Problem 1

[20 points] Appel 2.3(a), 2.5(a), 2.8

Problem 2

[30 points] Consider the following grammar \mathcal{G} for a dialect of English (apparently spoken in Buffalo, NY):

\[
\begin{align*}
S & \rightarrow \ NP \ VP \\
S & \rightarrow \ Imp \\
NP & \rightarrow \ N \\
NP & \rightarrow \ N \ Rel \\
VP & \rightarrow \ V \\
VP & \rightarrow \ V \ NP \\
Imp & \rightarrow \ VP \\
Rel & \rightarrow \ NP \ V \\
N & \rightarrow \ buffalo \\
V & \rightarrow \ buffalo
\end{align*}
\]

It might help you to know the conventions S = “sentence”, NP = “noun phrase”, VP = “verb phrase”, Imp = “imperative”, Rel = “relative clause”, N = “noun”, V = “verb”. You may also examine this excerpt from the The American Heritage(19) Dictionary of the English Language, Fourth Edition:

<table>
<thead>
<tr>
<th>buffalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>n. pl. buffalo or buffaloes or buffaloes</td>
</tr>
<tr>
<td>1. (a) Any of several oxlike Old World mammals of the family Bovidae, such as the water buffalo and African buffalo.</td>
</tr>
<tr>
<td>1. (b) The North American bison, Bison bison.</td>
</tr>
<tr>
<td>2. The buffalo fish.</td>
</tr>
<tr>
<td>tr.v. buffaloed, buffaloing, buffaloes</td>
</tr>
<tr>
<td>1. To intimidate, as by a display of confidence or authority: “The board couldn’t buffalo the federal courts as it had the Comptroller” (American Banker).</td>
</tr>
<tr>
<td>2. To deceive; hoodwink: “Too often... job seekers have buffaloed lenders as to their competency and training” (H. Jane Lehmam).</td>
</tr>
<tr>
<td>3. To confuse; bewilder.</td>
</tr>
</tbody>
</table>
(a) Derive “buffalo buffalo buffalo buffalo buffalo” from the start symbol S.

(b) Show that G is not SLR by finding a shift/reduce or reduce/reduce conflict.

(c) Can you find a different grammar that is SLR and that accepts the same language (i.e., the same set of strings) as G?

(d) Conversely, suppose we define a new grammar G', almost identical to G except that the rules for N and V are replaced by the following:

\[
N \rightarrow \text{bison} \\
V \rightarrow \text{bewilder}
\]

(Note that G' accepts a different language from G, but their parse trees are isomorphic.) Show that G' is SLR by building a conflict-free parsing table. (Hint: you can ask ml-yacc for advice, but don’t follow it blindly. In particular, ml-yacc generates LALR parsers, a larger class than SLR.)

Problem 3

[10 points] Appel 10.1