
Lecture Notes on
Dynamic Semantics

15-411: Compiler Design
Frank Pfenning

Lecture 13
October 7, 2014

1 Introduction

In the previous lecture we have specified the static semantics of a small imperative
language. In this lecture we proceed to discuss its dynamic semantics, that is, how
programs execute. The relationship between the dynamic semantics for a language
and what a compiler actually implements is usually much less direct than for the
static semantics. That’s because a compiler doesn’t actually run the program. In-
stead, it translates it from some source language to a target language, and then the
program in the target language is actually executed.

In our context, the purpose of writing down the dynamic semantics is therefore
primarily to precisely specify how programs are supposed to execute. Just the
exercise of writing this down formally should help us think about the special cases
and make sure our implementation is correct.

Another important purpose is to verify properties of the language itself in a
formal (mathematical) way. Much of the theory of programming languages is con-
cerned with just that and therefore requires an operational semantics. A third pur-
pose is to actually prove that a compiler is correct. That requires at least two opera-
tional specifications: one for the source language and one for the target language.
To date, this still requires a major research effort (and is, in any case, out of the
scope of this course).

2 Evaluating Expressions

When trying to specify the operational semantics of a programming language,
there are a bewildering array of choices regarding the style of presentation. Some
choices are natural semantics, structural operational semantics, abstract machines,

LECTURE NOTES OCTOBER 7, 2014

Dynamic Semantics L13.2

substructural operational semantics, and many more. Having developed substruc-
tural operational semantics (SSOS) myself, I have a natural bias towards that style of
specification. It has the great virtue that in many cases one can extend the language
with new constructs without having to rewrite the rules already in place. However,
it requires some machinery, namely substructural logic, which is a little more exten-
sive than what I would like to introduce in this course. So instead I am using an
abstract machine, despite some of its shortcomings.

An abstract, which is a form of so-called small-step operational semantics, we step
through the evaluation of an expression e until we have reached a value v. So the
basic judgment might be written e −→ e′. However, this is much to simplistic.
For example, it does not represent the call stack, or the current value of the variables
that are recorded in an environment, or what to do with the eventual value. We will
introduce such semantic artefacts one by one, as they are needed.

Consider the expression e1 + e2. By the left-to-right evaluation rule, we first
have to evaluate e1 and then e2. So why we evaluate e1 we have to “remember”
that we still have to evaluate e2 then sum up the value. The information on what
we still have to do is collected in a so-called continuation K. We write the judgment
as

eBK

which we read as “evaluate expression e and pass the result to the continuation K”. In
the continuation there is a “hole” (written as an underscore character _) in which
we plug in the value passed to it. So:

e1 + e2 BK −→ e1 B (_ + e2 , K)

When e1 has been reduced to a value c1, we plug it into the hole and evaluate e2
next;

c1 B (_ + e2 , K) −→ e2 B (c1 + _ , K)

Finally, when e2 has been reduced to a value c2 we perform the actual addition and
pass the result to K.

c2 B (c1 + _ , K) −→ cBK (c = c1 + c2 mod 232)

In the last rule we appeal to the mathematical operation of addition modulo 232 on
two given integers modulo 232. Since we describe C0, we assume that constants
are 32-bit words in two’s complement representation. All other binary modular
arithmetic operations ⊕ are handled in a similar way, so we summarize them as

e1 ⊕ e2 BK −→ e1 B (_⊕ e2 , K)
c1 B (_⊕ e2 , K) −→ e2 B (c1 ⊕ _ , K)
c2 B (c1 ⊕ _ , K) −→ cBK (c = c1 ⊕ c2 mod 232)

For an effectful operation such as division, the last step could also raise an arith-
metic exception arith (SIGFPE on the x86 architecture family, numbered 8). How do

LECTURE NOTES OCTOBER 7, 2014

Dynamic Semantics L13.3

we represent that? We would like to abort the computation entirely and go to a
state where the final outcome is regorded as an arithmetic exception. We describe
this as follows:

e1 � e2 BK −→ e1 B (_� e2 , K)
c1 B (_� e2 , K) −→ e2 B (c1 � _ , K)
c2 B (c1 � _ , K) −→ cBK (c = c1 � c2)
c2 B (c1 � _ , K) −→ exception(arith) (c1 � c2 undefined)

Here, some care must be taken to define the value c1 � c2 correctly in the cases of
division and modulus, and the conditions under which the result is mathemati-
cally “undefined” (like division by zero) and therefore must raise an excaption. We
have specified this in previous lectures and assignments, so we won’t detail the
conditions here.

What happens when evaluation finishes normally? In the case of the empty
continuation we stop the abstract machine and return value(c)

cB · −→ value(c)

Boolean expression work similarly. We show three examples: constants true
and false (which are represented as 1 and 0), and the short-circuiting conjunction
(&&).

trueBK −→ 1 BK
falseBK −→ 0 BK
e1 && e2 BK −→ e1 B (_ && e2 , K)
0 B (_ && e2 , K) −→ 0 BK
1 B (_ && e2 , K) −→ e2 BK

Notice how e2 is ignored in case 0 is returned to the continuation (_ && e2 , K),
which encodes the short-circuiting behavior of the conjunction.

