Recitation 8: Bidirectional Typechecking and
Sequent Calculus

Jon Sterling

1 Bidirectional Typechecking

The proof term assignment for the logic of verifications and uses can be construed as
an algorithmic specification for a typechecker; this is because the rules of this logic
are all syntax-directed.

To expose the algorithmic character of the judgments, we write in blue the inputs
of a judgment and in red the outputs of a judgment.

R:1| M:At N:B%
O:T7 Tl abort(R) : C' 1 LE (M,N): ANB? N
R:ANB R:ANB M:AT
() Ay ond(R): B 2 (M) : AvEB] 0

u:Aiu ’U:Biv

M:B1 R:AVB] N,:C+ Ny:C%

| U,v
inr(M): Av B?t Vi case R of inl(u) = Ny |inr(v) = Ny : C' 1 VE
u:Al b
N:B% ., R:ASBY N:AT
MusN:ASBT R(N):B{ -
R:A| M: AT
Roat or-Ay-ap ™

If the last rule ann is omitted, then the terms of the verifications and uses calculus
will have no redexes; if it is added, then redexes can be formed, and the calculus is
merely a more verbose version of the ordinary A-calculus. This week, we are studying
a version of verifications and uses with the ann rule, because it is necessary in order to
give a natural proof term assignment to Dyckhoff’s contraction-free sequent calculus.

A

the algorithm We willuse A F J to abbreviate J in what follows, where A is

a sequence of assumptions = : A |. The typechecking algorithm for bidirectional type-
checking is the computational content of the following (constructive) metatheorem:

1. Forall A, N, A, either AF N : A1 ornot.

2. For all A, R, either there exists some A such that A - R : A | or there does
not.

Exercise. Tryand remember how this proof works. You will have to extract its algorithmic
content in order to complete the next homework assignment.

Remark. This metatheorem is only interesting if the ambient mathematics is constructive;
otherwise, it is trivial and its proof provides no useful algorithmic content.

2 Proof terms for sequent calculus

We can give a proof term assignment to the sequent calculus based on a single form

of judgment I' = N : A ; in this form of judgment, I" is now a list of formal type
assignments R : A, where R is an arbitrary neutral term rather than only a variable.
The dynamics are as follows:

1. The list of type assignments I' = R : A are inputs.
2. The goal type A is an input.
3. The proof term / witness /V is an output.

These dynamics correspond to proof refinement with extraction in sequent-calculus-
based proof systems like Nuprl and RedPRL.

F,R:A:R:A'mt F:>():TTR F,R:L:abort(R):CLL
I'= N;: A AR F,R:A/\B,fst(R):A:>N:C/\L
I = (N, N2): AAB ILR:AANB=—= N:C !
T,R:AAB,snd(R):B=>N:C/\L I'—N:A VR
[LR:AANB= N:C 2 = inl(N):AVB '
I'=N:B
VR
= inr(N): AVB " °
INR: AVB,u: A= N;:C F,R:A\/B7’U:A:>1*“'2:C\/Luv

I'R: AV B = case Rof inl(u) = Ny | inr(v) = Ny : C

Nu:A= N:B
T—fu=N:A5B °

R’LL

NR:ADB=—=>M:A T R:ADB,R(M):B= N:C
I'N'R:ADB=— N:C

DL

Exercise. In sequent calculus, we try to prove the admissibility of the following cut rule:

I'=A I'N''A=B
I'= 1B

cut

Try to invent a proof term assignment for this rule.

Solution.
Ir=M:A I''(M:A): A= N:B
I'= N:B

cuta

	Bidirectional Typechecking
	Proof terms for sequent calculus

