
Lecture Notes on
Session-Typed Concurrency

15-411: Compiler Design
Frank Pfenning

Lecture 25
November 18, 2014

1 Introduction

Generally speaking, it is difficult to add concurrency to a language and retain the
same kind of strong guarantees that static typing in a language like C0 gives us.
For a sequential language, type safety usually includes preservation (that program
remains well-typed as it executes) and progress (there is always a well-defined
action to take). In the presence of concurrency, we would like to add deadlock-
freedom (which is an analogue to progress) and the absence of race conditions (to
guarantee the result is well-defined).

In order achieve these properties, we work under the following conditions:

• Communication between processes is by message-passing rather then via
shared memory. In a concrete implementation the message-passing might
be accomplished using shared memory, but the computational model itself is
at a higher level of abstraction.

• Processes communicate with each other along channels with just two end-
points, one process on each end.

• A process offers a service along a unique channel and uses services along
possibly many other channels. This allows us to identify a process with the
channel along which it offers a service.

Under these assumptions we have designed a type system that guarantees preser-
vation and progress, including the absence of deadlock and race conditions [CP10].
It uses the idea of linear typing, which is closely related to the concept of linear in-
ference we used to specify program transformations. It is a particular instantiation
of the idea of session types [Hon93] that prescribe interactions between processes
along private channels. The settings for the prior work was process calculi [CPT13]

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.2

and functional languages [TCP13]; here we import some of the ideas in the (first-
order) imperative setting. It should be emphasized that we have not proven any-
thing about this extension of C0, so all the above properties may be false for this
language instance.

2 Process Definitions

We have to extend our language of types by session types σ. We continue to use τ
for ordinary value types. We will introduce various forms of session types incre-
mentally and summarize them at the end.

Session type σ are used to prescribe communication behavior along channels,
which are written as $c. A channel declaration is therefore of the form σ $c in the
concrete syntax and $c : σ in the typing judgments.

A process that offers service σ along channel $c and uses services σ1, . . . , σn along
channels $d1, . . . , $dn is spawned by invoking a process definition pwith prototype

σ $c p(σ1 $d1, . . . , σn $dn);

A process can additionally take value arguments of primitive types, a feature we
will exploit shortly. The body of a process definition contains the computation and
communications to be performed by the process when spawned.

As a first example we consider a process producing a (potentially infinite) stream
of integers. The protocol requires that the consumer request a new integer by send-
ing the label ‘next’, to which the process responds with the next integers. In addi-
tion, the consumer can stop the process by sending the label ‘stop’. This behavior
is expressed by the type

choice natstream {

int /\ choice natstream next;

void stop;

};

The keyword choice indicate that the client chooses the operation to be performed
by sending of the labels. natstream is the name for this particular choice. Syntacti-
cally, this is analogous to struct s, where s is the name of the struct.

The session type τ ∧ σ (here τ = int and σ = choice natstream means that the
process hand to send a value of type τ and then follow the session type σ. next is
the label of the first alternative, stop the label of the second alternative. The session
type void indicates that the process should terminate without further interactions.

Instead of writing out choice natstream we create nats as a synonym for it:

typedef choice natstream nats;

Next we would like to define a process that outputs a stream of integers according
to the above protocol, starting at an integer n.

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.3

nats $c from(int n) { /* $c : nats */

switch ($c) { /* receive label along $c */

case next: /* $c : int /\ nats */

send($c, n); /* $c : nats */

$c = from(n+1); /* tail call, continue in current process */

case stop:

close($c); /* $c : void */

}

}

The construct
switch ($c) {case li : seq i}i

waits to receive a label li along channel $c and then executes the corresponding case
in the body of the switch statement. For this to be correct, the channel $c must be a
choice among the labels li. In case the label next is received, we have the command
send($c, n) which has the general form

send($c, e);

which sends the value of e along channel $c. For this to be correct, the channel
$c must have type τ ∧ σ, for some session type σ, and e must have type τ . Some
restrictions may also be imposed on the type of e, so we do not have potentially
complex marshaling and unmarshaling operations to be performed. The primitive
types int, bool, char and string seem to be a reasonable choice.

