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1 Introduction

Lexical analysis is the first phase of a compiler. Its job is to turn a raw byte or char-
acter input stream coming from the source file into a token stream by chopping
the input into pieces and skipping over irrelevant details. The primary benefits of
doing so include significantly simplified jobs for the subsequent syntactical analy-
sis, which would otherwise have to expect whitespace and comments all over the
place. The job of the lexical analysis is also to classify input tokens into types like
INTEGER or IDENTIFIER or WHILE-keyword or OPENINGBRACKET. Another benefit of
the lexing phase is that it greatly compresses the input by about 80%. A lexer is
essentially taking care of the first layer of a regular language view on the input lan-
guage. We follow a presentation similar to a recent book [WSH12, Ch. 2]. Further
presentations can be found in [WM95, Ch. 7] and [App98, Ch. 2].

2 Lexer Specification

We fix an alphabet Σ, i.e., a finite set of input symbols, e.g., the set of all letters a-z
and digits 0-9 and brackets and operators +,- and so on.1 The the set Σ∗ of words
or strings is defined as the set of all finite sequences of elements of Σ. For instance,
ifah5+xy-+ is a string, but not necessarily a very interesting one, from a grammat-
ical perspective (which is what lexers will not have to know about, because that’s
the parser’s job). The empty string with no characters is denoted by ε, but you will

∗Fall 2013 lecture given by Sri Raghavan
1Real lexers also have to deal with capital letters, but we simply pretend to be ignorant about

capitalization in these lecture notes to make things easier.
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sometimes also find the name λ for it, which we don’t use here in order to not get
confused with Church’s λ-calculus.

A lexer specification has to say what kind of input it accepts and which token
type it will associate with a particular input. For example, the fragment 15411
of the input string should be tokenized as an INTEGER. For reasons of represen-
tational efficiency, it is a very good idea to specify the input that a lexer accepts
by regular expressions. On a side note, regular expressions and their extensions
[Sal66, Koz97, HKT00, Pla12] actually turn out to be very useful for many pur-
poses.

Regular expressions r, s are expressions that are recursively built of the follow-
ing form:

regex matches
a matches the specific character a from the input alphabet
[a− z] matches a character in the specified range of letters a to z
ε matches the empty string
r|s matches a string that matches r or one that matches s
rs matches a string that can somehow be split into two parts,

the first matching r, the second matching s
r∗ matches a string that consists of n parts where each

part matches r, for any natural number n ≥ 0

For instance, the set of strings over the alphabet {a, b}with no two or more con-
secutive a’s is described by the regular expression b∗(abb∗)∗(a|ε). Other common
regular expressions are

regex defined matches
r+ rr∗ matches a string that consists of n parts where each

part matches r, for any natural number n ≥ 1
r? r|ε optionally matches r, i.e., matches the empty string

or a string matching r

To specify a lexical analyzer we can use a sequence of regular expressions along
with the token type that they recognize (the last one, LPAREN, for instance, recog-
nizes a single opening parenthesis, whose occurrence on the right hand side we
need to quote to distinguish it from brackets used to describe the regular expres-
sion, likewise for space):
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IF ≡ i f
GOTO ≡ g o t o
FOR ≡ f o r
IDENTIFIER ≡ [a− z]([a− z]|[0− 9])∗

INT ≡ [0− 9][0− 9]∗

REAL ≡ ([0− 9][0− 9]∗.[0− 9]∗)|(.[0− 9][0− 9]∗)
LPAREN ≡ "("

ASSIGN ≡ "="

SKIP ≡ " "∗

In addition, we would say that tokens matching the SKIP whitespace recognizer
are to be skipped and filtered away from the input, because the parser does not
want to see whitespace. Likewise with comments. Note, however, that whitespaces
and comments are still significant for the lexer because they separate tokens. For
example, if xyz gives IF IDENTIFIER, while ifxyz gives IDENTIFIER, even if the
SKIP token in between is never shown to the parser.

