
Lecture Notes on
Calling Conventions

15-411: Compiler Design
Frank Pfenning

Lecture 11
September 30, 2014

1 Introduction

In Lab 3 you will be adding functions to the arithmetic language with loops and
conditionals. Compiling functions creates some new issues in the front end and
the back end of the compiler. In the front end, we need to make sure functions are
called with the right number of arguments, and arguments of the right type. In the
back end, we need to create assembly code that respects the calling conventions of
the machine architecture. Strict adherence to the calling conventions is crucial so
that your code can interoperate with library routines, and the environment can call
functions that you define.

Calling conventions are rather machine-specific and often quite arcane. You
must carefully read the Section 3.2 of the AMD64 ABI [MHJM09]1. Examples and
additional information is provided in Section 6 of a handout on x86-64 Machine-
Level Programming by Bryant & O’Hallaron.

2 IR Trees

We have already seen in Lecture 10 that function calls should take pure arguments
in order to easily guarantee the left-to-right evaluation order prescribed by our
language semantics. Moreover, they should be lifted to the level of commands
rather than remain embedded inside expressions because functions may have side-
effects.

1Available at http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf

LECTURE NOTES SEPTEMBER 30, 2014

http://www.cs.cmu.edu/~fp/courses/15411-f09/misc/asm64-handout.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f09/misc/asm64-handout.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f13/lectures/10-irtrees.pdf
http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf

Calling Conventions L11.2

3 Low-Level Intermediate Language

In the low level intermediate language of quads that we have used so far in this
course, it is convenient to add a new form of instruction

d← f(s1, . . . , sn)

where each si is a source operand and d is a destination operand.
The generic def(l, x), use(l, x) and succ(l, l′) predicates are easily defined, as-

suming for simplicity that source and destinations are all temps.

l : d← f(s1, . . . , sn)

def(l, d)
use(l, si) (1 ≤ i ≤ n)
succ(l, l + 1)

J8

Unfortunately, this is overly simplistic, because calling conventions prescribe the
use of certain fixed registers for passing arguments and receiving results, so we
will have to extend the above rule further.

4 x86-64 Calling Conventions

In x86-64, the first six arguments are passed in registers, the remaining arguments
are passed on the stack. The result is returned in a specific return register %rax.
These conventions do not count floating point arguments and results, which are
passed in the dedicated floating point registers %xmm0 to %xmm7 and on the stack
only if there are more than eight floating point parameters. Fortunately, our lan-
guage has only integers at the moment, so you do not have to worry about the
conventions for floating point numbers.

On the x86, stack frames were required to have a frame pointer %ebp (base
pointer) which had to be saved and restored with each function call. It provided
a reliable pointer to the beginning of a stack frame for easy calculation of frame
offsets to handle references to arguments and local variables. It also allowed tools
such as gdb to print backtraces of the stack. On the x86-64 this information is main-
tained elsewhere and a frame pointer is no longer required.

The general organization of stack frames at the time a procedure is called, will
be as follows.

Address Contents Frame
· · · · · · Caller

16(%rsp) argument 8
8(%rsp) argument 7
(%rsp) return address

LECTURE NOTES SEPTEMBER 30, 2014

Calling Conventions L11.3

Note that all arguments take 8 bytes of space on the stack, even if the type of
argument would indicate that only 4 bytes need to be passed.

The function that is called, the callee, should set up its stack frame, reserving
space for local variables, spilled temps that could not be assigned to registers, and
arguments passed to functions it calls in turn. We recommend calculating the to-
tal space needed and then decrementing the stack pointer %rsp by the appropriate
amount. By changing the stack pointer only once, at the beginning, references to
parameters and local variables remain constant throughout the function’s execu-
tion. The stack then looks as follows, where the size of the callee’s stack frame is
n.

Position Contents Frame
· · · · · · Caller

n+ 16(%rsp) argument 8
n+ 8(%rsp) argument 7
n+ 0(%rsp) return address

local variables Callee
· · ·

argument build area
for function calls

· · ·
(%rsp) end of frame

128 bytes red zone

Note that %rsp should be aligned 0 mod 16 before another function is called, and
may be assumed to be aligned 8 mod 16 on function entry. This happens because
the call instruction saves the 64-bit return address on the stack.

The area below the stack pointer is called the red zone and may be used by the
callee as temporary storage for data that is not needed across function calls or even
to build arguments to be used before a function call. The ABI states that the red
zone “shall not be modified by signal or interrupt handlers.” This can be tricky,
however, because, for example, Linux kernel code may not respect the red zone
and overwrite this area. We therefore suggest not using the red zone.