What is curious here is that the switch statement requires $c to present a choice,
while the subsequent send command requires $c to be a conjunction. This reflects
the fact that the types of channels must change throughout the interactions of a
process with its environment. If a channel $c has type choice name {σi : li}i then
after receiving label li it will have type σi. Similarly, if a channel $c has type τ ∧ σ,
then after sending τ the channel will have type σ.

Next we come to

$c = from(n+1);

where the current process offers along $c and from(n + 1) is a process invocation.
This is the process analogue of a tail-call for a function, and means the current
process continues by executing from(n + 1). This is also the last statement along
this branch of the switch statement, since this process invocation will never return.
Notice that the value argument n to a process essentially functions as a variable
local to the process.

In the stop branch of the switch, channel $c has type void. This means we have
to close the channel, which is the last action the from process will take.

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.4

3 Typing

Because channels change their type during communcations, the typing judgment
is a bit unusual. In addition to the context Γ that types value variables, we have a
second context

∆ = (c1 : σ1, . . . , cn : σn)

of channel typings. Since channels are distinguished by their position in the judg-
ment, we drop the $-prefix for the names. The general form of the judgment then
is

Γ ; ∆ ` P :: (c : σ)

which says that P is a process expression that offers service of session type σ along
channel c, using value variables in Γ and channels in ∆. As usual, we do not care
about the order of declarations in Γ or ∆.

{Γ ; ∆ ` Pi :: c : σi}i
Γ ; ∆ ` switch(c, {li : Pi}i) :: c : choice{li : σi}i

Γ ` e : τ Γ ; ∆ ` P :: c : σ

Γ ; ∆ ` send(c, e) ; P :: c : τ ∧ σ

Γ ; · ` close(c) :: c : void

p : (σ1, . . . , σn ` σ) ∆ ∼ (d1:σ1, . . . , dn:σn)

Γ ; ∆ ` c = p(d1, . . . , dn) :: c : σ

In the last rule, ∆ ∼ ∆′ means that ∆′ is a permutation of ∆. We therefore have a
precise account for all channels: they are used exactly once (even if that use might
be in a recursive procedure invocation). For simplicity, we omitted value argu-
ments, but they would just be expressions ej of ordinary types τj , matching the
process declaration. For example, when we close a channel c there may not be any
unused channels left in the context. In a switch construct we check every branch
in the same context ∆. This is correct, because exactly one of the branches will be
chosen when the program is executed.

4 Stream Transducers

Our overall goal of this lecture will be to write a code for the prime sieve (or Sieve of
Eratosthenes) that produces a stream of prime numbers. The sieve is implemented
as a sequence of filters, each of which filters out all multiples of one particular
prime. This is illustrated in the following picture.

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.5

$d0	
 =	
 from(2)	

$d1	
 =	
 filter(2,d0)	

$d2	
 =	
 filter(3,$d1)	

$d3	
 =	
 filter(5,d2)	

2	

3	

4	

5	

6	

7	

3	

5	

7	

5	

7	

7	

$d0	
 $d1	
 $d2	
 $d3	

Each circle represents a process, where the bullet indicates the channel along
which it offers. Below each channel is the sequence of integers flowing from right
to left, eliding the request labels next flowing from left to right.

We have already implemented the from process on the far right. Next we imple-
ment the filter processes. filter uses one process ($d) and offers along another ($c).
It drops all multiples of p from $d and forwards the rest ot $c. It begins by receiving
a label along $c, which must be one of next and stop.

nats $c filter(int p, nats $d) {

switch ($c) {

case next:

...

case stop:

...

}

}

If it is next, we now need to request the next integer along $d. This means we
have to send the label next along $d. We are using the channel $d, and $d has type
choice natstream , so this follows the protocol correctly. Sending a label l along a
channel $d has the syntax $d.l, analogous to the field selection in a struct.

nats $c filter(int p, nats $d) {

switch ($c) {

case next:

$d.next;

...

case stop:

...

