
Lecture Notes on
Instruction Selection

15-411: Compiler Design
Frank Pfenning

Lecture 2
August 28, 2014

1 Introduction

In this lecture we discuss the process of instruction selection, which typcially turns
some form of intermediate code into a pseudo-assembly language in which we
assume to have infinitely many registers called “temps”. We next apply register
allocation to the result to assign machine registers and stack slots to the temps be-
fore emitting the actual assembly code. Additional material regarding instruction
selection can be found in the textbook [App98, Chapter 9].

2 A Simple Source Language

We use a very simple source language where a program is just a sequence of assign-
ments terminated by a return statement. The right-hand side of each assignment is
a simple arithmetic expression. Later in the course we describe how the input text
is parsed and translated into some intermediate form. Here we assume we have
arrived at an intermediate representation where expressions are still in the form of
trees and we have to generate instructions in pseudo-assembly. We call this form
IR Trees (for “Intermediate Representation Trees”).

We describe the possible IR trees in a kind of pseudo-grammar, which should
not be read as a description of the concrete syntax, but the recursive structure of
the data.

LECTURE NOTES AUGUST 28, 2014

Instruction Selection L2.2

Programs ~s ::= s1, . . . , sn sequence of statements

Statements s ::= x = e assignment
| return e return, always last

Expressions e ::= c integer constant
| x variable
| e1 ⊕ e2 binary operation

Binops ⊕ ::= + | − | ∗ | / | . . .

3 Abstract Assembly Target Code

For our very simple source, we use an equally simple target. Our target language
has fixed registers and also arbitrary variables, called here temps. We allow vari-
ables x with the same name to appear both in expressions in IR trees and as instruc-
tion operands.

Programs ~i ::= i1, . . . , in

Instructions i ::= d← s move
| d← s1 ⊕ s2 binary operation
| ret

Operands d, s ::= r register
| c immediate (integer constant)
| t temp (variable)

We use d to denote operands of instructions that are destinations of operations
and s for sources of operations. There are some restrictions. In particular, immediate
operands cannot be destinations. More restrictions arise when memory references
are introduced. For example, it may not be possible for more than one operand to
be a memory reference.

4 Maximal Munch

The simplest algorithm for instruction selection proceeds top-down, traversing the
input tree and recursively converting subtrees to instruction sequences. For this to
work properly, we either need to pass down or return a way to refer to the result
computed by an instruction sequence. In lecture, it was suggest to pass down a
destination for the result of an operation. We therefore have to implement a function

cogen(d, e) a sequence of instructions implementing e,
putting the result into destination d.

LECTURE NOTES AUGUST 28, 2014

Instruction Selection L2.3

e cogen(d, e) proviso
c d← c

x d← x

e1 ⊕ e2 cogen(t1, e1), cogen(t2, e2), d← t1 ⊕ t2 (t1, t2 new)

If our target language has more specialized instructions we can easily extend
this translation by matching against more specialized patterns and matching against
them first. For example: if we want to implement multiplication by the constant 2
with a left shift, we would add one or two patterns for that.

e cogen(d, e) proviso
c d← c

x d← x

2 ∗ e cogen(t, e), d← t << 1 (t new)
e ∗ 2 cogen(t, e), d← t << 1 (t new)

e1 ⊕ e2 cogen(t1, e1), cogen(t2, e2), d← t1 ⊕ t2 (t1, t2 new)

Since ∗ is a binary operation (that is, ⊕ can be ∗), the patterns for e now need to
be matched in the listed order to avoid ambiguity and to obtain the intended more
efficient implementation. If we always match the deepest pattern first at the root
of the expression, this algorithm is called maximal munch. This is also a first indi-
cation where the built-in pattern matching capabilities of functional programming
languages can be useful for implementing compilers.