3 Variables

We can continue along this line, be we get stuck for variables. Where do their
values come from? We need to add an environment η that maps variables to their
values. We write

η ::= · | η, x 7→ v

and η[x 7→ v] for either adding x 7→ v to η or overwriting the current value of x by
v (if η(x) is already defined). The state of the abstract machine now contains the
environment η. We separate by a turnstile (`) from the expression to evaluate and
its continuation.

η ` eBK

LECTURE NOTES OCTOBER 7, 2014

Dynamic Semantics L13.4

The rules so far just carry this along. For example:

η ` e1 ⊕ e2 BK −→ η ` e1 B (_⊕ e2 , K)
η ` c1 B (_⊕ e2 , K) −→ η ` e2 B (c1 ⊕ _ , K)
η ` c2 B (c1 ⊕ _ , K) −→ η ` cBK (c = c1 ⊕ c2 mod 232)

Variables are just looked up in the environment.

η ` xBK −→ η ` η(x) BK

Because we are interested in evaluating only expression that have already passed
all static semantic checks of the language, we know that η(x) will be defined (all
variables must be initialized before they are used).

4 Executing Statements

Executing statements in L3, the fragment of C0 we have considered so far, can
either complete normally, return from the current function with a return statement,
or raise an exception. The “normal” execution of a statement does not pass a value
to its continuation; instead it has an effect on its environment by assigning to its
existing variables or declaring new ones. We write this as

η ` s I K

where the continuation K should start with a statement. We think of a statement s
as poassing on a void value to K, which we write as (). For example:

η ` nop I K −→ η ` () I K
η ` seq(s1, s2) I K −→ η ` s1 I (s2 , K)
η ` () I (s , K) −→ η ` s I K

The last line codifies that if there no further statement to execution, we grab the
first statement from the continuation. When executing an assignment we first have
to evaluate the assignment, then change the variable value in the environment.

η ` assign(x, e) I K −→ η ` eB (assign(x, _) , K)
η ` c I (assign(x, _) , K) −→ η[x 7→ c] ` () I K

Conditionals follow the pattern of the short-circuiting conjunction.

η ` if(e, s1, s2) I K −→ η ` eB (if(_, s1, s2) , K)
η ` 1 B (if(_, s1, s2)) −→ η ` s1 I K
η ` 0 B (if(_, s1, s2)) −→ η ` s2 I K

LECTURE NOTES OCTOBER 7, 2014

Dynamic Semantics L13.5

While loops are a bit more complicated. We take a slight shortcut by using the
identity

while(e, s) ≡ if(e, seq(s,while(e, s)), nop)

to avoid writing out several rules implementing the right-hand side of this identity
directly.

η ` while(e, s) I K −→ η ` if(e, seq(s,while(e, s)), nop) I K

Loops bring up the question of nontermination, which is modeled naturally: we
just have abstract machine transitions s0 −→ s1 −→ s2 −→ · · · with-
out ever arriving at a final state. The final states are just value(c) and exception(arith).

Declarations are also pretty straightforward, since they just add a new variable
with undefined value to the environment.

η ` decl(x, τ, s) I K −→ η[x 7→ _] ` s I K

In a language that permits shadowing of variables, we would have to save the
current value of x and restore it after s has finished executing. Or we would think
of η as a list where η(x) refers to the value of the rightmost occurrence, which
would be removed when we leave the scoope of declaration. Or we could statically
rename the variables during elaboration so that no shadowing can occur during
execution.

At this point we have handled all salient statements except return statements
that are tied to function calls. We discuss them in the next section.

5 Function Calls

A function call first has to evaluate the function arguments, from left to right. Then
we invoke the function, whose body starts to execute in an environment that maps
that formal parameters of the function to the argument values. But meanwhile we
have to save the current environment of the caller somewhere. Similarly, we also
have to save the continuation of the caller, so that when the callee returns we pass
it the return value. So a stack frame 〈η,K〉 consists of an environment η and a
continuation K.

Call stack S ::= · | S , 〈η,K〉

Now states representing evaluation of expression and execution of statements have
the forms

Evaluation S ; η ` eBK
Execution S ; η ` s I K

LECTURE NOTES OCTOBER 7, 2014

Dynamic Semantics L13.6

We only show the special case of evaluation function calls with two and zero argu-
ments, for simplicity.