}

}

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.6

After sending next, $d has evolved to type int ∧ choice natstream . This means that
the process providing $d will send an integer, and we have to receive it. The syntax
is x = recv($d), where x must be declared if it hasn’t already.

nats $c filter(int p, nats $d) {

switch ($c) {

case next:

$d.next;

int k = recv($d);

/* $d : nats |- $c : int /\ nats */

...

case stop:

}

}

We have indicated the types of $d and $c at this point during the computation. We
now need to check whether p divides k. If so, we keep requesting integers from
$d until we receive a value that is not a multiple of p. We then send the first such
value along $c and recurse. We could accomplish this with two mututally recursive
function, or with a loop. For illustration purposes we use a loop.

nats $c filter(int p, nats $d) {

switch ($c) {

case next:

$d.next;

int k = recv($d);

/* $d : nats |- $c : int /\ nats */

while (k % p == 0) {

$d.next;

k = recv($d);

}

/* $d : nats |- $c : int /\ nats */

send($c, k);

$c = filter(p, $d);

case stop:

...

}

}

Because we don’t know how often the loop will be traversed, the channel types
must remain invariant throughout the loop. We have indicated those types in a
comment before the loop. This will also be the type of the channels immediately
after the loop.

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.7

In the case we receive the stop label, we cannot just close the channel $c, because
the channel $d would be left unaccounted for. Instead, we send it in turn a stop
label and wait until it finishes. Of course, waiting wouldn’t be strictly necessary
if we trust it to complete, but for typing purposes we would like to consume that
channel.

nats $c filter(int p, nats $d) {

switch ($c) {

case next:

$d.next;

int k = recv($d);

/* $d : nats |- $c : int /\ nats */

while (k % p == 0) {

$d.next;

k = recv($d);

}

/* $d : nats |- $c : int /\ nats */

send($c, k);

$c = filter(p, $d);

case stop:

$d.stop;

wait($d);

close($c);

}

}

5 Spawning New Processes

We have now written from and filter. Assume we would like to write the enclos-
ing process primes which is supposed to produce the increasing sequence of prime
numbers on channel $c. Let’s refer back to the diagram.

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.8

$d0	
 =	
 from(2)	

$d1	
 =	
 filter(2,d0)	

$d2	
 =	
 filter(3,$d1)	

$d3	
 =	
 filter(5,d2)	

2	

3	

4	

5	

6	

7	

3	

5	

7	

5	

7	

7	

$d0	
 $d1	
 $d2	
 $d3	

We want to write an outermost process

nats $c primes(nats $d);

which uses $d3 (in the diagram above) and produces along $c as in the extended
diagram below.

$d0	
 =	
 from(2)	

$d1	
 =	
 filter(2,d0)	

$d2	
 =	
 filter(3,$d1)	

$d3	
 =	
 filter(5,d2)	

2	

3	

4	

5	

6	

7	

3	

5	

7	

5	

7	

7	

$d0	
 $d1	
 $d2	
 $d3	
 $c	

$c	
 =	
 primes($d3)	

If we are requested to produce a number (by receiving next along $c), we ask
$d for the next integer. Since this has already been filtered by all smaller primes, it
should be a prime number and we can send it along $c.

nats $c primes(nats $d) {

switch ($c) {

case next:

$d.next;

int p = recv($d);

send($c, p);

...

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.9

case stop:

...

}

}

Before we can recurse we need to spawn a new process, which filters the multiples
of p. We do this simply by invoking the process definition and assigning a (new!)
channel to the output. We then recurse, using this new channel. It’s easy to see that
there is exactly one filtering channel for each prime number that we send along
$c. In the case we are asked to stop, we just stop the process we use (which will
cascade to the right).

nats $c primes(nats $d) {

switch ($c) {

case next:

$d.next;

int p = recv($d);

send($c, p);

nats $e = filter(p, $d); /* spawn new process */

$c = primes($e);

case stop:

$d.stop; wait($d);

close($c);

}

}

We could also reuse the channel name $d, since $d is no longer in the context since
it is used in the invocation of filter.

