
RECITATION 5: INDUCTION, PRIMITIVE RECURSION, & MIDTERM REVIEW

RYAN KAVANAGH

1. Induction & Primitive Recursion

1.1. A brief recapitulation of Lecture 8. In Lecture 8 (and yesterday’s review!), we saw two
diòerent elimination rules for natural numbers. he ûrst, which captures induction, is a
judgmental form of the principle of induction:

n ∶ nat C(0) true

x ∶ nat C(x) true
u

⋮
C(s x) true

C(n) true natEx ,u

he other was the rule of primitive recursion, which introduces a new term constructor R for
each type τ:

n ∶ nat t0 ∶ τ

x ∶ nat r ∶ τ
⋮

ts ∶ τ
R(n, t0 , x . r. ts) ∶ τ

natEx ,r

Its behaviour is captured by the following reduction rules:

R(0, t0 , x . r. ts)Ô⇒R t0 ,
R(s n′ , t0 , x . r. ts)Ô⇒R [R(n′ , t0 , x . r. ts)/r][n′/x] ts .

hese rules R indicate that R describes a recursive function “R(n)” on the ûrst parameter,
with value t0 when n = 0, and value [R(n′)/r][n′/x]ts when n = s n′. his motivates the
more readable schema of primitive recursion, where we deûne the function (call it “ f ” to
avoid confusion) f by cases:

f (0) = t0 ,
f (s x) = ts(x , f (x)).

We can recover the recursor version of the deûnition as follows:

f = (fn n⇒ R(n, t0 , x .r.ts(x , r))).

1.2. Working with these ideas.

Exercise 1. he judgmental form of the principle of induction can be used to show the following
more traditional formulation that uses universal quantiûcation:

∀n ∶ nat.C(0) ⊃ (∀x ∶ nat.C(x) ⊃ C(s x)) ⊃ C(n) true.

What is the corresponding proof term?

Date: 27 September 2017.
1

2 RYAN KAVANAGH

Solution.

n ∶ nat C(0)
u

∀x ∶ nat.C(x) ⊃ C(s x)
v

x ∶ nat
C(x) ⊃ C(s x) ∀E C(x)

w

C(s x) ⊃E

C(n) natEx ,w

(∀x ∶ nat.C(x) ⊃ C(s x)) ⊃ C(n) ⊃Iv

C(0) ⊃ (∀x ∶ nat.C(x) ⊃ C(s x)) ⊃ C(n) ⊃Iu

∀n ∶ nat.C(0) ⊃ (∀x ∶ nat.C(x) ⊃ C(s x)) ⊃ C(n) ∀In

he corresponding proof term is fn n⇒ fn u⇒ fn v ⇒ R(n, u, x .w .(vx)w). �

he total predecessor function is the primitive recursive function given by the primitive
recursion schema

pred(0) = 0
pred(s x) = x ,

or equivalently,

pred(n) = R(n, 0, x .r.x).

Exercise 2. Informally prove ∀x ∶ nat. x = 0 ∨ s (pred x) = x. Extract the corresponding
function, assuming we already have a proof term p ∶ ∀x . pred (s x) = x.

Proof. By induction on x.
● Case x = 0. Need to show: 0 = 0 ∨ s (pred 0)) = 0. We are done by =I00 and ∨I1.
● Case x = s x′. Assume: x′ = 0 ∨ s (pred x′) = s x′. By deûnition of pred, we have
pred s x′ = x′. By =Iss , s (pred s x′) = s x′. By ∨I2, s x′ = 0∨ s (pred s x′) = s x′. his
is what we wanted to show.

he corresponding proof term is: fn x ⇒ R(x , inl(=I00), x′ .r.inr(=Is s (px′))). �

We deûne proper subtraction for the natural numbers as follows to be the function

a � b =
⎧⎪⎪⎨⎪⎪⎩

a − b a ≥ b
0 a < b.

Exercise 3. Give a primitive recursive deûnition for pminus.

Solution. We are trying to deûne a function

pminus ∶ nat→ nat→ nat

by primitive recursion such that “pminus a b” encodes a � b. Wemake use of the following
(informal) observation:

∀a ∶ nat.∀b ∶ nat. s b � s c = b � c.
When solving these examples, it is o�en useful to informally write out what the function
should look like, before trying to ûnd a primitive recursive deûnition:

(pminus 0)(0) = 0,
(pminus s x)(0) = s x ,
(pminus 0)(s y) = 0,

(pminus s x)(s y) = (pminus x)(y).

