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1 Introduction

In this lecture we discuss two parsing algorithms, both of which traverse the in-
put string from left to right. The first, LL(1), makes a decision on which grammar
production to use based on the first character of the input string. If that were am-
biguous, the grammar would have to be rewritten to fall into this class, which is
not always possible. The second, LR(1), can postpone the decision at first by push-
ing input characters onto a stack and then deciding on the production later, taking
into account both the first input character and the stack. It is variations on the latter
which are typically used in modern parser generation tools.

Alternative presentations of the material in this lecture can be found in the text-
book [App98, Chapter 3] and a paper by Shieber et al. [SSP95].

2 LL(1) Parsing1

We have seen in the previous section, that the general idea of recursive descent
parsing without restrictions forces us to non-deterministically choose between sev-
eral productions which might be applied and potentially backtrack if parsing gets
stuck after a choice, or even loop (if the grammar is left-recursive). Backtracking is
not only potentially very inefficient, but it makes it difficult to produce good error
messages in case the string is not grammatically well-formed. Say we try three dif-
ferent ways to parse a given term and all fail. How could we say which of these is
the source of the error? This is compounded because nested choices multiply the

∗with contributions by André Platzer
1Not covered in lecture in Fall 2014. Some examples of LL(1) parsing are in Section 5 of Lecture 8

on Context-Free Grammars.
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Predictive Parsing L9.2

number of possibilities. We therefore have to look for ways to disambiguate the
choices.

One way is to require of the grammar that at each potential choice point we can
look at the next input token and based on that token decide which production to
take. This is called 1 token lookahead, and grammars that satisfy this restriction are
called LL(1) grammars. Here, the first L stands for Left-to-right; the second L stands
for Leftmost parse (which a recursive descent parser generates) and 1 stands for 1
token lookahead. Potentially, we could also define LL(2), LL(3), etc., but these are of
limited practical utility.

Since we are restricting ourselves to parsing by a left-to-right traversal of the
input string, we will consider only tails, or postfixes of the input strings, and also
of the strings in the grammar, when we restrict our inference rules. For short, we
will say γ is a postfix substring of the grammar, or w is a postfix substring of the
input string w0. For example, in the grammar

[emp] S −→
[pars] S −→ [S ]

[dup] S −→ S S

the only postfix substrings are ε, [S ], S ], ], S, and S S, but not [S.
We begin be defining two kinds of predicates (later we will have occasion to

add a third), where β is either a non-terminal or postfix substring of the grammar.

first(β, a) Token a can be first in string β
null(β) String β can produce the empty string ε

These predicates must be computed entirely statically, by an analysis of the
grammar before any concrete string is ever parsed. This is because we want to be
able to tell if the parser can do its work properly with 1 token look-ahead regardless
of the string it has to parse.

We define the relation first(β, a) by the following rules.

first(aβ, a)
F1

This rule seeds the first predicate. Then is it propagated to other strings appearing
in the grammar by the following three rules.

first(X, a)

first(X β, a)
F2

null(X) first(β, a)

first(X β, a)
F3

[r]X −→ γ
first(γ, a)

first(X, a)
F4(r)

Even though εmay be technically a postfix substring of every grammar, it can never
arise in the first argument of the first predicate. The auxiliary predicate null is also

LECTURE NOTES SEPTEMBER 23, 2014



Predictive Parsing L9.3

easily defined.

null(ε)
N1

null(X) null(γ)

null(X γ)
N2

[r]X −→ γ
null(γ)

null(X)
N3

We can run these rules to saturation because there are only O(|G|) possible
strings in the first argument to both of these predicates, and at most the number of
possible terminal symbols in the grammar, O(|Σ|), in the second argument. Naive
counting the number of prefix firings (see [GM02]) gives a complexity bound of
O(|G| × |Ξ| × |Σ|) where |Ξ| is the number of non-terminals in the grammar. Since
usually the number of symbols is a small constant, this is roughly equivalent to
O(|G|) and so is reasonably efficient. Moreover, it only happens once, before any
parsing takes place.

Next, we modify the rules for recursive descent parsing from the last lecture to
take these restrictions into account. The first two stay the same.

ε : ε
R1

w : γ

aw : a γ
R2

The third,
[r]X −→ β
w : β γ

w : X γ
R3(r)

is split into two, each of which has an additional precondition.

[r]X −→ β
first(β, a)
aw : β γ

aw : X γ
R′3

[r]X −→ β
null(β)
w : β γ

w : X γ
R′′3?

We would like to say that a grammer is LL(1) if the additional preconditions in
these last two rules make all choices unambiguous when an arbitrary non-terminal
X is matched against a string starting with an arbitrary terminal a. Unfortunately,
this does not quite work yet in the presence non-terminals that can rewrite to ε,
because the second rule above does not even look at the input string.

