
Lecture Notes on
Garbage Collection

15-411: Compiler Design
Frank Pfenning

Lecture 21
November 4, 2014

These brief notes only contain a short overview, a few pointers to the literature with detailed
descriptions, and a few remarks particularly relevant to C0.

1 Introduction

So far, in C0 we have had only primitives for allocation of memory on the heap.
Memory was never freed. In C, the free function accomplishes this, but it is very
error-prone. Memory may not be freed that is no longer needed (a leak), or, worse,
memory may be free that will be referenced later in the computation. In type-safe
languages this can avoided by using garbage collection that automically reclaims
storage that can no longer be referenced. Since it is undecidable if memory might
still be referenced, a garbage collector uses a conservative approximation, where
different techniques may approximate in different ways.

There are three basic garbage collection techniques.

Reference Counting. Each heap object maintains an additional field containing the
number of references to the object. The compiler must generate code that maintains
this reference count correctly. When the count reaches 0, the object is deallocated,
possibly triggering the reduction of other reference counts. Reference counts are
hard to maintain, especially in the presence of optimizations. The other problem
is that reference counting does not work well for circular data structures because
reference counts in a cycle can remain positive even though the structure is un-
reachable. Nevertheless, reference counting appears to remain popular for script-
ing languages like Perl, PHP, or Python. Another use of reference counting is in
part of an operating system where we know that no circularities can arise.

Mark-and-Sweep. A mark-and-sweep collector traverses the stack to find point-
ers into the heap and follows each of them, marking all reachable objects. It then

LECTURE NOTES NOVEMBER 4, 2014



Garbage Collection L21.2

sweeps through memory, collecting unmarked objects into a free list while leaving
marked objects in place. It is usually invoked if there is not enough space for a
requested allocation. Because objects are never moved once allocated, a mark-and-
sweep collector runs the risk of fragmented memory which can translate to poor
performance. Another difficulty with a mark-and-sweep collector is that the cost
of a collection is proportional to all available memory (which will be touched in the
sweep phase).

Copying Collection. A copying collector also traverses the heap, starting from the
so-called root pointers on the stack. Instead of marking objects it moves reachable
objects from the heap to a new area called the to-space. When all reachable objects
have been moved, the old heap (the from-space) and the to-space switch roles. The
copying phase will compact memory, leading to good locality of reference. More-
over, the cost is only proportional to the reachable memory rather than all allocated
memory. On the other hand, a copying collector typically needs to run with twice
as much memory than a mark-and-sweep collector.

Mark-and-sweep and copying collectors are called tracing collectors, since they
determine the reachable (or live) objects on the heap by following pointers. They
tend to suffer from long pauses when a garbage collection is performed. Many
variations and refinements have been proposed to overcome some of the difficulties
and drawbacks in various forms of garbage collectors. A somewhat dated, but still
excellent survey on garbage collection by Wilson1 [Wil92].

For this course and the C0 language we recommend implementing a simple
copying collector. Experience shows that it is less error-prone and easier to im-
plement than a mark-and-sweep or copying collector. Since there is extensive and
accessible literature on garbage collection, in the remainder of this note we focus
on the compiler support that is necessary for a tracing collector. The issues for
mark-and-sweep and copying collectors are very similar.

We explicit do not discuss many optimizations and refinements of the basic
schemes. Some of these are common sense, others can be found in the literature.

2 Allocation

In a mark-and-sweep collector, allocation is handled via a free list, usually doubly
linked. This is analogous to the data structure maintained by implementations of
malloc/free in C. When allocation is called we traverse the free list until we find
a block that is big enough for the requested payload plus header information. We
return a pointer to this object (usually with the header to the left of the pointer)
which should be aligned at 0 modulo 8. If a sufficiently large portion of the block

1Revised version at http://www.cs.cmu.edu/~fp/courses/15411-f13/misc/wilson94-gc.pdf

LECTURE NOTES NOVEMBER 4, 2014

http://www.cs.cmu.edu/~fp/courses/15411-f13/misc/wilson94-gc.pdf


Garbage Collection L21.3

is unused, it is returned to the free list for further allocations. We run out of space
if we cannot find any block that is big enough.

In a copying collector there is no free list. Instead we have a currently used
half-space and a next pointer to the end of the currently used portion of the half-
space. We return a pointer to its beginning (perhaps after adding a fixed offset to
allow for a header) and advance the next pointer. Allocation in a copying collector
is typically significantly faster than in a mark-and-sweep collector.