$d = filter(p, $d); /* spawn new process */

$c = primes($d);

At the risk of blurring the line between process invocation and function call, we
might also abbreviate these two lines to

$c = primes(filter(p, $d)); /* spawn new process */

which would desugar to the first phrasing.
We can now create a process that just produces a stream of primes by creating

the process on the far right (producing 2, 3, 4, 5, 6, . . .) and supplying it to primes.

nats $c prime_stream() {

nats $d = from(2);

$c = primes($d);

}

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.10

Here the tail call preserves the process (identified from the channel $c) even though
it is not a recursive call.

We can now embed this in a top-level function which creates a fresh stream of
prime numbers and requests the first n before terminating the stream.

void print_primes(int n) {

nats $c = prime_stream();

/* $c : nats |- */

for (int i = 0; i < n; i++) {

$c.next;

int p = recv($c);

printint(p);

}

$c.stop; wait($c);

return;

}

6 Additional Typing Rules

We show another few sample rules to supplement the ones shown earlier. The first
is process invocation.

p : (σ1, . . . , σn ` σ′) ∆ ∼ (d1:σ1, . . . , dn:σn) ∆′, e:σ′ ` P :: c : σ

Γ ; ∆,∆′ ` e = p(d1, . . . , dn);P :: c : σ

Implicit here is that e is different from c and all the channels declared in ∆′. If e is a
variable previously declared, it must have been used (not in ∆′) and its new type σ′

should be consistent (which is something we do not track explicitly in these rules).

Γ ; ∆, d:σi ` P :: c : σ

Γ ; ∆, d:choice{li : σi}i ` c.li ; P :: c : σ

Γ, x:τ ; ∆, d:σ′ ` P :: c : σ

Γ ; ∆, d:τ ∧ σ′ ` x = recv(d) ; P :: c : σ

Γ ; ∆ ` P :: c : σ

Γ ; ∆, d:void ` wait(d) ; P :: c : σ

We see that each type construct has a rule when it types the channel we are offering
and when it types a channel we are using. One corresponds to a send, while the
other corresponds to a receive, reflecting the complementary roles of the processes
on the two ends of a channel.

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.11

7 Internal Choice and Forwarding

We refer to the choice construct we introduced so far as external choice. This is
because if we offer choice{li : σi}i along channel $c, then the client can choose the
label. We write

branch{li : σi}i
for the opposite internal choice, where the provider can choose the label and the
consumer has to account for all possibilities.

An example of this is a simple implementaton of stacks, where each process
holds an element of the stack. In the absence of further operations on the stack ele-
ments, this does not exhibit any concurrency, but it illustrates both internal choice
and forwarding (explained later).

The operations on a stack are push, pop, and deallocation. When the client
indicates he want to push an element onto the stack, we then have to receive an
element along the same channel. For this we have the type

τ ⇒ σ

(receive a value of type τ and then behave according to σ) which is symmetric to
τ ∧ σ (send a value of type τ and then behave according to σ).

When the client would like to pop an element from the stack, we send one of
two labels: none if there is no element on the stack, and some if there is one. In the
latter case we follow it up with the element itself. This is an example of the internal
choice we mentioned above. We define:

choice stack_node {

int => choice stack_node push;

branch opt_int pop;

void dealloc;

};

/* Optional result from pop */

branch opt_int {

int /\ choice stack some;

choice stack_node none;

};

typedef choice stack_node stack;

We now represent the stack constructors empty and node simply as processes.
We start with the empty stack. In case of a push, we call spawn a new empty process
and recurse as a node with the new element. In case of a pop we indicate that the
stack is empty and recurse. Deallocation just closes the channel and terminates the
process.

