Lecture Notes on
Context-Free Grammars

15-411: Compiler Design
Frank Pfenning*

Lecture 8
September 18, 2014

1 Introduction

Grammars and parsing have a long history in linguistics. Computer science built
on the accumulated knowledge when starting to design programming languages
and compilers. There are, however, some important differences which can be at-
tributed to two main factors. One is that programming languages are designed,
while human languages evolve, so grammars serve as a means of specification (in
the case of programming languages), while they serve as a means of description (in
the case of human languages). The other is the difference in the use of grammars
and parsing. In programming languages the meaning of a program should be un-
ambiguously determined so it will execute in a predictable way. Clearly, this then
also applies to the result of parsing a well-formed expression: it should be unique.
In natural language we are condemned to live with its inherent ambiguities, as can
be seen from famous examples such as “Time flies like an arrow” .

In this lecture we review an important class of grammars, called context-free
grammars (Chomsky-2 in the Chomsky hierarchy [Cho59]) and the associated prob-
lem of parsing. They end up to be too awkward for direct use in a compiler, mostly
due to the problem of ambiguity, but also due to potential inefficiency of parsing.
Alternative presentations of the material in this lecture can be found in the text-
book [App98, Chapter 3] and in a seminal paper by Shieber et al. [SSP95]. In the
next lecture we will consider more restricted forms of grammars, whose definition,
however, is much less natural.

*With edit by André Platzer

LECTURE NOTES SEPTEMBER 18, 2014

Context-Free Grammars L8.2

2 Context-Free Grammars

Grammars are designed to describe languages, where in our context a language
is just a set of strings. Abstractly, we think of strings as a sequence of so-called
terminal symbols. Inside a compiler, these terminal symbols are most likely lexical
tokens, produced from a bare character string by lexical analysis that already groups
substrings into tokens of appropriate type and skips over whitespace.

A context-free grammar consists of a set of productions of the form X — ~,
where X is a non-terminal symbol and ~ is a potentially mixed sequence of termi-
nal and non-terminal symbols. It is also sometimes convenient to distinguish a
start symbol traditionally named S, for sentence. We will use the word string to re-
fer to any sequence of terminal and non-terminal symbols. We denote strings by
o, 3,7, non-terminals are generally denoted by X, Y, Z and terminals by a, b, c

For example, the following grammar generates all strings consisting of match-
ing parentheses.

S —
S — [S]
S — S8

The first rule looks somewhat strange, because the right-hand side is the empty
string. To make this more readable, we usually write the empty string as e.

A derivation of a sentence w from start symbol S is a sequence S = a9 —
a1 — a, = w, where w consists only of terminal symbols. In each step we choose
exactly one occurrence of a non-terminal X in o; and one production X — v and
replace this occurrence of X in o; by 7.

We usually label the productions in the grammar so that we can refer to them
by name. In the example above we might write

emp] S —
[pars] S — [S5]
[dup] S — SS

Then the following is a derivation of the string [[][1], where each transition is
labeled with the production that has been applied.

S — [S5] [pars]
— [S9] [dup]
— [[S15] [pars]
— [[5] [emp]
— [[S]] [pars]
— [[10]] [emp]

We have labeled each derivation step with the corresponding grammar production
that was used.

LECTURE NOTES SEPTEMBER 18, 2014

Context-Free Grammars L8.3

Derivations are clearly not unique, because when there is more than one non-
terminal, then we can replace it in any order in the string. In order to avoid this
kind of harmless ambiguity in rule order, we like to construct a parse tree in which
the nodes represents the non-terminals in a string, with the root being S. In the
example above we obtain the following tree:

pars
dup

pars pars

emp emp

While the parse tree removes some ambiguity, it turns out the sample grammar
is ambiguous in another way. In fact, there are infinitely many parse trees of every
string in the above language. This can be seen by considering the cycle

S—S5S5— 85

where the first step is dup and the second is emp, applied either to the first or second
occurrence of S. We can get arbitrarily long parse trees for the same string with this.

Whether a grammar is ambiguous in the sense that there are sentences permit-
ting multiple different parse trees is an important question for the use of grammars
for the specification of programming languages. The basic problem is that it be-
comes ambiguous in which grammatical function a specific terminal occurs in the
source program. This could lead to misinterpretations. We will see an example
shortly.

3 Parse Trees are Deduction Trees

We now present a formal definition of when a terminal string w matches a string .
We write:

[r]X — v production r maps non-terminal X to string
w oy terminal string w matches string ~y

LECTURE NOTES SEPTEMBER 18, 2014

Context-Free Grammars L8.4

The second judgment is defined by the following four simple rules. Here we
use string concatenation, denoted by juxtaposing to strings. Note that the empty
string e satisfies v € = €y = -y and that concatenation is associative (mathematically
speaking, strings form a monoid, which is like a group that does not have inverse
elements).

