Lecture Notes on
Compiler Design: Overview

15-411: Compiler Design
Frank Pfenning

Lecture 1
August 26, 2014

1 Introduction

This course is a thorough introduction to compiler design, focusing on more low-
level and systems aspects rather than high-level questions such as polymorphic
type inference or separate compilation. You will be building several complete end-
to-end compilers for successively more complex languages, culminating in a mildly
optimizing compiler for a safe variant of the C programming language to x86-64
assembly language. For the last project you will have the opportunity to optimize
more aggressively, to implement a garbage collector, or retarget the compiler to an
abstract machine.

In this overview we review the goals for this class and give a general description
of the structure of a compiler. Additional material can be found in the optional
textbook [App98, Chapter 1].

2 Goals

After this course you should know how a compiler works in some depth. In par-
ticular, you should understand the structure of a compiler, and how the source and
target languages influence various choices in its design. It will give you a new ap-
preciation for programming language features and the implementation challenges
they pose, as well as for the actual hardware architecture and the runtime system
in which your generated code executes. Understanding the details of typical com-
pilation models will also make you a more discerning programmer.

You will also understand some specific components of compiler technology;,
such as lexical analysis, grammars and parsing, type-checking, intermediate rep-
resentations, static analysis, common optimizations, instruction selection, register
allocation, code generation, and runtime organization. The knowledge gained

LECTURE NOTES AUGUST 26, 2014

Compiler Design: Overview L1.2

should be broad enough that if you are confronted with the task of contributing
to the implementation of a real compiler in the field, you should be able to do so
confidently and quickly.

For many of you, this will be the first time you have to write, maintain, and
evolve a complex piece of software. You will have to program for correctness,
while keeping an eye on efficiency, both for the compiler itself and for the code it
generates. Because you will have to rewrite the compiler from lab to lab, and also
because you will be collaborating with a partner, you will have to pay close atten-
tion to issues of modularity and interfaces. Developing these software engineering
and system building skills are an important goal of this class, although we will
rarely talk about them explicitly.

3 Compiler Requirements

As we will be implementing several compilers, it is important to understand which
requirement compilers should satisfy. We discuss in each case to what extent it is
relevant to this course.

Correctness. Correctness is absolutely paramount. A buggy compiler is next to
useless in practice. Since we cannot formally prove the correctness of your compil-
ers, we use extensive testing. This testing is end-to-end, verifying the correctness
of the generated code on sample inputs. We also verify that your compiler rejects
programs as expected when the input is not well-formed (lexically, syntactically,
or with respect to the static semantics), and that the generated code raises an ex-
ception as expected if the language specification prescribes this. We go so far as to
test that your generated code fails to terminate (with a time-out) when the source
program should diverge.

Emphasis on correctness means that we very carefully define the semantics of
the source language. The semantics of the target language is given by the GNU
assembler on the lab machines together with the semantics of the actualy machine.
Unlike C, we try to make sure that as little as possible about the source language
remains undefined. This is not just for testability, but also good language design
practice since an unambiguously defined language is portable. The only part we
do not fully define are precise resource constraints regarding the generated code
(for example, the amount of memory available).

Efficiency. In a production compiler, efficiency of the generated code and also
efficiency of the compiler itself are important considerations. In this course, we set
very lax targets for both, emphasizing correctness instead. In one of the later labs
in the course, you will have the opportunity to optimize the generated code.

LECTURE NOTES AUGUST 26, 2014

Compiler Design: Overview L1.3

The early emphasis on correctness has consequences for your approach to the
design of the implementation. Modularity and simplicity of the code are important
for two reasons: first, your code is much more likely to be correct, and, second, you
will be able to respond to changes in the source language specification from lab to
lab much more easily.

Interoperability. Programs do not run in isolation, but are linked with library
code before they are executed, or will be called as a library from other code. This
puts some additional requirements on the compiler, which must respect certain
interface specifications.

Your generated code will be required to execute correctly in the environment
on the lab machines. This means that you will have to respect calling conventions
early on (for example, properly save callee-save registers) and data layout con-
ventions later, when your code will be calling library functions. You will have to
carefully study the ABI specification [MHJMO09] as it applies to C and our target
architecture.

Usability. A compiler interacts with the programmer primarily when there are
errors in the program. As such, it should give helpful error messages. Also, com-
pilers may be instructed to generate debug information together with executable
code in order help users debug runtime errors in their program.

In this course, we will not formally evaluate the quality or detail of your error
messages, although you should strive to achieve at least a minimum standard so
that you can use your own compiler effectively.

Retargetability. At the outset, we think of a compiler of going from one source
language to one target language. In practice, compilers may be required to generate
more than one target from a given source (for example, x86-64 and ARM code),
sometimes at very different levels of abstraction (for example, x86-64 assembly or
LLVM intermediate code).

In this course we will deemphasize retargetability, although if you structure
your compiler following the general outline presented in the next section, it should
not be too difficult to retrofit another code generator. One of the options for the
last lab in this course is to retarget your compiler to produce code in a low-level
virtual machine (LLVM). Using LLVM tools this means you will be able to produce
efficient binaries for a variety of concrete machine architectures.

4 The Structure of a Compiler

Certain general common structures have arisen over decades of development of
compilers. Many of these are based on experience and sound engineering princi-

LECTURE NOTES AUGUST 26, 2014

Compiler Design: Overview

L1.4

ples rather than any formal theory, although some parts, such as parsers, are very
well understood from the theoretical side. The overall structure of a typical com-
piler is shown in Figure 1.

source
code

FRONT END

A4

Lexical Analyzer

*token stream

Parser

COMPILER

Semantic Analyzer

MIDDLE END

syntax tree

Target-Independent
Code Optimizer

Intermediate Code
Generator

BACKEND

Target-Dependent

Code Optimizer

T assembly

Register Allocation

unallocated
assembly

Target-Dependent

Code Optimizer

intermediate

J [

unallocated
assembly
Instruction Selection

representation

L

(e Yo

Linker

“object code

Assembler |«

Figure 1: Structure of a typical compiler?

- assembly

In this course, we will begin by giving you the front and middle ends of a simple
compiler for a very small language, and you have to write the back end, that is,
perform instruction selection and register allocation. Consequently, Lectures 2 and
3 will be concerned with instruction selection and register allocation, respectively,
so that you can write your own.

We then turn to the front end and follow through the phases of a compiler in
order to complete the picture, while incrementally complicating the language fea-
tures you have to compile. Roughly, we will proceed as follows, subject to adjust-
ment throughout the course:

1. A simple expression language

2. Loops and conditionals

3. Functions

4. Structs and arrays

LECTURE NOTES

AUGUST 26, 2014

Compiler Design: Overview L1.5

5. Memory safety and basic optimizations

The last lab is somewhat open-ended and allows either to implement further opti-
mizations, a garbage collector, or a new back end which uses the low-level virtual
machine (LLVM)'.

References

[App98] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, Cambridge, England, 1998.

[MHJMO09] Michael Matz, Jan Hubi¢ka, Andreas Jaeger, and Mark Mitchell. Sys-
tem V application binary interface, AMD64 architecture processor sup-
plement. Available at http://refspecs.linuxfoundation.org/elf/
x86-64-abi-0.99.pdf, May 2009. Draft 0.99.

1See http://11lvm.org
*Thanks to David Koes for this diagram.

LECTURE NOTES AUGUST 26, 2014

http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf
http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf
http://llvm.org

	Introduction
	Goals
	Compiler Requirements
	The Structure of a Compiler