Regular expressions themselves are not unambiguous for splitting an input
stream into a token sequence. The input goto5 could be tokenized as IDENTIFIER
or as the sequence GOTO INT. The input sequence if 5 could be tokenized as IF

INT or as IDENTIFIER INT.
As disambiguation rule we will use the principle of the longest possible match.

The longest possible match from the beginning of the input stream will be matched
as a token. And if there are still multiple regular expression rules that match the
same length, then the first rule with longest match takes precedence over others.

Why do we choose the longest possible match as a disambiguation rule instead
of the shortest? The shortest would be easier to implement. But with the shortest
match, ifo = ford trimotor would be tokenized as IF IDENTIFIER ASSIGN FOR

IDENTIFIER and not as IDENTIFIER ASSIGN IDENTIFIER. And, of course, the latter is
what one would have meant by assigning the identifier for the 1925 Ford Trimotor
aircraft “Tin Goose” to the identified flying object (ifo).

3 Lexer Implementation

Lexers are specified by regular expressions. Classically, however, they are imple-
mented by finite automata.

Definition 1 A finite automaton for a finite alphabet Σ consists of

• a finite set Q of states,

• a set ∆ ⊆ Q × Σ × Q of edges from states to states that are labelled by letters from
the input alphabet Σ. We also allow ε as a label on an edge, which then means that
(q, ε, q′) is a spontaneous transition from q to q′ that consumes no input.

• an initial state q0 ∈ Q
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• a set of accepting states F ⊆ Q.

The finite automaton accepts an input string w = a1a2 . . . ak ∈ Σ∗ iff there is an n ∈ N
and a sequence of states q0, q1, q2, . . . , qn ∈ Q where q0 is the initial state and qn ∈ F is an
accepting state such that (qi−1, ai, qi) ∈ ∆ for all i = 1, . . . , n.

In pictures, this condition corresponds to the existence of a set of edges in the au-
tomaton labelled by the appropriate input:

q0
a1→ q1

a2→ q2
a3→ q3

a4→ · · · an−1→ qn−1
an→ qn ∈ F

As an abbreviation for this situation, we also write (q0, w)→∗ (qn, ε). We also write
(qi−1, aiwi)→ (qi, wi) when (qi−1, ai, qi) ∈ ∆. By that we mean that the automaton,
when starting in state q0 can consume all input of word w with a series of transi-
tions and end up in state qn with no remaining input to read (ε). For instance, an
automaton for accepting REAL numbers is

0start

1 2

3 4

0−
9

.

0-9

.
0-9

0-9
0-9

REAL

Of course, when we use this finite automaton to recognize the number 3.1415926
in the input stream 3.1415926-3+x;if, then we do not only want to know that a
token of type REAL has been recognized and that the remaining input is -3+x;if.
We also want to know what the value of the token of type REAL has been, so we
store it’s value along with the token type.

The above automaton is a deterministic finite automaton (DFA). At every state
and every input there is at most one edge enabling a transition. But in general,
finite automata can be nondeterministic finite automata (NFA). That is, for the same
input, one path may lead to an accepting state while another attempt fails. That can
happen when for the same input letter there are multiple transitions from the same
state. In particular, in order to be able to work with the longest possible match
principle, we have to keep track of the last accepting state and reset back there if
the string cannot be accepted anymore. Consider, for instance, the nondeterminis-
tic automaton that accepts both REAL and INT and starts of by a nondeterministic
choice between the two lexical rules.

LECTURE NOTES SEPTEMBER 16, 2014



Lexical Analysis L7.5

0

1 2

3 4

0−
9

.

0-9

.
0-9

0-9
0-9

REAL

q p
0− 9

0-9

INT

q0start
ε

ε
In the beginning, this poor NFA needs to guess which way the future input that
he hasn’t seen yet will end up. That’s hard. But NFAs are quite convenient for
specification purposes (just like regular expressions), because the user does not
need to worry about these choices.

4 Regular Expressions Nondeterministic Finite Automata2

Regular expressions are very nice for representing what a lexer is supposed to read.
Fortunately, the regular expressions can be converted into a finite automaton (and
also backwards, which we will not need here).