5 Register Convention

We extract from [MHJM09] the relevant information on register usage. In the first
column is a suggested numbering for the purpose of register allocation.

LECTURE NOTES SEPTEMBER 30, 2014

Calling Conventions L11.4

Abstract x86-64 Preserved accross
form Register Usage function calls
res0 %rax return value∗ No
arg1 %rdi argument 1 No
arg2 %rsi argument 2 No
arg3 %rdx argument 3 No
arg4 %rcx argument 4 No
arg5 %r8 argument 5 No
arg6 %r9 argument 6 No
ler7 %r10 caller-saved No
ler8 %r11 caller-saved No
lee9 %rbx callee-saved Yes
lee10 %rbp callee-saved∗ Yes
lee11 %r12 callee-saved Yes
lee12 %r13 callee-saved Yes
lee13 %r14 callee-saved Yes
lee14 %r15 callee-saved Yes

%rsp stack pointer Yes

The starred registers have a potentially relevant alternative use. %al (the lower
8 bits of %rax) contains the number of floating point arguments on the stack in a call
to varargs functions. %rbp is the frame pointer for the stack frame, in an x86-like
calling convention (which is optional for the x86-64).

6 Typical Calling Sequence

If we have 6 or fewer arguments, a typical calling sequence for 32-bit arguments
with an instruction

d← f(s1, s2, s3)

will have the following form:
arg3 ← s3
arg2 ← s2
arg1 ← s1
call f
d← res0

First we move the temps into the appropriate argument registers, then we call the
function f (represented by a symbolic label), and then we move the result register
into the desired destination.

This organization, perhaps just before register allocation, has the advantage
that the live ranges of fixed registers (called precolored nodes in register allocation) is

LECTURE NOTES SEPTEMBER 30, 2014

Calling Conventions L11.5

minimized. This is important to avoid potential conflict. We have already applied a
similar technique in the implementation of div and mod operations, which expect
their arguments in fixed registers.

Let us state this as a fundamental principle of code generation that you should
strive to adhere to:

The live range of precolored registers should be as short as possible!

We can now see a problem with our previous calculation of def and use informa-
tion: the above sequence to actually implement the function call will overwrite the
argument registers %edx, %esi, %edi as well as the result register %eax (the lower
32bits of the return register %rax)! In fact, any of the argument registers, the result
register, as well as %r10 (temporary register for passing static function chain point-
ers) and %r11 (temporary register) may not be preserved across function calls and
therefore have to be considered to be defined by the call. If we represent this in the
low-level intermediate language, we would add to the rule R8 the following rule
R′8:

l : d← f(s1, . . . , sn)
caller-save(r)

def(l, r)
J ′8

where caller-save(r) is true of register r among %rax, %rdi, %rsi, %rdx, %rcx, %r8,
%r9, %r10, and %r11.

Here we assume that register aliasing is handled correctly, that is, the register
allocator understands that, for example, %eax constitutes the lower 32 bits of %rax.

Note that all argument registers and the result register are caller-save. This is justi-
fied by the fact that we often compute a value for the purposes of passing it into a
function, but we do not require that value afterwards. Of course, the result register
has to be caller-save, since it will be defined by the called function before it returns.

We refer to argument registers more abstractly as arg1, arg2, . . . , arg6 and ler7
and ler8 for the other two caller-save registers (even if they are not used for passing
arguments to a function). We refer to the result register %rax as res0.

Now if a temp t (except for d) is live after a function call, we have to add an
edge connecting t with any of the fixed registers noted above, since the value of
those registers are not preserved across a function call.

The other fixed use of argument registers is of course at the beginning of a
function. Again, we should be careful to generate code that keeps the live ranges
of precolored registers short. We can accomplish this by moving the argument
registers into temps. Under some heuristics in register allocation and coalescing,
these moves can sometimes be eliminated. A function f(x, y, z) might then start

LECTURE NOTES SEPTEMBER 30, 2014

Calling Conventions L11.6

with
f :

x← arg1
y ← arg2
z ← arg3

One more note: if it is possible that the function f is a function accepting a vari-
able number of arguments, some additional considerations apply. For example, the
low 8 bits of %rax, called %al hold the number of floating point arguments passed
to the function. One therefore sometimes sees xorl %eax, %eax before a function
call to define zero variable arguments.