To further refine this we need one additional predicate, again on postfix strings
in the grammar and non-terminals.

follow(β, a) Token a can follow string β in a valid string
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We seed this relation with the rules

X γ postfix
first(γ, a)

follow(X, a)
W1

Here, X γ postfix means that the string X γ appears as a postfix substring on the
right-hand side of a production. We then propagate this information applying the
following rules from premises to conclusion until saturation is reached.

follow(b γ, a)

follow(γ, a)
W2

follow(X γ, a)

follow(γ, a)
W3

follow(X γ, a)
null(γ)

follow(X, a)
W4

[r]X −→ γ
follow(X, a)

follow(γ, a)
W5

The first argument here should remain a non-empty postfix or a non-terminal. Now
we can refine the proposed R′′3 rule from above into one which is much less likely
to be ambiguous.

[r]X −→ β
first(β, a)
aw : β γ

aw : X γ
R′3

[r]X −→ β
null(β)
follow(X, a)
aw : β γ

aw : X γ
R′′3

We avoid creating an explicit rule to treat the empty input string by appending
a special $ symbol at the end before starting the parsing process. We repeat the
remaining rules for completeness.

ε : ε
R1

w : γ

aw : a γ
R2

These rules are interpreted as a parser by proof search, applying them from the
conclusion to the premise. We say the grammar is LL(1) if for any goal w : γ at
most one rule applies. If X cannot derive ε, this amounts to checking that there is
at most one production X −→ β such that first(β, a). For nullable non-terminals
the condition is slightly more complicated, but can still easily be read off from the
rules.

We now use a very simple grammar to illustrate these rules. We have trans-
formed it in the way indicated above, by assuming a special token $ to indicate the
end of the input string.

[start] S −→ S′ $
[emp] S′ −→ ε
[pars] S′ −→ [S′ ]
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This generates all string starting with an arbitrary number of opening parentheses
followed by the same number of closing parentheses and an end-of-string marker.

We have:
null(ε) N1

null(S′) N3

first([S′ ], [) F1

first(], ]) F1

first(S′ ], ]) F3

first(S′, [) F4 [pars]
first(S′ ], [) F2

first($, $) F1

first(S′ $, $) F3

first(S′ $, [) F2

first(S, $) F4 [start]
first(S, [) F4 [start]

follow(S′, $) W1

follow(S′, ]) W1

follow([S′ ], $) W5

follow([S′ ], ]) W5

follow(S′ ], $) W3

follow(S′ ], ]) W3

follow(], $) W4

follow(], ]) W4

3 Parser Generation2

Parser generation is now a very simple process. Once we have computed the null,
first, and follow predicates by saturation from a given grammar, we specialize the in-
ference rules R′3(r) and R′′3(r) by matching the first two and three premises against
grammar productions and saturated database. In this case, this leads to the follow-
ing specialized rules (repeating once again the two initial rules).

ε : ε
R1

w : γ

aw : a γ
R2

[w : S′ $ γ

[w : S γ
R′3(start)

$w : S′ $ γ

$w : S γ
R′3(start)

[w : [S′ ] γ

[w : S′ γ
R′3(pars)

]w : γ

]w : S′ γ
R′′3(emp)

$w : γ

$w : S′ γ
R′′3(emp)

2Not covered in lecture in Fall 2014.
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Recall that these rules are applied from the bottom-up, starting with the goal
w0 $ : S, where w0 is the input string. It is easy to observe by pattern matching
that each of these rules are mutually exclusive: if one of the applies, none of the
other rules applies. Moreover, each rule except for R1 (which accepts) has exactly
one premise, so the input string is traversed linearly from left-to-right, without
backtracking. When none of the rules applies, then the input string is not in the
language defined by the grammar. This proves that our simple language (n )n is
LL(1).

Besides efficiency, an effect of this approach to parser generation is that it sup-
ports good error messages in the case of failure. For example, if we see the parsing
goal (w : ) γ we can state: Found ’(’ while expecting ’)’., and similarly for other
cases that match none of the conclusions of the rules.

4 Removing Ambiguities

One standard way to deal with ambiguities in grammars is to rewrite them, but un-
der the constraint that they accept the same strings. When designing our own pro-
gramming language, we sometimes have the immense luxury to actually change
the syntax to make it easier to parse (and, hopefully, also easier to read and under-
stand).

As an example, we use the following simple grammar for expressions.

[plus] E −→ E + E
[times] E −→ E * E
[ident] E −→ id
[number] E −→ num
[parens] E −→ ( E )

If we see a simple expression such as 3 + 4 * 5 (which becomes the token stream
num + num * num), we cannot predict when we see the + symbol which production
to use because of the inherent ambiguity of the grammar.