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.12

stack $c empty(); /* empty stack */

stack $c node(int k, stack $d); /* stack with top element k */

stack $c empty() {

switch ($c) {

case push:

int k = recv($c);

stack $d = empty();

$c = node(k, $d); /* tail call: continue as nonempty */

case pop:

$c.none; /* no element available */

$c = empty(); /* tail call: continue as empty */

case dealloc:

close($c);

}

}

Second, the case of a nonempty stack with top element k. When we receive a
push, we just spawn a new process and recursive. The interesting operation is that
of pop. We first send the label some, indicating that the stack is non-empty, then we
send the top element.

stack $c node(int k, stack $d) {

switch ($c) {

case push:

int n = recv($c);

stack $e = node(k, $d); /* spawn new process */

$c = node(n, $e); /* new top of stack in current process */

case pop:

$c.some; send($c, k); /* send current element */

...

case dealloc:

...

}

}

At this point, we would like to terminate the current process and hand off any
interactions along $c to $d. This is an example of channel forwarding. We write this
as

$c = $d;

which identifies $c and $d.
This could be implemented in several ways. Perhaps the cleanest way is for the

current process to send $d to its client, essentially telling it “communicate along $d

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.13

from now on instead of $c”. Then the process identified with $c can terminate since
the channel $c is effectively no longer in use.

At a great cost of efficiency, we could also keep the process identified with $c
alive, continuously forwarding messages in both directions until the channel is
closed.

Deallocation is straightforward, leading to the following final process defini-
tion.

/* nonempty stack */

stack $c node(int k, stack $d) {

switch ($c) {

case push:

int n = recv($c);

stack $e = node(k, $d); /* spawn new process */

$c = node(n, $e); /* new top of stack in current process */

case pop:

$c.some; send($c, k); /* send current element */

$c = $d; /* identify $c and $d; or: forward $d along $c */

case dealloc:

$d.dealloc; wait($d);

close($c);

}

}

We do not show any additional typing rules for the branch construct, since they
are symmetric to the choice construct, just swapping offer and use. For forwarding,
we just need to keep in mind that there is no continuation after forwarding, so the
forwarded channel must be the only one in the context.

Γ ; d:σ ` c = d :: c : σ

8 Further Constructs

The type language in [TCP13] contains further important constructs. One allows
the sending and receiving of channels along channels. Another allows persistent
channels that do not change their type, but allow new instances of a persistent ser-
vice to be spawned. We elide persistent channels entirely and just briefly show the
rules for sending or receiving channels along channels, since they are used in the
next example. We have type σ1 ⊗ σ2 (concrete syntax s1 ** s2) for sending and
σ1 (σ2 (concrete syntax s1 -o s2) for receiving a channel.

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.14

Γ ; ∆ ` P :: c : σ

Γ ; ∆, d:σ′ ` send(c, d) ; P :: c : σ′ ⊗ σ

Γ ; ∆, d:σ′ ` P :: d : σ

Γ ; ∆ ` d = recv(c) ; P :: c : σ′ (σ

9 Further Example: Mergesort

Sending and receiving channels is exemplified in the mergesort program below.1

The main complication in this implementation is setting up and tearing down the
processes to, eventually, achieve an in-place sort. For the sake of brevity, we present
it here without further comment.

/* Mergesort */

/* Henry DeYoung, transcribed from SILL by fp */

branch list {

int /\ branch list cons;

void nil;

};

typedef branch list list;

branch forest {

int /\ (list ** branch forest) cons; /* int nl = num. of elems in list l */

void nil;

};

typedef branch forest forest;

/* $c = nil() */

list $c nil() {

$c.nil;

close($c);

}

/* $c = cons(k, $d) */

list $c cons(int k, list $d) {

$c.cons;

send($c, k);

$c = $d;

}

/* $c = merge($l, $r) offers sorted merge of $l and $r along $c */

1requested by a student in lecture

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.15

list $c merge(list $l, list $r) {

switch ($l) {

case cons:

int x = recv($l);

switch ($r) {

case cons:

int y = recv($r);

if (x < y) {

list $r2 = cons(y, $r); /* push y back onto r */

list $d = merge($l, $r2); /* spawn new process */

$c = cons(x, $d);

} else {

list $l2 = cons(x, $l); /* push x back onto l */

list $d = merge($l2, $r); /* spawn new process */

$c = cons(y, $d);

}

case nil: /* $r is empty */

wait($r);