Now the translation of statements is straightforward. We write cogen(s) for
the sequence of instructions implementing statement s. We assume that there is a
special return register rret so that a return statement is translated to a move into the
return register following by a return instruction.

s cogen(s)

x = e cogen(x, e)

return e cogen(rret, e), ret

Now a sequence of statements constituting a program is just translated by ap-
pending the sequences of instructions resulting from their translations. Maximal
munch is easy to implement (especially in a language with pattern matching) and
gives acceptable results in practice.

5 A Simple Example

Let’s apply our translation to a simple program

z = (x + 3) ∗ (y − 5), return z

LECTURE NOTES AUGUST 28, 2014

Instruction Selection L2.4

Working through code generation and always working on the left subtree before
the right now, we obtain

cogen(z = (x + 3) ∗ (y − 5)), cogen(return z)
= cogen(z, (x + 3) ∗ (y − 5)), cogen(rret, z), ret
= cogen(t1, x + 3), cogen(t2, y − 5), z ← t1 ∗ t2, rret ← z, ret
= cogen(t3, x), cogen(t4, 2), t1 ← t3 + t4,

codge(t5, y), cogen(t6, 5), t2 ← t5 − t6, z ← t1 ∗ t2
rret ← z, ret

After one more step, we obtain the following program

t3 ← x
t4 ← 3
t1 ← t3 + t4
t5 ← y
t6 ← 5
t2 ← t5 − t6
z ← t1 ∗ t2
rret ← z
ret

6 Generating “Better” Code

From the example we see that the resulting program has a lot of redundant move
instructions. We can eliminate the redundancy in several ways, all of which are
prototypical for many of the choices you will have to make while writing your
compiler.

1. We can completely redesign the translation algorithm so it generates better
code.

2. We can keep the basic structure of the translation but add special cases to
avoid introducing some glaring redundancies in the first place.

3. We can keep the translation the same and apply optimizations subsequently
to eliminate redundancies.

Let’s work through the options.
Instead of passing down a destination, we can have the translation generate and

return a source operand which can be used to refer to the value of the expression.
Here is what this might look like. We write ě (read: “down e”) for the sequence of
instructions generated for e and ê (read: “up e”) as the source operand we can use

LECTURE NOTES AUGUST 28, 2014

Instruction Selection L2.5

to refer to the result.

e ě ê proviso
c · c

x · x

e1 ⊕ e2 ě1, ě2, t← ê1 ⊕ ê2 t (t new)

and for statements
s š

x = e ě, x← ê

return e ě, rret ← ê, ret

In this formulation, it seems fewer moves are generated from expressions, but we
pay for that with explicit moves for assignment and return statements because we
cannot pass the left-hand side of the assignment or the return register as an argu-
ment to the translation. Working through this new translation for the same pro-
gram

z = (x + 3) ∗ (y − 5), return z

we obtain
t1 ← x + 3
t2 ← y − 5
t3 ← t1 ∗ t2
z ← t3
rret ← z
ret

We observe that straightforward recursive instruction selection, whether we pass
destinations down or source operands up, naturally introduces some extra move
instructions. In the first translation, it is easy to add further instructions to avoid
generating unnecessary moves. For example:

e cogen(d, e) proviso
c d← c

t d← t

c⊕ e2 cogen(t2, e2), d← c⊕ t2 (t2 new)
x⊕ e2 cogen(t2, e2), d← s⊕ t2 (t2 new)
e1 ⊕ c cogen(t1, e1), d← t1 ⊕ c (t1 new)
e1 ⊕ x cogen(t1, e1), d← t1 ⊕ x (t1 new)
· · · · · ·

e1 ⊕ e2 cogen(t1, e1), cogen(t2, e2), d← t1 ⊕ t2 (t1, t2 new)

One can see that this can lead to an explosion in the size of the translation code,
especially once source and target become richer languages. Also, are we really sure
that we have now eliminated the undesirable redundancies? In the table above not

LECTURE NOTES AUGUST 28, 2014

Instruction Selection L2.6

yet, unless we introduce even more special cases (say, for an operation applied to a
variable and a constant). Generally speaking, our advice is to keep code generation
and other transformations as simple as possible, using clear and straightforward
translations that are easy to understand. This, however, means that even for this
very small pair of source and target language, it is worthwhile to consider how we
might eliminate moves.