In order the rewrite it to make the parse tree unambiguous we have to analyze
how to rule out the unintended parse tree. In the expression 3 + 4 * 5 we have to
all the parse equivalent to 3 + (4 * 5) but we have to rule out the parse equivalent
to (3 + 4) * 5. In other words, the left-hand side of a product is not allowed to be
a sum (unless it is explicitly parenthesized).

Backing up one step, how about 3 + 4 + 5? We want addition to be left asso-
ciative, so this should parse as (3 + 4) + 5. In other words, we have to rule out the
parse 3 + (4 + 5). Instead of

E −→ E + E

we want
E −→ E + P
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where P is a new nonterminal that does not allow a sum. Continuing the above
thought, P is allowed to be a product, so we proceed

P −→ P * A

Since multiplication is also left-associative, we have made up a new symbol A
which cannot be a product. In fact, in our language A can only be an identifier,
a number, or a parenthesized (arbitrary) expression.

[plus] E −→ E + P
[times] P −→ P * A
[ident] A −→ id
[number] A −→ num
[parens] A −→ ( E )

This is not yet complete, because it is in fact empty: it claims an expression must
always be a sum. But it could also just be a product. Similarly, products P may just
consist of an atom A. This yields:

[plus] E −→ E + P
[e/p] E −→ P
[times] P −→ P * A
[p/a] P −→ A
[ident] A −→ id
[number] A −→ num
[parens] A −→ ( E )

You should convince yourself that this grammar is now unambiguous. Unfortu-
nately, it is not LL(1): from the first token we cannot tell which grammar produc-
tion to choose. In fact any token can start any production!

5 LR(1) Parsing

One difficulty with LL(1) parsing is that it is often difficult or impossible to rewrite
a grammar so that 1 token look-ahead during a left-to-right traversal becomes un-
ambiguous. The example in the previous section illustrate this: it was relatively
easy to rewrite the grammar to be unambiguous, but we need much more work to
make it LL(1).

We can react by rewriting the grammar, at significant expense of readability, or
we could just specify that (a) addition and multiplication are left-associative, and
(b) multiplication has higher precedence than addition, + < *. Obviously, the latter
is more convenient, but how can we make it work?

The idea is to put off the decision on which productions to use and just shift the
input symbols onto a stack until we can make the decision! We write
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γ | w parse input w under stack γ

where, as generally in predictive parsing, the rules are interpreted as transitions
from the conclusion to the premises. The parsing attempt succeeds if we can con-
sume all of w and and produce the start symbol S on the left-hand side. That is, the
deduction representing a successful parse of terminal string w0 has the form

S | ε
R1

...
ε | w0

Parsing is defined by the following rules:

S | ε
R1(= accept)

γ a | w

γ | aw
R2(= shift)

[r]X −→ β
γ X | w

γ β | w
R3(r)(= reduce(r))

We resume the example above, parsing num + num * num . After one step (reading
this bottom-up)

num | + num * num ?
ε | num + num * num shift

we already have to make a decision: should we shift + or should we reduce num
using rule [number]. In this case the action to reduce is forced, because we will
never get another chance to see this num as an E.

E | + num * num ?
num | + num * num reduce(number)

ε | num + num * num shift

At this point we need to shift +; no other action is possible. We take a few steps and
arrive at

E + E | * num
E +num | * num reduce(number)

E + | num * num shift
E | + num * num shift

num | + num * num reduce(number)
ε | num + num * num shift
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At this point, we have a real conflict. We can either reduce, viewing E + E as a
subexpression, or shift and later consider E * E as a subexpression. Since the * has
higher precedence than +, we need to shift.

E | ε accept
E + E | ε reduce(plus)

E + E * E | ε reduce(times)
E + E * num | ε reduce(number)

E + E * | num shift
E + E | * num shift

E +num | * num reduce(number)
E + | num * num shift
E | + num * num shift

num | + num * num reduce(number)
ε | num + num * num shift

Since E was the start symbol in this example, this concludes the deduction. If
we now read the lines from the top to the bottom, ignoring the separator, we see
that it represents a rightmost derivation of the input string. So we have parsed
analyzing the string from left to right, constructing a rightmost derivation. This
type of parsing algorithms is called LR-parsing, where the L stands for left-to-right
and the R stands for rightmost.

The decisions above are based on the postfix of the stack on the left-hand side
and the first token on the right-hand side. Here, the postfix of the stack on the left-
hand side must be a prefix substring of a grammar production. If not, it would be
impossible to complete it in such a way that a future grammar production can be
applied in a reduction step: the parse attempt is doomed to failure.

6 LR(1) Parsing Tables

We could now define again a slightly different version of follow(γ, a), where γ is a
prefix substring of the grammar or a non-terminal, and then specialize the rules.
An alternative, often used to describe parser generators, is to construct a parsing
table. For an LR(1) grammar, this table contains an entry for every prefix substring
of the grammar and token seen on the input. An entry describes whether to shift,
reduce (and by which rule), or to signal an error. If the action is ambiguous, the
given grammar is not LR(1), and either an error message is issued, or some default
rule comes into effect that chooses between the options.