3 Finding Root Pointers

Assume that either alloc or alloc_array is called and we have run out of space.
We now need to find the root pointers on the stack that point to the heap. This
task is simplified in C0 since we have no pointers to the stack, unless the compiler
optimizes to allocate some data on the stack. The compiler lays out each stack
frame, so it knows where to find pointers and what their types are. Which pointers
exactly are still live (and even where they are on the stack) may change during the
computation of the function. We therefore best associate this information with each
return address.

The information we need at a snapshot of the stack frame is the place where
pointers are. This may be kept in a pointer map for the stack frame. A reference
to the pointer map may be kept in a seperate data structure, or in the stack frame
itself (for example, at the bottom or top of the stack frame).

Since have the traverse the stack it is convenient to keep base pointers for each
frame which are pushed onto the stack just as in the x86 calling convention. While
optional for the x86-64, it is quite useful for the garbage collector. So, once we have
processed the pointers in the current frame, we find the return address to get the
pointer map for the previous frame until we get to the first frame on the stack.

There are some subtleties regarding registers. Since the last call will always be
to alloc or alloc_array we don’t have to worry about registers except callee-save
registers. The called function will not be able to tell if any of the callee-save regis-
ters contains a root pointer. A simple strategy to handle such callee-save registers
is for the caller (who knows what they are) to simply push callee-save registers
containing live root pointers onto the stack and add these locations to the pointer
map. They do not need to be restored, due to the callee-save protocol. Caller-save
and argument registers will already be on the stack (and in the pointer map) if they
are live.

4 Derived Pointers

Some computations and optimizations will compute addresses of data in the mid-
dle of heap objects. It is important that we don’t follow such pointers since, for

LECTURE NOTES NOVEMBER 4, 2014



Garbage Collection L21.4

example, the header of an object will not be at a fixed offset from such a derived
pointer. Instead, the compiler should arrange to keep mark the corresponding base
pointer as live and keep it somewhere were it is recognized as a root pointer. A typ-
ical example of this is the computation of the address of an array element, which
will be a derived pointer.

5 Traversing the Heap

When we traverse the heap, whether just marking or copying reachable objects, we
need to identify pointers in the objects we reach. The traditional way to accomplish
this is to keep a reference to a pointer map in the object header. Just as for a stack
frame, every pointer in the heap object has an entry with its offset in the pointer
map, with a special indicator for arrays. In addition the header should have a bit
that can marked when visited (for mark-and-sweep) or marked when copied (for
a copying collector). In the case of a copying collector, we need to make sure the
object is big enough to hold the forwarding pointer when it is moved to the to-space.
In the case of a mark-and-sweep collector the object has to be big enough to hold
the next and prev pointers of the doubly-linked free list.

6 Tagless Garbage Collection

In a safe, statically typed language such as C0, pointer maps are not strictly nec-
essary for heap objects as long as we can determine the types of the root pointers.
After that, the type of every heap object we reach, and the types of the components,
are determined entirely from the types and the computed offsets for structs.

As suggested by Goldberg2 [Gol91] an efficient and convenient way to achieve
this is for the compiler to generate a structure traversal function for each type that
may be allocated on the heap. For each root pointer we then just need to know
which garbage collection traversal function to call. This is something the com-
piler can know (since types are known at compile-time) and store at an appropriate
place, either in the stack frame, the text segment, or allocate during an initialization
phase in a global variable.

References

[Gol91] Benjamin Goldberg. Tag-free garbage collection fro strongly typed pro-
gramming languages. In Proceedings of the Conference on Programming Lan-
guage Design and Implementation, PLDI’91, pages 165–176. ACM, June 1991.

2and a student during lecture

LECTURE NOTES NOVEMBER 4, 2014



Garbage Collection L21.5

[Wil92] Paul R. Wilson. Uniprocessor garbage collection techniques. In Proceedings
of the International Workshop on Memory Management, IWMM’92, pages 1–
42, London, UK, 1992. Springer-Verlag.

LECTURE NOTES NOVEMBER 4, 2014


	Introduction
	Allocation
	Finding Root Pointers
	Derived Pointers
	Traversing the Heap
	Tagless Garbage Collection