X —~
wy iYL W22 w .y
— P Py — P — P4(r)
€:€ w1 W2 Y1Y2 a:a w: X

We have labeled the fourth rule by the name of the grammar production, while
the others remain unlabeled. This allows us to omit the actual grammar rule from
the premises since it can be looked up in the grammar directly by its name. Then
the earlier derivation of [[] [1] becomes the following deduction.

— P
€. €
— P Py(emp) —— P3
[:L[€ 5
[1:08 2
' Py(pars)
1:58 1:5
[001:5S P
— P ————— P4(dup) — B
[:[[0 : s 1:1
[[101]:L[S] 2
- P
Moy .g i)

The one omitted subdeduction (marked :) is identical to its sibling on the left.
We observe that the labels have the same structure as the parse tree, except that it
is written upside-down. Parse trees are therefore just deduction trees.

4 CYK Parsing

The rules above that formally define when a terminal string matches an arbitrary
string can be used to immediately give an algorithm for parsing.

Assume we are given a grammar with start symbol S and a terminal string
wop. Start with a databased of assertions € : € and a : a for any terminal symbol
occurring in wg. Now arbitrarily apply the given rules in the following way: if
the premises of the rules can be matched against the database, and the conclusion
w : vy is such that w is a substring of the input wy and v is a string occurring in the
grammar, then add w : ~ to the database. The side conditions are used to focus
the parsing process to the facts that may matter during the parsing (i.e., that talk

LECTURE NOTES SEPTEMBER 18, 2014

Context-Free Grammars L8.5

about the actual input string wg being parsed and that fit to the actual grammatical
productions in the grammar).

We repeat this process until we reach saturation: any further application of any
rule leads to conclusion are already in the database. We stop at this point and check
if we see wp : S in the database. If we see wy : S, we succeed parsing wy; if not we
fail.

This process must always terminate, since there are only a fixed number of
substrings of the grammar, and only a fixed number of substrings of the query
string wo. In fact, only O(n?) terms can ever be derived if the grammar is fixed and
n = |w|. Using a meta-complexity result by Ganzinger and McAllester [McA02,
GMO02] we can obtain the complexity of this algorithm as the maximum of the size
of the saturated database (which is O(n?)) and the number of so-called prefix firings
of the rule. We count this by bounding the number of ways the premises of each
rule can be instantiated, when working from left to right. The crucial rule is the
splitting rule

Wiy w272
w1 W2 1 Y12

2

There are O(n?) substrings, so there are O(n?) ways to match the first premise
against the database. Since w; ws is also constrained to be a substring of wy, there
are only O(n) ways to instantiate the second premise, since the left end of ws in
the input string is determined, but not its right end. This yields a complexity of
O(n? xn) = O(n?).

The algorithm we have just presented is an abstract form of the Cocke-Younger-
Kasami (CYK) parsing algorithm invented in the 1960s. It originally assumes the
grammar is in a normal form, and represents substring by their indices in the input
rather than directly as strings. However, its general running time is still O(n?).

As an example, we apply this algorithm using an n-ary concatenation rule as
a short-hand. We try to parse [[] [1] with our grammar of matching parentheses.
We start with three facts that derive from rules P and P3. When working forward
it is important to keep in mind that we only infer facts w : v where w is a substring
of wyp = [[1[]] and 7 is a substring of the grammar.

1 [[

2 1]]

3 € €

4 € S Py(emp) 3
5 [[S1 P}1,4,2
6 [] S Py(pars) 5
7 [0 SS P6,6

8§ [S Py(dup) 7
9 [0101] [S] P§1,8,2
10 (0101 S Py(pars) 9

LECTURE NOTES SEPTEMBER 18, 2014

Context-Free Grammars L8.6

A few more redundant facts might have been generated, such as [1 : S S, but
otherwise parsing is remarkably focused in this case. From the justifications in the
right-hand column is it easy to generate the same parse tree we saw earlier.

5 Recursive Descent Parsing

For use in a programming language parser, the cubic complexity of the CYK al-
gorithm is unfortunately unacceptable. It is also not so easy to discover potential
ambiguities in a grammar (except for a particular input) or give good error mes-
sages when parsing fails. What we would like an algorithm that scans the input
left-to-right (because that’s usually how we design our languages!) and works in
one pass through the input.

Unfortunately, some languages that have context-free grammars cannot be spec-
ified in the form of a grammar satisfying the above specification. So now we turn
the problem around: considering the kind of parsing algorithms we would like
to have, can we define classes of grammars that can be parsed with this kind of
algorithm? The other property we would like is that we can look at a grammar
and decide if it is ambiguous in the sense that there are some strings admitting
more than one parse tree. Such grammars should be rejected as specifications for
programming languages. Fortunately, the goal of efficient parsing and the goal of
detecting ambiguity in a grammar work hand-in-hand: generally speaking, unam-
biguous grammars are easier to parse.

