, Max Serrano

Test Programs Due: 11:59pm, Tuesday, October 7, 2014
Compilers Due: 11:59pm, Tuesday, October 14, 2014

1 Introduction

The goal of the lab is to implement a complete compiler for the language L3. This language extends
L2 with the ability to define functions and call them. This means you will have to change all phases
of the compiler from the second lab. One can write some interesting recursive and iterative functions
over integers in this language. Correctness is still paramount, but performance starts to become a
bit more of an issue as we may slightly tighten the time-bounds for the compiler.

2 L3 Syntax

The lexical specification of L3 remains unchanged from that of L2, except that comma (,) is now
a lexical token. The syntax of L3 is a superset of L2, as presented in Figure 1. Ambiguities in this
grammar are resolved according to the same rules of precedence as in L2. The main extension is
to allow definitions of functions and transparent definitions of types. We also have function calls
as expressions, as well as a new statement assert(e) with its meaning from C0 and C, aborting the
program if e evaluates to false. Finally, we have the new type void, used only as the return type
for functions not intended to return a value.

Ambiguities in the grammar are resolved according to the operator precedence table in Figure 2
and the rule that an else provides the alternative for the most recent eligible if.

1

〈program〉 ::= ε | 〈gdecl〉 〈program〉
〈gdecl〉 ::= 〈fdecl〉 | 〈fdefn〉 | 〈typedef〉
〈fdecl〉 ::= 〈type〉 ident 〈param-list〉 ;
〈fdefn〉 ::= 〈type〉 ident 〈param-list〉 〈block〉
〈param〉 ::= 〈type〉 ident
〈param-list-follow〉 ::= ε | , 〈param〉 〈param-list-follow〉
〈param-list〉 ::= () | (〈param〉 〈param-list-follow〉)
〈typedef〉 ::= typedef 〈type〉 ident ;

〈type〉 ::= int | bool | ident | void

〈block〉 ::= { 〈stmts〉 }
〈decl〉 ::= 〈type〉 ident | 〈type〉 ident = 〈exp〉
〈stmts〉 ::= ε | 〈stmt〉 〈stmts〉
〈stmt〉 ::= 〈simp〉 ; | 〈control〉 | 〈block〉
〈simp〉 ::= 〈lvalue〉 〈asop〉 〈exp〉 | 〈lvalue〉 〈postop〉 | 〈decl〉 | 〈exp〉
〈simpopt〉 ::= ε | 〈simp〉
〈lvalue〉 ::= ident | (〈lvalue〉)
〈elseopt〉 ::= ε | else 〈stmt〉
〈control〉 ::= if (〈exp〉) 〈stmt〉 〈elseopt〉

| while (〈exp〉) 〈stmt〉
| for (〈simpopt〉 ; 〈exp〉 ; 〈simpopt〉) 〈stmt〉
| return 〈exp〉 ; | return ;

| assert (〈exp〉) ;

〈arg-list-follow〉 ::= ε | , 〈exp〉 〈arg-list-follow〉
〈arg-list〉 ::= () | (〈exp〉 〈arg-list-follow〉)
〈exp〉 ::= (〈exp〉) | num | true | false | ident

| 〈unop〉 〈exp〉 | 〈exp〉 〈binop〉 〈exp〉
| 〈exp〉 ? 〈exp〉 : 〈exp〉 | ident 〈arg-list〉

〈asop〉 ::= = | += | -= | *= | /= | %= | &= | ^= | |= | <<= | >>=

〈binop〉 ::= + | - | * | / | % | < | <= | > | >= | == | !=

| && | || | & | ^ | | | << | >>

〈unop〉 ::= ! | ~ | -

〈postop〉 ::= ++ | --

The precedence of unary and binary operators is given in Figure 2. Non-terminals are in 〈angle
brackets〉. Terminals are in bold. The absence of tokens is denoted by ε.

Figure 1: Grammar of L3

2

Operator Associates Meaning

() n/a explicit parentheses

! ~ - ++ -- right logical not, bitwise not, unary minus, increment, decrement

* / % left integer times, divide, modulo

+ - left integer plus, minus

<< >> left (arithmetic) shift left, right

< <= > >= left integer comparison

== != left overloaded equality, disequality

& left bitwise and

^ left bitwise exclusive or

| left bitwise or

&& left logical and

|| left logical or

? : right conditional expression

= += -= *= /= %=

&= ^= |= <<= >>= right assignment operators

Figure 2: Precedence of operators, from highest to lowest

3

3 L3 Elaboration

Each kind of global declaration (gdecl) is based on a closely corresponding construct in C.

