
Assignment 1
Instruction Selection and Register Allocation

15-411: Compiler Design
Frank Pfenning

Flávio Cruz, Maxime Serrano, Rokhini Prabhu, Tae Gyun Kim

Due Thursday, September 11, 2014 (23:59pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must be
all your own.

Handin of your solutions is as a PDF file on Autolab. If this presents a significant
hardship for you, please contact the course staff. Please read the late policy for written
assignments on the course web page.

Problem 1 (30 points)

(a) Consecutive statements in a program can be represented in an AST by a seq node
that has two statements (possibly other seqs) as children. For example, the program

int x;

x = 5 + 3;

return x;

could be represented in an AST as

declare(var("x"), seq(assign(var("x"),

plus(const(5), const(3))),

return(var("x"))))

The variable x is declared for only a portion of the AST. This is achieved via a declare
node, the first subtree of which is a variable, and the second a subtree which the
variable is declared for (called the scope of the variable).

Using this type of AST, write down (either as in the example or by drawing a real
tree) the AST for the following program. Variables initialized as part of a declaration
should become a simple declaration followed by an assignment.

int x = (-9) + (5 * 13);

int y = (x + 2) / 4;

return x % y;

ASSIGNMENT 1 THURSDAY, SEPTEMBER 11, 2014 (23:59PM)

Instruction Selection and Register Allocation A1.2

(b) When we expand the capabilities of a programming language, we also need to ex-
tend the AST to represent the new features. Write down the AST for the following
program, choosing a reasonable AST representation for while and != (not equal). As-
sume that the variables x and y are declared elsewhere, but notice that the variable z

is only declared within the while loop.

while (x != 5) {

int z = x * x;

y += z;

x = x + 1;

}

return y;

(c) Now you will perform instruction selection on the AST you created in part (a) into
three-operand assembly language by using the patterns in the table below. As a
sample, the example AST from part (a) would be translated (in a simplistic fashion)
to

t0 <- 5

t1 <- 3

x <- t0 + t1

t3 <- x

return t3

We aren’t performing register allocation yet (that’s for problem 2), so we will con-
tinue to refer to variables by their names and generate new temp variables as neces-
sary. The code generation for expressions is just as in Lecture 2, and thus includes no
optimizations:

e cogen(d, e) proviso
const(c) d← c

var(x) d← x

plus(e1, e2) cogen(t1, e1), cogen(t2, e2), d← t1 + t2 (t1, t2 new)
times(e1, e2) cogen(t1, e1), cogen(t2, e2), d← t1 ∗ t2 (t1, t2 new)

.

and similarly for other expressions. For statements:

s cogen(s) proviso
assign(x, e) cogen(x, e)

return(e) cogen(t, e), return t (t new)
seq(s1, s2) cogen(s1), cogen(s2)

This is a slight departure from lecture, where we posed a special return register rret.
Here, the return instruction has the form return s for an operand s.

ASSIGNMENT 1 THURSDAY, SEPTEMBER 11, 2014 (23:59PM)

http://www.cs.cmu.edu/~fp/courses/15411-f14/lectures/02-instsel.pdf

Instruction Selection and Register Allocation A1.3

(d) Now perform instruction selection on the AST you created in part (b). To accomplish
this, we introduce new machine instructions.

• cmpne d s1 s2 assigns 1 to d if the value of s1 is not equal to the value of s2 and 0
otherwise.

• label l creates a jump target at the current place in the instruction sequence.

• jmp l continues execution at label l.

• jmpnz l s jumps to label l if the value of s is not 0, otherwise continues with the
next instruction.

Write down general patterns to generate code for while statements and != expres-
sions, using these new target instructions as you see fit. Then apply your general
code generation patterns to the specific program in part (b).

ASSIGNMENT 1 THURSDAY, SEPTEMBER 11, 2014 (23:59PM)

Instruction Selection and Register Allocation A1.4

Problem 2 (30 points)

In this question you will perform the register allocation algorithm discussed in class on a
small assembly program which computes log2(6x − 2) + 1 (in the code given, the input
x is hardcoded to be 7). The registers to be used are r0, . . . , rn so for the purposes of this
question you have as many registers as you need (though the algorithm will still be trying
to use as few as possible).

The language used is the assembly from problem 1 with an additional right shift in-
struction:

d← s1 >> s2

The language has two special conditions associated with instructions, of the kind that also
arises for x86.

• In the shift instruction above, operand s2 must be assigned to register r0.

• In the return instruction return s, operand s must be also be assigned to register r0.

t0 <- 7 // "input"

t1 <- 6

t2 <- t0 * t1

t3 <- 2

t4 <- t2 - t3

t5 <- 1

t6 <- 0

t7 <- 1

label 1

t4 <- t4 >> t5

t6 <- t6 + t7

jmpnz 1 t4

return t6

(a) Compute the live variables at each instruction in the above program.

(b) Construct the interference graph for the program. If you don’t want to actually draw
a graph, you can just list the variables that each variable interferes with. You should
also state whether the graph is chordal.

(c) What problem does the current program have for allocating registers, if any? If nec-
essary, give a modified version of the program that does not have this problem.

(d) Use the chordal graph coloring algorithm discussed in class to allocate registers for
all the temps in the modified program. If you did part (c) correctly then your liveness
analysis and interference graph should still be usable with slight modifications.

ASSIGNMENT 1 THURSDAY, SEPTEMBER 11, 2014 (23:59PM)