We now rewrite our rules for parsing to work exclusively from left-to-right
instead of being symmetric. This means we do not use general concatenation of
strings that are split arbitrarily. Instead, we just consider the left-most terminal or
left-most non-terminal. We just prepend a single non-terminal to the beginning of
a string. This left non-terminal is then the only part where we allow expansion by
a production. We also have to change the nature of the rule for non-terminals so it
can handle a non-terminal at the left end of the string.

[X — 8
w oy w: By
— Ry —— Ry ——— R3(r)
€€ aw:ary w: Xy

Rule Ry compares the first terminal a of the actual input string aw with the first
terminal a of the currently parsed expression ay. For grammar production [r]X —
B, rule R3(r) generates or expands the righthand side 3 for the left-most non-terminal
X in the currently parsed expression X+. Rule R3(r) uses the grammar production
forward to produce the result 5. Of course, ultimately, the parse derivation will
only be successful if the compare rule R3 can also match the ultimately generated
terminals in the input and the generated parse expression.

LECTURE NOTES SEPTEMBER 18, 2014

Context-Free Grammars L8.7

At this point the rules are entirely linear (each rule has zero or one premises,
note that we count the static grammar productions [r]X — 3 as part of the rule
R3(r) here) and decompose the string left-to-right (we only proceed by stripping
away a terminal symbol a).

Rather than blindly using these rules from the premises to the conclusions
(which wouldn’t be analyzing the string from left to right), couldn’t we use them
the other way around from the desired conclusions to the premisses? After all, we
know what we are trying to get at. Recall that we are starting with a given goal,
namely to derive wy : S, if possible, or explicitly fail otherwise. Now could we use
the rules in a goal-directed way? The first two rules certainly do not present a prob-
lem. Using the compare rules R and R; from conclusions to premisses just succes-
sively simplifies the strings by consuming the first token (or €). But the expansion
rule R3 presents a problem, since we may not be able to determine which produc-
tion we should use if there are multiple productions for a given non-terminal X.

The difficulty then lies in the third rule: how can we decide which production
to use? Guessing which expansion 5 of X in R3 will enable us to parse w as vy
could be difficult. Yet, we can turn the question around: for which grammars can
we always decide which grammar expansion r to use for R3(r)?

We return to an example to explore this question. We use a simple grammar for
an expression language similar one to the one used in Lab 1. We use id and num to
stand for identifier and number tokens produced by the lexer.

[assign] S — Wd=E; S
[return] S — return F
[plus] E — E+E
[times] E — ExE
[ident] E — id
[number] E — num
[parens] E — (E)

As an example string, consider

x = 3; return x;
id("x") = num(3) ; return id("x")

After lexing, x and 3 are replaced by tokens id("x") and num(3) as indicated in the
second line. We write just write those tokens as id and num, for short.

If we always guess right, we would construct the following deduction from the
bottom to the top. That is, we start with the last line, either determine or guess which
rule to apply to get the previous line, etc. until we reach € : e (successful parse) or
get stuck (syntax error, or wrong guess).

LECTURE NOTES SEPTEMBER 18, 2014

Context-Free Grammars L8.8

€ : €
id; ¢ oid
id; : E; [ident]
returnid ; : return F ;
returnid ; : S [return]
;s returnid ; : ;S
num ; returnid ; : num ; S
num ; returnid ; : E ; S [number]
=num ; returnid ; : =E; 5
id =num ; returnid ; : id=FE; S
id = num ; returnid ; : S [assign]

This parser (assuming all the guesses are made correctly) evidently traverses
the input string from left to right. It also produces a left-most derivation (always
expand the left-most nonterminal first), which we can read off from this deduction
by reading the right-hand side from the bottom to top.

We have labeled the inference that potentially involved a choice with the chosen
name of the chosen grammar production. If we restrict ourselves to look only at
the first token in the input string on the left, which ones could we have predicted
correctly? Which grammar production choices could we predict by looking ahead
at the first input token?

In the last line (the first guess we have to make) we are trying to parse an S
and the first input token is id. There is only one production that would allow this,
namely [assign]. So we do not have to guess but just choose deterministically based
on the first token id.

In the fourth-to-last line (our second potential choice point), the first token is
num and we are trying to parse an E. It is tempting to say that this must be the
production [number]. But this is wrong! For example, the string num + id also starts
with token num, but we must use production [plus] to parse it correctly. This is bad
news, because we cannot decide which production rule to use based on the first
token.