• fdecl: declares a function; like a function prototype in C.

• fdefn: defines a function; like a function definition in C.

• typedef: defines an alias for a type that is transparent to the type system, just as in C.

The semantics are complicated because the language also intrinsically supports a foreign func-
tion interface through a mechanism of headers. Consult the section on the compile-time environ-
ment for details on how headers are supplied. For now, it is sufficient to know that a header is a
list of gdecls that satisfy the following conditions:

• They are treated as if they are available to the L3 program before the gdecls in the L3 sources
proper.

• They can contain type definitions and function declarations, but not function definitions.
These are instead supplied by the runtime environment in the linking phase.

• The fact that a function declaration was supplied in a header is an essential distinguishing
factor that is preserved for the purpose of the static semantics.

To expeditiously capture the similarity and differences between global declarations in headers
and in L3 sources, we assume that the header is parsed with the same rules as for sources, and the
resulting declarations are tagged as external.

A program is now simply is list of global declarations and definitions. It must elaborate and
then store the elaborated (internal) form of function declarations, definitions, and type definitions.

For each function declaration
τ f(τ1 x1, . . . , τn xn);

or function definition
τ f(τ1 x1, . . . , τn xn){s}

we obtain a declaration f : (τ1, . . . , τn) → τ and, in a addition, a corresponding definition of f in
the second case.

For each type definition
typedef τ α

which defines the type name α as a transparent synonym for τ , we obtain a definition α = τ .
A context Γ that we can use for type checking, therefore now contains:

Γ ::= · | Γ, f :(τ1, . . . , τn)→ τ, | Γ, α = τ | Γ, x:τ

While elaborating a program, we must obey the following scoping rules:

• A function may be declared several times, in which case the declarations must be compatible
(same argument and return types). External functions may not be defined, while other
functions that are referenced in a call - even in unreachable code - must be defined exactly
once and be compatible with their declaration (if there is one). Functions that are never
referenced in a call do not need to be defined, even if they have been declared previously.

4

• The name of a function is visible after its first declaration, and within and after its definition.
This means a single recursive function does not require a declaration, but two mutually
recursive functions require at least one forward declaration. Note that the main() function
is considered implicitly declared and referenced before any of the code that is explicit in the
.l3 file.

• The name of a defined type is visible after its definition. Type names may be defined only
once.

• Names of functions and variables may not collide with defined type names.

4 L3 Static Semantics

Due to the presence of functions and defined type names, type checking is more complex than
in L2. We refer to function parameters or variables declared in the body of functions as local
variables. As noted in the previous section, the typing context Γ contains declarations for functions
f : (τ1, . . . , τn) → τ , type names α = τ , and local variables x : τ . We shall refer to the last
occurrence of f in the function declaration list of Γ with the notation Γ(f).

• Function parameters and locally declared variables with overlapping scopes may not have the
same name. Among other things, this means that for a given function, all function parameters
must have distinct names. However, local variables are allowed to shadow function names.
This is similar to the behavior of C. You can emulate this specification, for example, by
extending the rules for declarations from L2 as follows:

x 6∈ Dom(Γ) Γ, x : τ ` s valid

Γ ` declare(x, τ, s) valid

Γ(x) = (τ1, . . . , τn)→ τ ′ Γ, x : τ ` s valid

Γ ` declare(x, τ, s) valid

• A function must be called with the correct number of arguments, and with compatible types.
The whole expression has the corresponding return type.

Γ(f) = (τ1, . . . , τn)→ τ Γ ` e1 : τ1 · · · Γ ` en : τn

Γ ` f(e1, . . . , en) : τ

• The new type void is allowed only as the return type of a function. It expresses that the
function returns no value. Such a function can not be called inside an expression, but only
directly as a statement.

• A function returning void does not require an explicit return statement at the end of each
control flow path starting from the beginning of the function. Any explicit return that happens
to be present must have the form “return;” with no argument.

5

• The new statement assert(e) is typed by

Γ ` e : bool

Γ ` assert(e) valid

As you can probably observe, we have imported a lot of the non-uniform behavior of C to
L3, especially with respect to name collisions and shadowing. It is plausible to handle these
inconsistencies to varying extents in the elaborator and the type checker. You are free to make
design decisions that suit your compiler. However, wherever you draw your module boundaries (if
at all), think carefully about why your implementation is equivalent to this specification.