7 The First Two Optimizations

The first two optimizations are aimed at eliminating moves, t ← s. There are two
special cases: s could be a constant, or s could be a temp. We first consider the case
t← c for a constant c. We would like to replace occurrences of t by c in subsequent
instructions, an optimization that is called constant propagation. However, we can
not replace all occurrence of t. Consider, for example:

1 : t ← 5
2 : x ← t− 4
3 : t ← x + 7
4 : z ← t− 1

In line 3, we store the value of x + 7 in t, so t may no longer refer to 5. So it would
be incorrect to replace t in line 4 by the constant 5. So we stop with the replacement
of t by 5 when we reach an instruction that redefines t.

The second case is an assignment t ← x, just moving a value from one temp
to another. Again, we would like to replace occurrences of t by x, an optimiza-
tion called copy propagation. The condition is slightly more complicated than for
constant propagation. Consider, for example:

1 : t ← x
2 : x ← y − 4
3 : z ← t + 7

We cannot replace the occurrence of t in line 3 by x, because x now potentially
holds a different value than it did in line 1. So we have to stop replacement of t by
x at an assignment to either t or x.

We can simplify these conditions. For example, if t is indeed a true, fresh tem-
porary variable introduced in our translation, then we assign to it only once. So we
don’t even need to check if it is assigned to again. However, if there are variables
in the source program which are assigned to more than once, the condition still has
to be checked.

LECTURE NOTES AUGUST 28, 2014

Instruction Selection L2.7

8 Static Single Assignment Form

The conditions on the two optimization in the previous sections are not too oner-
ous, but once the language and our optimizations become more complex, so do
the conditions. As we have seen, they can be drastically simplified if we know
that every variable will be assigned to only once. The idea now is to transform
the program into this form, called static single assignment (SSA) to simplify the op-
timizations. This has emerged as a de facto standard representation in modern
compilers and is used by tools such as the LLVM. In this lecture we only see a first,
very simple version of it.

We describe the algorithm informally, by example. Consider the following pro-
gram:

1 : t ← 5
2 : x ← t− 4
3 : t ← t + x
4 : z ← t− 1

We traverse the program line by line, maintaining a current version number for
each temp. When we see a temp for the first time, we assign it version 0 and replace
subsequent occurrences as operands by this version. If it is defined by an instruc-
tion (here this means that is assigned a new value), then we increase the generation
number. After we carry this out on the code above we obtain the following SSA
form:

1 : t0 ← 5
2 : x0 ← t0 − 4
3 : t1 ← t0 + x0
4 : z0 ← t1 − 1

This new program will in general use more temps, corresponding to different gen-
erations of the original temps, but it will always perform the same computations.
Now we can optimize simply by replacement since every temp is defined only
once.

When we introduce loops and conditionals into our language, the SSA form
becomes somewhat more complicated, but it is still simpler than the conditions we
would other have to check for our optimizations. In the presence of loops, more
example, even if there is only a single instruction t← . . . for a given temp t, it may
be assigned to every time around the loop. That’s why it is called static single as-
signment form: in the program text (statically) there is only one assignment to each
temp, but while executing the program (dynamically) the temp may still assume
many different values.

We encourage you to introduce SSA form into your compilers as early as possi-
ble in the semester, in order to avoid significant restructuring when the time comes
to implement serious optimizations.

LECTURE NOTES AUGUST 28, 2014

Instruction Selection L2.8

9 “Optimal” Instruction Selection

If we have a good cost model for instructions, we can often find better translations
if we apply dynamic programming techniques to construct instruction sequences
of minimal cost, from the bottom of the tree upwards. In fact, one can show that
we get “optimal” instruction selection in this way if we start with tree expressions.