In fact, no input token can disambiguate expression productions for us here.
The problem is that the rules [plus] and [times] are left-recursive, that is, the right-
hand side of the production starts with the non-terminal on the left-hand side. But
this non-terminal could produce a lot of different strings. We can never decide by a
finite token look-ahead which rule to choose, because any token which can start an
expression E could arise via the [plus| and [times] productions. We cannot decide if
we will need the [plus] or [times] production just based on the first token before we
have fully understood what the first E is. Yet £/ could have unbounded length.

The only thing we can do at our current state of knowledge is to parse the

LECTURE NOTES SEPTEMBER 18, 2014

Context-Free Grammars L8.9

input with a recursive descent parser, guess our choices, and backtrack to different
choices whenever things don’t work out.

In the next lecture we develop some techniques for analyzing the grammar to
determine if we can parse its language by searching for a deduction without back-
tracking, if we are permitted some lookahead to make the right choice. This will
also be the key for parser generation, the process of compiling a grammar specifica-
tion to a specialized efficient parser.

6 Rewriting Grammars

As we have seen in the previous examples, grammars may be ambiguous, and also
grammars may force us to backtrack during recursive descent parsing. Such back-
tracking could lead to very inefficient parsing algorithms and should be avoided
if that is possible. One way we can sometimes avoid it (and we’ll see more about
thi in the next lecture) is to rewrite the grammar, while still accepting the same
language. For example, we can rewrite the language of matching parentheses to

lemp] S —
[next] S — [S1S

which combines the dup and pars rule into one. Does this really generate the same
language? It is an interesting exercise to show that this is the case. Now let’s
perform a recursive descent parse using this grammar.

7o ;S

At this point, there are two possibilities: we could use the next production or the
emp production. But emp fails immediately

impossible
ol : e
(01011 = S emp

because there is no rule to could be applied to conclude [[1[1] : e. So we apply
the next rule instead, followed by R skipping past matching left brackets.

o1 o Ss18
([l : [s1s
(a1 - s next

Again, eps will fail immediately and we have to use next.

1011 : S1818
(01 : [S1518
a1 - S18 next
(1 o [Ls1s
conolr - s next

LECTURE NOTES SEPTEMBER 18, 2014

Context-Free Grammars

L8.10

Now, next will fail immediately, because] would not match [!

impossible
1011 : [51S51S51S
1111 S151S next
(1111 [S1S51S
(1011 S1S next
(0101 [S1S
[0101] S next

Instead we apply emp, followed by stripping of the matching right brackets.

(1]
101
1011
(1011
(1011
(0l
(a1l

S18

1518

S151S8 emp
[S1S51S

S1S next
[S1S

S next

Performing more steps mechanically now, since we always know which rule to
choose, we complete the parse as follows:

€
€
]
]

1]

1]
(1]
(1]
1011
1011
(1011
(1011
(00l
(a1l

€

S emp
15

S1S emp
1518

S151S emp
[S1S51S

S18 next
1518

S151S emp
[S1S51S

S1S next
[S1S

S next

We have seen that at each point the rule was determined, and by only looking
at the next token in the word on the left we could tell with grammar production to
use. A grammar with this property is called LL(1), because we parse Left-to-right,
generating a Leftmost parsing derivation, using 1 token lookahead. Unfortunately this
very nice class of grammars it too restrictive for many programming languages, we
we will investigate a more general class in the next lecture on predictive parsing.

LECTURE NOTES

SEPTEMBER 18, 2014

http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/09-predictive.pdf

Context-Free Grammars L8.11

Questions

1.
2.

What is the benefit of using a lexer before a parser?
Why do compilers have a parsing phase? Why not just work without it?

Is there a difference between a parse tree and an abstract syntax tree? Should
there be a difference?

. What aspects of a programming language does a parser not know about?

Should it know about it?

For which programming languages and for which programs is recursive de-
scent parsing slow?

What are all the benefits of reading the input from left to right? Are there
downsides?

Is there a language that CYK can parse but recursive descent cannot parse?

What are all the difficulties with rule P,? What are all the difficulties with
rule Py(r)?

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge

University Press, Cambridge, England, 1998.

[Cho59] Noam Chomsky. On certain formal properties of grammars. Information

and Control, 2(2):137-167, 1959.

[GM02] Harald Ganzinger and David A. McAllester. Logical algorithms.

In PStuckey, editor, Proceedings of the 18th International Conference on
Logic Programming, pages 209-223, Copenhagen, Denmark, July 2002.
Springer-Verlag LNCS 2401.

[McA02] David A. McAllester. On the complexity analysis of static analyses. Jour-

nal of the ACM, 49(4):512-537, 2002.

[SSP95] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles

and implementation of deductive parsing. J. Log. Program., 24(1&2):3-36,
1995.

LECTURE NOTES SEPTEMBER 18, 2014

	Introduction
	Context-Free Grammars
	Parse Trees are Deduction Trees
	CYK Parsing
	Recursive Descent Parsing
	Rewriting Grammars