$c = cons(x, $l); /* push x back onto l */

}

case nil: /* $l is empty */

wait($l);

$c = $r; /* forward $r to $c */

}

}

/* $f = fnil() */

forest $f fnil() {

$f.nil;

close($f);

}

/* $g = fcons(nl, $l, $f), adjoins list to forest */

/* invariant: nl = num of elements in $l */

forest $g fcons(int nl, $l list, $f forest) {

$g.cons;

send($g, nl);

send($g, $l); /* send channel $l along $g */

$g = $f;

}

/* $g = join(nl, $l, $f), adjoins list to forest */

/* rebalances if necessary */

/* invariant: nl = num of elements in $l */

forest $g join(int nl, list $l, forest $f) {

switch ($f) {

case cons:

int nr = recv($f);

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.16

list $r = recv($f);

if (nl >= nr) { /* $l is bigger than $r, first list in $f */

list $m = merge($l, $r); /* merge $l and $r */

$g = join(nl+nr, $m, $f); /* adjoin merged list to forest */

} else {

forest $f1 = fcons(nr, $r, $f); /* push $r back onto $f */

$g = fcons(nl, $l, $f1); /* adjoin $l */

}

case nil:

wait($f);

$f1 = fnil(); /* recreate empty forest */

$g = fcons(nl, $l, $f1);

}

}

/* $m = compress($f), linearizes $f to obtain list $m */

list $m compress(forest $f) {

switch ($f) {

case cons:

int nl = recv($f);

list $l = recv($f);

list $r = compress($f); /* spawn new process */

$m = merge($l,$r);

case nil:

wait($f);

$m = nil();

}

}

/* $g = load(A, n) */

/* \length(A) = n, load A[0..n) into forest $g */

/* A should be read-only here; perhaps this should

* be inlined in sort instead */

forest $g load(int[] A, int n) {

forest $f = fnil();

for (int i = 0; i < n; i++) {

list $l = nil();

list $l1 = cons(A[i], $l);

$f = join(1, $l1, $f);

}

$g = $f;

}

/* unload($f, A, n) */

/* \length(A) = n, load $f onto A[0..n) */

/* We can write A here, since unload is a function, not process */

void unload(forest $f, int[] A, int n) {

list $m = compress($f);

LECTURE NOTES NOVEMBER 18, 2014

Session-Typed Concurrency L25.17

for (int i = 0, i < n; i++)

switch ($m) {

case cons:

int k = recv($m);

A[i] = k;

/* case nil should be impossible */

}

switch ($m) {

/* case cons should be impossible */

case nil:

wait($m);

}

return;

}

/* sort(A, n), sort A[0..n) in ascending order */

void sort(int[] A, int n) {

forest $f = load(A, n); /* create $f */

unload($f, A, n); /* consume $f */

return;

}

References

[CP10] Luı́s Caires and Frank Pfenning. Session types as intuitionistic linear
propositions. In Proceedings of the 21st International Conference on Concur-
rency Theory (CONCUR 2010), pages 222–236, Paris, France, August 2010.
Springer LNCS 6269.

[CPT13] Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propo-
sitions as session types. Mathematical Structures in Computer Science, 2013.
To appear. Special Issue on Behavioural Types.

[Hon93] Kohei Honda. Types for dyadic interaction. In 4th International Conference
on Concurrency Theory, CONCUR’93, pages 509–523. Springer LNCS 715,
1993.

[TCP13] Bernardo Toninho, Luı́s Caires, and Frank Pfenning. Higher-order pro-
cesses, functions, and sessions: A monadic integration. In M.Felleisen
and P.Gardner, editors, Proceedings of the European Symposium on Program-
ming (ESOP’13), pages 350–369, Rome, Italy, March 2013. Springer LNCS
7792.

LECTURE NOTES NOVEMBER 18, 2014

	Introduction
	Process Definitions
	Typing
	Stream Transducers
	Spawning New Processes
	Additional Typing Rules
	Internal Choice and Forwarding
	Further Constructs
	Further Example: Mergesort