On modern architectures it is very difficult to come up with realistic cost mod-
els for the time of individual instructions. Moreover, these costs are not additive
due to features of modern processors such as pipelining, out-of-order execution,
branch predication, hyperthreading, etc. Therefore, optimal instruction selection is
more relevant when we optimize code size, because then the size of instructions is
not only unambiguous but also additive. Since we do not consider code-size opti-
mizations in this course, we will not further discuss optimal instruction selection.

10 x86-64 Considerations

Assembly code on the x86 or x86-64 architectures is not as simple as the assump-
tions we have made here, even if we are only trying to compile straight-line code.
One difference is that the x86 family of processors has two-address instructions,
where one operand will function as a source as well as destination of an instruction,
rather than three-address instructions as we have assumed above. Another is that
some operations are tied to specific registers, such as integer division, modulus,
and some shift operations. We briefly show how to address such idiosyncracies.

To implement a three-address instruction we replace it by a move and a two-
address instruction. For example:

3-address form 2-address form x86-64 assembly
d← s1 + s2 d← s1 MOVL s1, d

d← d + s2 ADDL s2, d

Here we use the GNU assembly language conventions where the destination of
an operation comes last, rather than the Intel assembly language format where it
comes first.

In order to deal with operations tied to particular registers we have to make
similar transformations. It is important to keep the live range of these registers
short, so they interfere with other registers as little as possible, as explained in Lec-
ture 3 on register allocation. As an example, we consider integer division. On the
left is the simple three-address form. In the middle is a reasonable approximation
in two-address form. On the right is the actual x86 assembly.

LECTURE NOTES AUGUST 28, 2014

http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/03-regalloc.pdf
http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/03-regalloc.pdf

Instruction Selection L2.9

3-address form 2-address form (approx.) x86-64 assembly
d← s1 / s2 %eax← s1 MOVL s1, %eax

MOVL s1, %edx
%edx← %eax % s2 SARL $31, %edx
%eax← %eax / s2 IDIVL s2
d← %eax MOVL %eax, d

Here, the combination of the second and third instructions has the effect of sign-
extending s1 into a 64-bit quantity represented by the pair of registers [%edx, %eax].
The IDIVL s2 instruction then divides the 64-bit number represented by [%edx, %eax]
by s2, storing the quotient in %eax and the remainder in %edx. Note that the IDIVL

instruction will raise a division by zero exception when s2 is 0, or if there is an
overflow (if we divide the smallest 32 bit integer in two’s complement representa-
tion, −231, by −1). Fortunately, the same behavior is also specified for the source
languages we compile in this course.

11 Extensions

In general, there will be interdependencies of instruction selection and register al-
location. The register allocation depends on which instructions are executed, es-
pecially for special instructions on x86-64. Also some of the analysis needed for
register allocation may depend on the selected instructions. Conversely, however,
optimal instructions may depend on the register assignment. For these and similar
reasons, recent advanced compilers, especially those following the so-called SSA
intermediate representation combine register allocation and code generation into a
joint phase.

Questions

1. How can you implement the data structures for an intermediate representa-
tion as defined in this lecture?

2. What are the advantages of working with a 3-address intermediate represen-
tation compared to a 2-address representation and vice versa?

3. What is the advantage and disadvantage of using macro expansion for in-
struction selection, i.e., to associate exactly one instruction sequence to each
individual piece of the intermediate language?

4. Why do many CPUs provide such an asymmetric set of instructions? Why
do they not just provide us with all useful instructions and no special register
requirements?

LECTURE NOTES AUGUST 28, 2014

Instruction Selection L2.10

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

LECTURE NOTES AUGUST 28, 2014

	Introduction
	A Simple Source Language
	Abstract Assembly Target Code
	Maximal Munch
	A Simple Example
	Generating ``Better'' Code
	The First Two Optimizations
	Static Single Assignment Form
	``Optimal'' Instruction Selection
	x86-64 Considerations
	Extensions