We now construct the parsing table, assuming + < *, that is, multiplication
binds more tightly than addition. Moreover, we specify that both addition and
multiplication are left associative so that, for example, 3 + 4 + 5 should be parsed
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as (3 + 4) + 5. We have removed id since it behaves identically to num .

[plus] E −→ E + E
[times] E −→ E * E
[number] E −→ num
[parens] E −→ ( E )

As before, we assume that a special end-of-file token $ has been added to the end
of the input string. When the parsing goal has the form γ β | aw where β is a prefix
substring of the grammar, we look up β in the left-most column and a in the top
row to find the action to take. The non-terminal εE in the last line is a special case
in that E must be the only thing on the stack. In that case we can accept if the next
token is $ because we know that $ can only be the last token of the input string.

β \ a + * num ( ) $

E + E reduce(plus) shift error error reduce(plus) reduce(plus)
(+ left assoc.) (+ < *)

E * E reduce(times) reduce(times) error error reduce(times) reduce(times)
(+ < *) (* left assoc.)

num reduce(number) reduce(number) error error reduce(number) reduce(number)
( E ) reduce(parens) reduce(parens) error error reduce(parens) reduce(parens)
E + error error shift shift error error
E * error error shift shift error error
( E shift shift error error shift error

( error error shift shift error error
ε error error shift shift error error

ε E shift shift error error error accept(E)

We can see that the bare grammar has four shift/reduce conflicts, while all
other actions (including errors) are uniquely determined. These conficts arise when
E + E or E * E is on the stack and either + or * is the first character in the remain-
ing input string. It is called a shift/reduce conflict, because either a shift action or
a reduce action could lead to a valid parse. Here, we have decided to resolve the
conflicts by giving a precedence to the operators and declaring both of them to be
left-associative.

It is also possible to have reduce/reduce conflicts, if more than one reduction
could be applied in a given situation, but it does not happen in this grammar.

Parser generators will generally issue an error or warning when they detect a
shift/reduce or reduce/reduce conflict. For many parser generators, the default
behavior of a shift/reduce conflict is to shift, and for a reduce/reduce conflict to
apply the textually first production in the grammar. Particularly the latter is rarely
what is desired, so we strongly recommend rewriting the grammar to eliminate
any conflicts in an LR(1) parser.
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One interesting special case is the situation in a language where the else-clause
of a conditional is optional. For example, one might write (among other produc-
tions)

E −→ if E then E
E −→ if E then E else E

Now a statement

if b then if c then x else y

is ambiguous because it would be read as

if b then (if c then x) else y

or

if b then (if c then x else y)

In a shift/reduce parser, typically the default action for a shift/reduce conflict is to
shift to extend the current parse as much as possible. This means that the above
grammar in a tool such as ML-Yacc will parse the ambiguous statement into the
second form, that is, the else is match with the most recent unmatched if. This is
consistent with language such as C (or C0, the language used in this course), so we
can tolerate the above shift/reduce conflict, if you wish, instead of rewriting the
grammar to make it unambiguous.

We can also think about how to rewrite the grammar so it is unambiguous.
What we have to do is rule out the parse

if b then (if c then x) else y

In other words, the then clause of a conditional should be balanced in terms of
if-then-else and not have something that is just an if-then without an else clause.

E −→ if E then E
E −→ if E then E′ else E

E′ −→ if E then E′ else E′

E′ −→ . . .

We would also have to repeat all the other clauses for E, or refactor the grammar
so the other productions of E can be shared with E′.
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Questions

1. What happens if we remove the ε from the last entry in the LR parser table?
Aren’t ε’s irrelevant and can always be removed?

2. What makes x*y; difficult to parse in C and C0? Discuss some possible solu-
tions, once you have identified a problem?

3. Give a very simple example of a grammar with a shift/reduce conflict.

4. Give an example of a grammar with a shift/reduce conflict that occurs in
programming language parsing and is not easily resolved using associativity
or precedence of arithmetic operators.

5. Give a very simple example of a grammar with a reduce/reduce conflict.

6. Give an example of a grammar with a reduce/reduce conflict that occurs in
programming language parsing and is not easily resolved.

7. In the reduce rule, we have used a number of symbols on the top of the stack
and the lookahead to decide what to do. But isn’t a stack something where
we can only read one symbol off of the top? Does it make a difference in
expressive power if we allow decisions to depend on 1 or on 10 symbols on
the top of the stack? Does it make a difference in expressive power if we allow
1 or arbitrarily many symbols from the top of the stack for the decision?

8. What’s wrong with this grammar that was meant to define a program P as a
sequence of statements S by P → S | P ;P
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