For converting a regular expression r into a nondeterministic finite automaton
(NFA), we define a recursive procedure. We start with an extended NFA that still
has regular expressions as input labels on the edges.

q0start qf
r

Then we successively transform edges that still have regular expressions as im-
proper input labels by their defining automata patterns. That is, whenever we find
a regular expression on an edge that is not just a single letter from the input alpha-
bet then we use the transformation rule to get rid of it

2Not covered in lecture in Fall 2014.
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q p
r|s  q p

r

s

q prs  q q1 pr s

q pr∗  q q1 p1 pε
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ε

ε
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When applying the rule we match on the pattern on the left in the current candidate
for an NFA and replace it by the right, introducing new states q1, q2 as necessary.

5 Nondeterministic Finite Automata Deterministic Finite
Automata3

The conversion from regular expressions to NFAs is quite simple. NFAs are con-
venient for specification purposes, but bad for implementation. It is easy to im-
plement a DFA, however. We just store the current state in a program variable,
initialized to q0, and depending on the next input character, we transition to the
next state according to the transition table ∆. Whenever there is an accepting state,
we notice that this would be a token that we recognized. But in order to find the
longest possible match, we still keep going. If we ultimately find an input charac-
ter that is not recognized or accepted, then we just backtrack to the last possible
match that we have remembered (and unconsume the input characters we have
read from the input stream so far). But how would we implement an NFA? There
are so many choices that we do not know which one to choose. There is no canoni-
cal last accepting choice in an NFA even.

What we could do to implement an NFA is to follow the input like in a DFA im-
plementation, but whenever there is a choice, we follow all options at once. That
will branch quickly and will require us to do a lot of work at once, which is ineffi-
cient. Nevertheless, it gives us the right intuition about what has to be done. We
just need to turn it around and follow the same principle in a precomputation step
instead of at runtime. We follow all options and keep the set of choices of where
we could be around.

3Not covered in lecture in Fall 2014.
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This is the principle behind the powerset construction that turns an NFA into a
DFA by following all options at once. That is, instead of a single state, we now
consider the set of states in which we could be. We, of course, want to start in
the initial powerset state {q0} that only consists of the single initial state q0. But,
first we have to follow all possible ε-transitions that lead us from q0 to other states.
When S ⊆ Q is a set of states, we define Clε(S) to be the ε-closure of S, i.e., the set
of states we can go to by following arbitrarily many ε-transitions from states of S,
which do not consume any input.

Clε(S) :=
⋃
q∈S
{q′ : (q, ε)→∗ (q′, ε)}

Now from a set of states S ⊆ Q we make a transition, say with input letter a and
figure out the set of all states to which we could get to by following a-transitions
from any of the S states, again following ε-transitions:

N(S, a) := Clε({q′ ∈ Q : (q, a)→ (q′, ε) and q ∈ S})

The condition (q, a) → (q′, ε) is equivalent to (q, a, q′) ∈ ∆. We can summarize all
these transitions by just a single a-transition from S to successorN(S, a). Repeating
this process results in a DFA that accepts exactly the same language as the original
NFA. The complexity of the algorithm could be exponential, though, because there
are exponentially many states in the powerset that we could end up using during
the DFA construction.

Definition 2 (NFA DFA) Given an NFA finite automaton (Q,∆, q0, F ), the corre-
sponding DFA (Q′,∆′, q′0, F

′) accepting the same language is defined by

• Q′ is a subset of the sets of all subsets of Q, i.e., a part of the powerset Q′ ⊆ 2Q

• ∆′ := {(S, a,N(S, a)) : a ∈ Σ}.

• q′0 := Clε(q0)

• F ′ := {S ⊆ Q : S ∩ F 6= ∅}

After turning the NFA into a DFA, we can directly implement it to recognize
tokens from the input stream.

It should be noted that there are direct ways of obtaining DFAs from regular
expressions, without going through the construction of NFAs. Those techniques
are very algebraic and elegant using Brzozowski derivatives [Brz64].