7 Callee-Save Registers

The typical calling sequence above takes care of treating caller-save registers cor-
rectly. But what about callee-save registers, namely %rbx, %rbp, %r12, %r13, %r14
and %r15? In compiling a function we are required that the generated code pre-
serves all the callee-save registers. We generically refer to these registers as leei
where 9 ≤ i ≤ 14.

The standard approach is to save those that are needed onto the stack in the
function prologue and restore them from the stack in the function epilogue, just be-
fore returning. Of course, saving and restoring them all is safe, but may be overkill
for small functions that do not require many registers.

Remember that callee-save registers are essentially live throughout the body
of a function, since their value at the return instruction matters. This violates our
general rule to keep the live ranges of precolored registers short—in fact, they are
maximal!

One simple way to deal with this is by listing them last among the registers to
be assigned by register allocation. If we need more than the available number of
caller-save registers, we assign callee-save registers before we resort to spilling, but
make sure the save them at the beginning of a function and restore them at the end.
This is generally more efficient than the usual register spilling since such temps still
live in a register throughout the function execution. We use this technique in the
example in Section 8.

Another solution is to let register allocation together with register coalescing
do the job for us. We can move the contents of all the callee-save registers into
temps at the beginning of a function and then move them back at the end. If it
turns out these temps are spilled, then they will be saved onto the stack. If not,
they may be moved from one register to another and then back at the end. How-
ever, this only works well with the right heuristics for assigning registers or using
register coalescing.2 Register coalescing consults the interference graph to check if

2One technique for register coalescing is briefly described in Section 8 of Lecture 3.

LECTURE NOTES SEPTEMBER 30, 2014

http://www.cs.cmu.edu/~fp/courses/15411-f13/lectures/03-regalloc.pdf

Calling Conventions L11.7

we can assign the same register for variable-to-variable moves. Another optimiza-
tion that can eliminate register-to-register moves is copy propagation, covered in a
later lecture. However, copy propogation requires care because it might extend the
live range of variables, possibly undoing the care we applied to keep precolored
registers contained.

With this technique, the general shape of the code for a function f before regis-
ter allocation would be

f :
t1 ← lee9
t2 ← lee10
· · ·
function body
· · ·
lee10 ← t2
lee9 ← t1
ret

One complication with this approach is that we need to be sure to spill the full
64-bit registers, while registers holding 32-bit integer values might be saved and
restored (or directly used as operands) using only 32 bits. Looking ahead, we see
that we will need both 32 bit and 64 bit registers and spill slots in the next lab, so we
might decide to introduce this complication now. Or we can still treat callee-save
registers specially and switch over to a more uniform treatment in the next lab.

With either of the techniques for using callee-save registers, the one additional
rule (R′8) is not enough. We should also note that all callee-save registers should be
considered live at the return instruction.

l : return s
callee-save(r)

use(l, r)
J ′2

We already know, by prior rule, that s itself is live at l. The rule new rule J ′2 correctly
flags all callee-save registers as live throughout the function body, unless they are
assigned somewhere. The code pattern above achieves exactly that, cutting their
live ranges down to a minimum.

8 An Extended Example

We use the recursive version of the power function as an example to illustrate reg-
ister allocation in the presence of function calls. The C0 source is on the left; the
abstract assembly on the right.

int pow(int b, int e) pow(b,e):

LECTURE NOTES SEPTEMBER 30, 2014

Calling Conventions L11.8

//@requires e >= 0; if (e == 0) goto done

{ t0 <- e - 1

if (e == 0) t1 <- pow(b, t0)

return 1; t2 <- b * t1

else return t2

return b * pow(b, e-1); done:

} return 1

First, we convert it to SSA form. Looking at the right, we see it is already in static
single assignment form! Looking on the left, we see a purely functional program.
Since purely functional programs do not perform assignment, they must already
be in SSA form!

Next, we perform liveness analysis. We proceed backward through the pro-
gram to compute the following information.

program live-in
pow(b, e) :
if (e == 0) goto done b, e
t0 ← e− 1 b, e
t1 ← pow(b, t0) b, t0
t2 ← b ∗ t1 b, t1
return t2 t2

done :
return 1

Next, we move to a slightly lower-lever representation, making the precolored reg-
isters explicit with the code pattern in Section 6.

program live-in
pow :

b← arg1 arg1, arg2
e← arg2 b, arg2
if (e == 0) goto done b, e
t0 ← e− 1 b, e
arg2 ← t0 b, t0
arg1 ← b b, arg2
call pow b, arg1, arg2
t1 ← res0 b, res0
t2 ← b ∗ t1 b, t1
res0 ← t2 t2
return res0

done :
res0 ← 1
return res0

LECTURE NOTES SEPTEMBER 30, 2014

Calling Conventions L11.9

We have not made any callee-save registers explicit yet, in the hope we will not
need them. After all, there are only two variables and three temps in the program,
but we have eight caller-save registers.