The static check that there is a return statement along every control flow path from the beginning
of a function is similar to L2, except that we omit this check for functions returning void. The
check that all local variables are defined before they are used also proceeds as in L2, where function
parameters are considered defined at the beginning of the function body. This is because they will
have values when the execution of the body of a function commences.

Now that we have function calls, we define main as an identifier with the special requirement
that it can only be defined as a function with no parameters and the return type of int. Execution
of an L3 program begins in the main function. Please refer to the section describing the runtime.

5 L3 Dynamic Semantics

The dynamic semantics directly extendeds that from L2.
Function calls f(e1, . . . , en) are very similar to their counterparts in C with the following signif-

icant difference: they must evaluate their arguments from left to right before passing the resulting
values to f . The same is true for other operators that evaluate their arguments. For example, in
e1 + e2, we must evaluate e1 before e2. Since L3 has several kinds of effects (arithmetic exception,
nontermination, abort, and even output), this specification now becomes significant (when it was
not observable in L2).

The new statement assert(e) first evaluates e. If the result is true, the assertion succeeds and
we just continue with the next statement. If e is false, it raises the SIGABRT exception (6). In your
code you can achieve this by calling the function abort() which takes no arguments.

We also allow expressions to appear as statements, because we now have the concept of expres-
sions with side-effects. These side-effects are quite simple in L3: arithmetic exceptions, program
abort, nontermination, and output done by library functions. A memory reference error can also
arise when a program runs out of stack space.

6 Project Requirements

For this project, you are required to hand in test cases and a complete working compiler for L3
that produces correct target programs written in Intel x86-64 assembly language.

We also require that you document your code. Documentation includes both inline documenta-
tion and a README document which explains the design decisions underlying the implementation
along with the general layout of the sources. If you use publicly available libraries, you are required
to indicate their use and source in the README file. If you are unsure whether it is appropriate
to use external code, please discuss it with course staff.

6

When we grade your work, we will use the gcc compiler to assemble and link the code you
generate into executables using the provided runtime environment on the lab machines.

Your compiler and test programs must be formatted and handed in via Autolab as specified
below. For this project, you must also write and hand in at least 20 test programs, at least two of
which must fail to compile, at least two of which must generate a runtime exception, and at least
two of which must execute correctly and return a value.

Test Files

Test programs should have extension .l3 and start with one of the following lines
//test return i program must execute correctly and return i
//test exception n program must compile but raise runtime exception n
//test exception program must compile but raise some runtime exception
//test error program must fail to compile due to an L3 source error

followed by the program text. In L3, the exceptions defined are SIGABRT (6), SIGFPE (8), SIGALARM
(14). Note that infinitely recursing programs might also raise SIGSEGV (11) in case they run out
of stack space before they run out of time. Best to avoid such tests, but if you have such a test is
should only verify that some exception is raised.

Since the language now supports function calls, the runtime environment contains external
functions providing output capabilities (see the runtime section for details). The testing framework
may decide to take advantage of this. For a file $test.l3:

• If a file $test.l3.out exists and the program returns, the output of the program must be
identical to the contents of the file for the test to pass.

Please use this capability sparingly, as the behavior of some library functions may be implementa-
tion dependent.

All test files should be collected into a directory tests/ (containing no other files) and submitted
via the Autolab server.

Now that the language we are compiling supports function calls, we would like some fraction of
your test programs to compute “interesting” functions on specific values; please briefly describe such
examples in a comment in the file. Disallowed are programs which compute Fibonacci numbers,
factorials, greatest common divisors, and minor variants thereof. Please use your imagination. We
will read your tests!

Compiler Files

The files comprising the compiler itself should be collected in a directory compiler/ which should
contain a Makefile. Important: You should also update the README file and insert a description
of your code and algorithms used at the beginning of this file. Even though your code will not be
read for grading purposes, we may still read it to provide you feedback. The README will be crucial
information for this purpose.

Issuing the shell command

% make l3c

should generate the appropriate files so that

7

% bin/l3c <args>

will run your L3 compiler. The command

% make clean

should remove all binaries, heaps, and other generated files.

Runtime Environment

Your compiler should accept a command line argument -l which must be given the name of a
file as an argument. For instance, we will be calling your compiler using the following command:
bin/l3c -l 15411.h0 $test.l3. Here, 15411.h0 is the header file mentioned in the elaboration
and static semantics sections. You may not assume that 15411.h0 parses and typechecks correctly.

The runtime for this lab contains functions to perform output. The output functions write to
stderr, while the result of the program is printed to stdout. 15411.h0 contains a listing and a
small amount of documentation.

