
Recitation 8: Bidirectional Typechecking and
Sequent Calculus

Jon Sterling

1 Bidirectional Typechecking
�e proof term assignment for the logic of veri�cations and uses can be construed as
an algorithmic speci�cation for a typechecker; this is because the rules of this logic
are all syntax-directed.

To expose the algorithmic character of the judgments, we write in blue the inputs
of a judgment and in red the outputs of a judgment.

() : > ↑ >I
R : ⊥ ↓

abort(R) : C ↑ ⊥E
M : A ↑ N : B ↑
(M,N) : A ∧B ↑ ∧I

R : A ∧B ↓
fst(R) : A ↓

∧E1
R : A ∧B ↓
snd(R) : B ↓

∧E2
M : A ↑

inl(M) : A ∨B ↑
∨I1

M : B ↑
inr(M) : A ∨B ↑

∨I2
R : A ∨B ↓

u : A ↓ u....
N1 : C ↑

v : B ↓ v....
N2 : C ↑

case R of inl(u)⇒ N1 | inr(v)⇒ N2 : C ↑ ∨E
u,v

u : A ↓ u....
N : B ↑

fn u⇒ N : A ⊃ B ↑ ⊃I
u

R : A ⊃ B ↓ N : A ↑
R(N) : B ↓ ⊃E

R : A ↓
R : A ↑ ↓↑

M : A ↑
(M : A) : A ↓

ann

If the last rule ann is omi�ed, then the terms of the veri�cations and uses calculus
will have no redexes; if it is added, then redexes can be formed, and the calculus is
merely a more verbose version of the ordinary λ-calculus. �is week, we are studying
a version of veri�cations and uses with the ann rule, because it is necessary in order to
give a natural proof term assignment to Dyckho�’s contraction-free sequent calculus.

1

the algorithm We will use ∆ ` J to abbreviate

∆....
J in what follows, where ∆ is

a sequence of assumptions x : A ↓. �e typechecking algorithm for bidirectional type-
checking is the computational content of the following (constructive) metatheorem:

1. For all ∆, N,A, either ∆ ` N : A ↑ or not.

2. For all ∆, R, either there exists some A such that ∆ ` R : A ↓ or there does
not.

Exercise. Try and remember how this proof works. Youwill have to extract its algorithmic
content in order to complete the next homework assignment.

Remark. �ismetatheorem is only interesting if the ambient mathematics is constructive;
otherwise, it is trivial and its proof provides no useful algorithmic content.

2 Proof terms for sequent calculus
We can give a proof term assignment to the sequent calculus based on a single form
of judgment Γ =⇒ N : A ; in this form of judgment, Γ is now a list of formal type
assignments R : A, where R is an arbitrary neutral term rather than only a variable.
�e dynamics are as follows:

1. �e list of type assignments Γ ≡ R : A are inputs.

2. �e goal type A is an input.

3. �e proof term / witness N is an output.

�ese dynamics correspond to proof re�nement with extraction in sequent-calculus-
based proof systems like Nuprl and RedPRL.

Γ, R : A =⇒ R : A
init

Γ =⇒ () : > >R Γ, R : ⊥ =⇒ abort(R) : C
⊥L

Γ =⇒ N1 : A

Γ =⇒ (N1, N2) : A ∧B ∧R
Γ, R : A ∧B, fst(R) : A =⇒ N : C

Γ, R : A ∧B =⇒ N : C
∧L1

Γ, R : A ∧B, snd(R) : B =⇒ N : C

Γ, R : A ∧B =⇒ N : C
∧L2

Γ =⇒ N : A
Γ =⇒ inl(N) : A ∨B

∨R1

Γ =⇒ N : B
Γ =⇒ inr(N) : A ∨B

∨R2

Γ, R : A ∨B, u : A =⇒ N1 : C Γ, R : A ∨B, v : A =⇒ N2 : C

Γ, R : A ∨B =⇒ case R of inl(u)⇒ N1 | inr(v)⇒ N2 : C
∨Lu,v

2

Γ, u : A =⇒ N : B

Γ =⇒ fn u⇒ N : A ⊃ B ⊃R
u

Γ, R : A ⊃ B =⇒M : A Γ, R : A ⊃ B,R(M) : B =⇒ N : C

Γ, R : A ⊃ B =⇒ N : C
⊃L

Exercise. In sequent calculus, we try to prove the admissibility of the following cut rule:

Γ =⇒ A Γ, A =⇒ B

Γ =⇒ B
cut

Try to invent a proof term assignment for this rule.

Solution.
Γ =⇒M : A Γ, (M : A) : A =⇒ N : B

Γ =⇒ N : B
cutA

3

	Bidirectional Typechecking
	Proof terms for sequent calculus