Next, we build the interference graph. For each line l and each temp t defined
at l, we create an edge between t and any variable live in the successor. The only
exception is a move t← s, where we don’t create and edge between t and s because
they could be consistently be assigned to the same register. We find that only b
interferes with other temps and precolored registers:

temp interfering with
b res0, arg1, arg2, t0, t1
e b
t0 b
t1 b
t2

Implicitly all precolored registers interfere with each other.
However, we forgot one important piece of information, namely that the call

instruction must be interpreted as defining all caller-save registers. Since b remains
alive through the function call, it can therefore not be assigned to a caller-save
register, based on the code that we have.

We proceed by admitting that we need one caller-save register lee9 and save
and restore it at the beginning and end of the function. We use the push and pop
instructions for the save and restore operations.

program live-in
pow :

push lee9 arg1, arg2, lee9
b← arg1 arg1, arg2
e← arg2 b, arg2
if (e == 0) goto done b, e
t0 ← e− 1 b, e
arg2 ← t0 b, t0
arg1 ← b b, arg2
call pow b, arg1, arg2
t1 ← res0 b, res0
t2 ← b ∗ t1 b, t1
res0 ← t2 t2
pop lee9 res0
return res0, lee9

done :
res0 ← 1
pop lee9 res0
return res0, lee9

LECTURE NOTES SEPTEMBER 30, 2014

Calling Conventions L11.10

While the callee-save lee10, . . . , lee14 are still (implicitly) live through this function,
after the rewrite lee9 no longer is. Therefore, it no longer interferes with any temps.

We can construct a simplicial elimination ordering, from the interference graph,
such as:

b, e, t0, t1, t2

We order the colors (machine registers) as

res0, arg1, . . . , arg6, ler7, ler8, lee9

with the idea that caller-save registers come first (including argument registers
which we will likely need anyway), followed by the only callee-save register we
are currently permitted to use. If we needed more, we would first have to spill and
restore them.

From this we construct the assignment

b 7→ lee9
e 7→ res0
t0 7→ res0
t1 7→ res0
t2 7→ res0

Applying the substitutions:

pow :
push lee9
lee9 ← arg1
res0 ← arg2
if (res0 == 0) goto done
res0 ← res0 − 1
arg2 ← res0
arg1 ← lee9 (redundant)
call pow
res0 ← res0 (redundant)
res0 ← lee9 ∗ res0
res0 ← res0 (redundant)
pop lee9
return

done :
res0 ← 1
pop lee9
return

There are now some redundant instructions that can be eliminated. The self-moves
are obvious, and one line becomes a self-move after copy propagation. One would

LECTURE NOTES SEPTEMBER 30, 2014

Calling Conventions L11.11

also typically have just one epilog for the function (which restores the callee-save
registers and the stack pointer, which is not visible here). Making these last changes,
we obtain:

pow :
push lee9
lee9 ← arg1
res0 ← arg2
if (res0 == 0) goto done
res0 ← res0 − 1
arg2 ← res0
call pow
res0 ← lee9 ∗ res0
goto epilogue

done :
res0 ← 1

epilogue :
pop lee9
return

Using GNU assembler format for x86-64:

pow:

pushq %rbx

movl %edi, %ebx

movl %esi, %eax

testl %eax, %eax

je L1

subl $1, %eax

movl %eax, %esi

call pow

imull %ebx, %eax

goto L2

L1:

movl $1, %eax

L2:

popq %rbx

ret

References

[MHJM09] Michael Matz, Jan Hubic̆ka, Andreas Jaeger, and Mark Mitchell. Sys-
tem V application binary interface, AMD64 architecture processor sup-

LECTURE NOTES SEPTEMBER 30, 2014

Calling Conventions L11.12

plement. Available at http://refspecs.linuxfoundation.org/elf/
x86-64-abi-0.99.pdf, May 2009. Draft 0.99.

LECTURE NOTES SEPTEMBER 30, 2014

http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf
http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf

	Introduction
	IR Trees
	Low-Level Intermediate Language
	x86-64 Calling Conventions
	Register Convention
	Typical Calling Sequence
	Callee-Save Registers
	An Extended Example