The GNU compiler and linker will be used to link your assembly to the implementations of the
external functions, so you need not worry much about the details of calling to external functions.
You should ensure that the code you generate adheres to the C ABI for Linux on x86-64. In order
for the linking to work, you must adhere to the following conventions

• External functions must be called as named.

• Non-external functions with name name must be called _c0_name. This ensures that non-
external function names do not accidentally conflict with names from standard library which
could cause assembly or linking to fail.

• Non-external functions must be exported from (declared to be global in) the assembly file
you generate, so that our test harness can call them and verify your adherence to the calling
conventions.

The runtime environment defines a function main() which calls a function _c0_main() your
assembly code should provide and export. Your compiler will be tested in the standard Linux
environment on the lab machines; the produced assembly must conform to this environment.

We suggest for booleans to be given an underlying 32 bit integer representation with false map-
ping to 0 and true mapping to 1. There might be occasion to reconsider the sizes of representations
in Lab 4, but it should not affect this lab.

Using the Subversion Repository

Handin and handout of material is via the course subversion repository.
The handout files for this course can be checked out from our subversion repository via

% svn checkout https://svn.concert.cs.cmu.edu/15411-f14/groups/<team>

where <team> is the name of your team. You will find materials for this lab in the lab3 subdirec-
tory. Or, if you have checked out 15411-f14/groups/<team> directory before, you can issue the
command svn update in that directory.

After adding and committing your handin directory to the repository with svn add and svn commit

you can hand in your tests or compiler through Autolab.

8

https://autolab.cs.cmu.edu/15411-f14

Once logged into Autolab, navigate to the appropriate assignment and select

Checkout your work for credit

from the menu. It will perform one of

% svn checkout https://svn.concert.cs.cmu.edu/15411-f14/groups/<team>/lab3/tests

% svn checkout https://svn.concert.cs.cmu.edu/15411-f14/groups/<team>/lab3/compiler

to obtain the files directories to autograde, depending on whether you are handing in your test files
or your compiler.

If you are submitting multiple versions, please remember to commit your changes to the repos-
itory before asking the Autolab server to grade them! And please do not include any compiled files
or binaries in the repository!

What to Turn In

Hand in on the Autolab server:

• At least 20 test cases, at least two of which generate an error, at least two of which raise a
runtime exception, and at least two of which return a value. The directory tests/ should
only contain your test files and be submitted via subversion as described above. The server
will test your test files and notify you if there is a discrepancy between your answer and the
outcome of the reference implementation. You may hand in as many times as you like before
the deadline without penalty. If you feel the reference implementation is in error, please notify
the instructors on Piazza. The compiled binary for each test case should run in 2 seconds with
the reference compiler on the lab machines; we will use a 5 second limit for testing compilers.

Test cases are due 11:59pm on Tuesday, October 7, 2014.

• The complete compiler. The directory compiler/ should contain only the sources for your
compiler and be submitted via subversion. The Autolab server will build your compiler, run
it on all extant test files, link the resulting assembly files against our runtime system (if
compilation is successful), execute the binaries (each with a 5 second time limit), and finally
compare the actual with the expected results. You may hand in as many times as you like
before the deadline without penalty.

Compilers are due 11:59pm on Tuesday, October 14, 2014.

7 Notes and Hints

Elaboration

Please take the recommended elaboration strategy seriously. It significantly streamlines your com-
piler and reducing the amount of work you do in each remaining pass of a multi-pass compiler.
Isolating elaboration also makes your source code more portable.

We again highly recommend using an explicit elaboration pass, rather than transforming source
code on the fly during parsing. This will make the next lab a significantly smoother experience.

9

Static Checking

The specification of static checking should be implemented on abstract syntax trees, translating
the rules into code. You should take some care to produce useful error messages.

Compiling Functions

It is not a strict requirement, but we recommend compiling functions completely independently
from each other, taking care to respect the calling conventions but making no other assumptions.
Interprocedural program analysis and optimization is difficult and, if you do it at all, is better left
to a later lab.

Calling Conventions

Your code must strictly adhere to the x86-64 calling conventions. Please refer to the course webpage
for resources on the ABI and calling conventions. Two points of note: %rsp must be 16-byte
aligned. GCC often ignores this rule when it isn’t actively using floating points numbers, because
the requirement is only consequential when the floating point stack is in use. Also, %al (the lowest
8 bits of %rax) is used as a hidden argument to specify the number of vector registers passed to
certain functions.

10

	Introduction
	L3 Syntax
	L3 Elaboration
	L3 Static Semantics
	L3 Dynamic Semantics
	Project Requirements
	Notes and Hints