6 Minimizing Deterministic Finite Automata

Another operation that is often done by lexer generator tools is to minimize the
resulting DFA by merging states and reducing the number of states and transitions
in the automaton. This is an optimization and we will not pursue it any further.
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7 Regular Expression Deterministic Finite Automata

It turns out that there is a very elegant and purely algebraic way of directly translat-
ing regular expressions into DFAs without having to go through explicit automata
construction, determinization, and possibly minimization. This algebraic approach
uses Brzozowski derivatives [Brz64] and Antimirov’s partial derivatives [Ant96]. For
this, we identify regular expressions by the set of words that they match. So instead
of saying that regular expression r matches the word w, we simply write w ∈ r.

Moreover, we can keep the calculations more intutitive if we use the following
alternative notations for regular expressions:

r ::= 1 empty string (ε)
| r · s concatenation (r s)
| 0 no string (∅)
| r + s alternation (r | s)
| a character
| r∗ replication

We note a few useful identities which can be seen by expanding the regular expres-
sion to their definitions, and which (partially) justify the notational choice.

1 · r = r · 1 = r
(r · s) · t = r · (s · t)

0 + r = r + 0 = r
(r + s) + t = r + (s+ t)
r + s = s+ r
r + r = r

0 · r = r · 0 = 0
(r + s) · t = r · t+ s · t
r · (s+ t) = r · s+ r · t

r∗ = 1 + r · r∗

The derivative, Da(r) of a regular expression r by alphabet letter a is defined as

Da(r) = {w | aw ∈ r}

The derivative represents the set of continuations after letter a that the regular ex-
pression r can match.

The derivative of a regular expression can be computed syntactically in a very
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similar way as the usual derivatives of functions. The result is a regular expression.

Da(1) = 0
Da(r · s) = Da(r) · s+ δ(r) ·Da(s)
Da(0) = 0
Da(r + s) = Da(r) +Da(s)
Da(a) = 1
Da(b) = 0 for a 6= b
Da(r

∗) = Da(r) · r∗

The most interesting case is Da(r · s). There are two possibilities: r might contain
the empty string, in which case Da(r · s) would contain Da(s). If not, then it is only
Da(r) · s. We encode this using a new function δ(r) specified as follows:

δ(r) =

{
1 if ε ∈ r
0 otherwise

This operator can be computed entirely syntactically as well

δ(1) = 1
δ(r · s) = δ(r) · δ(s)
δ(0) = 0
δ(r + s) = δ(r) + δ(s)
δ(a) = 0
δ(r∗) = 1

We see that Da(r) = s for some regular expression s, because it is defined induc-
tively on the structure of r. This looks similar to the standard derivative of func-
tions, with the primary difference begin the occurrence of the operation δ(r).

For ordinary functions, higher derivatives can be defined by deriving multiple
times. The same thing makes sense for derivatives of regular expressions where
we define Dw(r) for a word w by a simple inductive definition on w in which we
derive successively by the next letter:

Dε(r) = r
Dwa(r) = Da(Dw(r))

A number of very interesting theoretical and practical results can be proved about
Brzozowski derivatives and their extensions. Here we only show how an automa-
ton can be constructed systematically using successive derivatives. It can be shown
that this process terminates.

The idea is that Da(r) represents the “remainder” regular expression of r after
input a has been read. Thus, there is a transition with input a from the state r to the
state Da(r). We simply use regular expressions as the states of an automaton (not
as their actions like in Section 4).
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As an example, consider the regular expression r = a · (b + a)∗ · b. Thus, we
construct a DFA for it by starting from a stateD1(r) = r and successively following
all letters a1 to states Da1(r) and then on following all letters a2 to states Da1a2(r)
and so on. The states where the regular expression matches the empty word ε are
the ones that are final states, that is, state s is final iff δ(s) = 1. In fact, it can be
shown that w ∈ r iff δ(dw(r)) = 1.

Let’s calculate some partial derivatives.