RECITATION 5: INDUCTION, PRIMITIVE RECURSION, & MIDTERM REVIEW 3

We can deûne pminus by primitive recursion on the second argument using the primitive
recursion schema as follows:

(pminus a)(0) = a,
(pminus a)(s y) = (pminus (pred a))(y),

or using the recursor:

pminus a b = R(b, a, x .r. pminus (pred a) x).
Alternatively, we can deûne pminus by primitive recursion on the ûrst argument:

pminus 0 = fn b⇒ 0,
pminus s x = fn b⇒ R(b, s x , y.r. pminus xy),

or using the recursor:

pminus a = fn b⇒ R(a, 0, x .r.R(b, s x , y.t. pminus xy)).
We can quickly check that the recursor deûnition matches the above informal description.
To help you ûgure out what’s going on, we colour-code a and b . he results of substitutions
are determined by blue and Apricot colour-coding:

R(0 , 0, x .r.R(b , s x , y.t. pminus x y))Ô⇒R 0,

R(s x , 0, x .r.R(0 , s x , y.t. pminus x y))Ô⇒R R(0 , s x , y.t. pminus x y)
Ô⇒R s x ,

R(s x , 0, x .r.R(s y , s x , y.t. pminus x y))Ô⇒R R(s y , s x , y.t. pminus x y)

Ô⇒R pminus x y . �

2. Midterm Review

We spend the remainder of the recitation answering the questions that were submitted
via Piazza for the review. We will address them in quasi-logical order.

2.1. Scoping. Colour-code boxes indicate the scope of each assumption or parametric judg-
ment. Nested coloured boxes indicate that each of the corresponding judgments is in scope.

B true
u

⋮
A true

A ⊃ B true ⊃Iu
A∨ B true

A true
u

⋮
C true

B true
v

⋮
C true

C true ∨Iu , v

x ∶ τ
⋮

A(x) true

∀x ∶ τ.A(x) true ∀I
x

∃x ∶ τ.A(x) true

a ∶ τ A(a) true
u

⋮
C true

C true ∃E a , u

We would like to emphasise that you are not required to use an assumption or parametric
judgment. Indeed, when such judgments are in scope, you are free to use them as many
times as you wish, including zero times. To underscore this point, consider the following
exercise:

Exercise 4. Prove A ⊃ ⊺ true.

4 RYAN KAVANAGH

Solution. Observe that the assumption

A true
u

is not used anywhere in the following proof:

⊺ ⊺I

A ⊃ ⊺ true ⊃Iu . �

2.2. Quantiûers. By popular demand, we prove properties similar to those you proved on
homework 3.

Exercise 5. Prove and give the corresponding proof term for (∀x ∶ τ.A(x))⊃¬∃x .¬A(x) true.

Solution.

∃x ∶ τ.¬A(x) true
v ¬A(a) true

w
∀x ∶ τ.A(x) true

u
a ∶ τ

A(a) true ∀E

� true ⊃E

� true ∃Ea ,w

¬∃x .¬A(x) true ¬I
v

(∀x ∶ τ.A(x)) ⊃ ¬∃x .¬A(x) true ⊃Iu

he corresponding proof term is: fn u⇒ fn v ⇒ let (a,w) = v inw(ua). �

Exercise 6. Give the proof and proof term for

(∀x ∶ τ. P(x) ⊃ Q(x)) ⊃ (∃x ∶ τ.¬Q(x)) ⊃ ¬∀x ∶ τ. P(x) true.

Solution.

∃x ∶ τ.¬Q(x)
v

¬Q(a)
w

∀x ∶ τ. P(x) ⊃ Q(x)
u

a ∶ τ
P(a) ⊃ Q(a) ∀E

∀x ∶ τ. P(x)
r

a ∶ τ
P(a) ∀E

Q(a) ⊃E

� ⊃E

¬∀x ∶ τ. P(x) ⊃Ir

¬∀x ∶ τ. P(x) ∃Ea ,w

(∃x ∶ τ.¬Q(x)) ⊃ ¬∀x ∶ τ. P(x) ⊃Iv

(∀x ∶ τ. P(x) ⊃ Q(x)) ⊃ (∃x ∶ τ.¬Q(x)) ⊃ ¬∀x ∶ τ. P(x) ⊃Iu

he corresponding proof term is: fn u⇒ fn v ⇒ let (a,w) = v in fn r⇒ w((ua)(ra)). �

2.3. Harmony. Consider the “?” connective, deûned by its elimination rule:
?(A, B,C) true A true B true

C true ?E..

Exercise 7. Give an introduction rule for ?(A, B,C) and show it to be locally sound and
complete.

Solution.
A true

u
B true

v

⋮
C true

?(A, B,C) true ?Iu ,v

RECITATION 5: INDUCTION, PRIMITIVE RECURSION, & MIDTERM REVIEW 5

Locally sound:

A true
u

B true
v

F
C true

?(A, B,C) ?Iu ,v D
A true

E
B true

C ?EÔ⇒R

D
A true

u E
B true

v
F

C true

Locally complete:

D
?(A, B,C) trueÔ⇒E

D
?(A, B,C) A true

u
B true

v

C true ?E

?(A, B,C) true ?Iu ,v
�

	1. Induction & Primitive Recursion
	1.1. A brief recapitulation of Lecture 8
	1.2. Working with these ideas

	2. Midterm Review
	2.1. Scoping
	2.2. Quantifiers
	2.3. Harmony