S ; η ` f(e1, e2) BK −→ S ; η ` e1 B (f(_, e2) , K)
S ; η ` c1 B (f(_, e2) , K) −→ S ; η ` e2 B (f(c1, _) , K)
S ; η ` c2 B (f(c1, _) , K) −→ (S , 〈η,K〉) ; [x1 7→ c1, x2 7→ c2] ` s I ·

(f(x1, x2){s})

S ; η ` f() BK −→ (S , 〈η,K〉) ; · ` s I · (f(){s})

In the last state we see a new environment with values for x1 and x2 and a new
stack frame save the caller’s environment η and continuation K. We indicate the
definition of f with formal parameters x1, x2 and body s. The empty continuation
“·” will never be reached since the static semantics checks that every control flow
path through the statement s terminates in a return statement. In order to support
functions returning void, we would add an empty return to the end of the function
body during elaboration and add a few additional rules similar to the given ones.

When executing a return statement we simply have to restore the caller’s envi-
ronment and continuation from the stack and pass the return value to the caller’s
continuation.

S ; η ` return(e) I K −→ S ; η ` eB (return(_) , K)
S , 〈η′,K ′〉 ; η ` cB (return(_) , K) −→ S ; η′ ` cBK ′

We start the machine initially in a state where we call the main function, and
we stop the abstract machine if we reach this continuation.

· ; · ` main() B · (initial state)
· ; η ` cB · −→ value(c) final state

which will eventually step to value(c), where c is returned by the main function.

LECTURE NOTES OCTOBER 7, 2014

Dynamic Semantics L13.7

6 Summary

We use � to stand for either a pure operation ⊕, or a potentially effectful operation
� as well as shift, comparison, and bitwise operators.

Expressions e ::= c | e1 � e2 | true | false | e1 && e2 | x | f(e1, e2) | f()

Statements s ::= nop | seq(s1, s2) | assign(x, e) | decl(x, τ, s)
| if(e, s1, s2) | while(e, s) | return(e)

Values v ::= c | ()

Environments η ::= · | η, x 7→ c

Stacks S ::= · | S , 〈η,K〉

Cont. frames φ ::= _� e | c� _ | _ && e | f(_, e) | f(c, _)
| s | assign(x, _) | if(_, s1, s2) | return(_)

Continuations K ::= · | φ , K

Machine states s ::= S ; η ` eBK
| S ; η ` s I K
| value(c)
| exception(arith)

A computation is a sequence of machine states which could be infinite, terminate
in state value(c), or raise exception(arith). The initial state, by convention, is · ; · `
main() B ·.

LECTURE NOTES OCTOBER 7, 2014

Dynamic Semantics L13.8

S ; η ` e1 � e2 BK −→ S ; η ` e1 B (_� e2 , K)
S ; η ` c1 B (_� e2 , K) −→ S ; η ` e2 B (c1 � _ , K)
S ; η ` c2 B (c1 � _ , K) −→ S ; η ` cBK (c = c1 � c2)
S ; η ` c2 B (c1 � _ , K) −→ exception(arith) (c1 � c2 undefined)

S ; η ` trueBK −→ S ; η ` 1 BK
S ; η ` falseBK −→ S ; η ` 0 BK
S ; η ` e1 && e2 BK −→ S ; η ` e1 B (_ && e2 , K)
S ; η ` 0 B (_ && e2 , K) −→ S ; η ` 0 BK
S ; η ` 1 B (_ && e2 , K) −→ S ; η ` e2 BK

S ; η ` xBK −→ S ; η ` η(x) BK

S ; η ` nop I K −→ S ; η ` () I K
S ; η ` seq(s1, s2) I K −→ S ; η ` s1 I (s2 , K)
S ; η ` () I (s , K) −→ S ; η ` s I K

S ; η ` assign(x, e) I K −→ S ; η ` eB (assign(x, _) , K)
S ; η ` c I (assign(x, _) , K) −→ S ; η[x 7→ c] ` () I K

S ; η ` decl(x, τ, s) I K −→ S ; η[x 7→ _] ` s I K

S ; η ` if(e, s1, s2) I K −→ S ; η ` eB (if(_, s1, s2) , K)
S ; η ` 1 B (if(_, s1, s2)) −→ S ; η ` s1 I K
S ; η ` 0 B (if(_, s1, s2)) −→ S ; η ` s2 I K

S ; η ` while(e, s) I K −→ S ; η ` if(e, seq(s,while(e, s)), nop) I K

S ; η ` f(e1, e2) BK −→ S ; η ` e1 B (f(_, e2) , K)
S ; η ` c1 B (f(_, e2) , K) −→ S ; η ` e2 B (f(c1, _) , K)
S ; η ` c2 B (f(c1, _) , K) −→ (S , 〈η,K〉) ; [x1 7→ c1, x2 7→ c2] ` s I ·

(f(x1, x2){s})

S ; η ` f() BK −→ (S , 〈η,K〉) ; · ` s I · (f(){s})

S ; η ` return(e) I K −→ S ; η ` eB (return(_) , K)
(S , 〈η′,K ′〉) ; η ` cB (return(_) , K) −→ S ; η′ ` cBK ′

· ; η ` cB value(_) −→ value(c)

LECTURE NOTES OCTOBER 7, 2014

	Introduction
	Evaluating Expressions
	Variables
	Executing Statements
	Function Calls
	Summary