Da(r) = Da(a · (b+ a)∗ · b)
= Da(a) · (b+ a)∗ · b+ δ(a) ·Da((b+ a)∗ · b)
= 1 · (b+ a)∗ · b+ 0 ·Da((b+ a)∗ · b)
= (b+ a)∗ · b

Db(r) = Db(a · (b+ a)∗ · b)
= Db(a) · (b+ a)∗ · b+ δ(a) ·Db((b+ a)∗ · b)
= 0 · (b+ a)∗ · b+ 0 ·Db((b+ a)∗ · b)
= 0

Da((b+ a)∗ · b) = Da((b+ a)∗) · b+ δ((b+ a)∗ · b) ·Da(b)
= Da(b+ a) · (b+ a)∗ · b+ 1 · 0
= (Da(b) +Da(b)) · (b+ a)∗ · b
= (0 + 1) · (b+ a)∗ · b
= (b+ a)∗ · b

Db((b+ a)∗ · b) = Db((b+ a)∗) · b+ δ((b+ a)∗ · b) ·Db(b)
= Db(b+ a) · (b+ a)∗ · b+ 1 · 1
= (b+ a)∗ · b+ 1

At this point we have already calculated the four necessary states of the automaton.
You may confirm that:

Da(0) = 0
Db(0) = 0
Db((b+ a)∗ · b+ 1) = (b+ a)∗ · b+ 1
Da((b+ a)∗ · b+ 1) = (b+ a)∗ · b

to obtain the last two transitions. Note that we have to apply algebraic identities
in order to obtain as few states as possible. Also, the only accepting state is the last
one we calculated:

δ(r) = 0
δ(0) = 0
δ((b+ a)∗ · b) = 0
δ((b+ a)∗ · b+ 1) = 1

The tabular version of the resulting automota is as shown below with Dab begin
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the only accepting state.

state input next state
D1(r) = r a Da

D1(r) = r b Db

Da(r) = (b+ a)∗ · b a Da

Da(r) = (b+ a)∗ · b b Dab

Dab(r) = (b+ a)∗ · b+ 1 a Da

Dab(r) = (b+ a)∗ · b+ 1 b Db

Db(r) = 0 a Db

Db(r) = 0 b Db

In diagrammatic form:

D1

r
start

Da

(b+ a)∗ · b
Dab

(b+ a)∗ · b+ 1

Db

0

a

b

a

b
b

b,a

a

In this automaton graph, we use the notation
Dw

s
to say that Dw(r) = s. It can also

be shown that every regular expression can be written in the following linear form

r = δ(r) +
∑
a∈Σ

aDa(r)

8 Summary

Lexical analysis reduces the complexity of subsequent syntactical analysis by first
dividing the raw input stream up into a shorter sequence of tokens, each classi-
fied by its type (INT, IDENTIFIER, REAL, IF, ...). The lexer also filters out irrelevant
whitespace and comments from the input stream so that the parser does not have
to deal with that anymore. The steps for generating a lexer are
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1. Specify the token types to be recognized from the input stream by a sequence
of regular expressions

2. Bear in mind that the longest possible match rule applies and the first pro-
duction that matches longest takes precedence.

3. Lexical analysis is implemented by DFA.

4. Convert the regular expressions into NFAs (or directly into DFAs using deriva-
tives).

5. Join them into a master NFA that chooses between the NFAs for each regular
expression by a spontaneous ε-transition

6. Determinize the NFA into a DFA

7. Optional: minimize the DFA for space

8. Implement the DFA for a recognizer. Respect the longest possible match rule
by storing the last accepted token and backtracking the input to this one if
the DFA run cannot otherwise complete.

Questions

1. Why do compilers have a lexing phase? Why not just do without it?

2. Should a lexer return whitespaces and comments?

3. Why do we categorize tokens into token classes, instead of just working with
the particular piece of the input string they represent?

4. Why are there programming languages that do not accept inputs like x----y?

5. What aspects of the programming language does a lexer not know about?

6. Do lexer tools work with regular expressions or automata internally? Should
they?

7. Why can lexers not work with nondeterministic finite automata? They are so
useful for description purposes.

8. Should a reserved keyword of a programming language be a token class of
its own? What are the benefits and downsides?
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