
RECITATION 14: ORDERED PROGRAMMING

RYAN KAVANAGH

Please not that the final exam will be on Tuesday, December 12, 5:30pm–8:30pm,
in BH A51. This exam is closed book, closed notes. Tomorrow’s lecture will be
dedicated to reviewing material for the final exam. There will also be office hours
at their regularly slated times this Friday, Saturday, and Monday. Please make use
of these resources!

We also posted links to course FCEs and the TA evaluation forms on piazza.
Please fill these out: it is the only feedback we get.

Homework 10 was due yesterday, but if you still have grace days leftover, you
have until 13:30 tomorrow to hand it in. We will do our best to finish grading it
by Friday so that you can get review our feedback before the final. We will make
a piazza post once it is graded, and you will be able to collect it during our office
hours.

1. ORDERED LOGIC TERM ASSIGNMENT RULES

We review the rules assigning terms to ordered logic. In subsingleton logic, we
had that contexts were generated by ω ::= · | A and the judgment ω ` P : B. We
generalize this to the judgment

Ω ` P :: (c : A)

where Ω is an ordered context generated by the grammar Ω ::= · | c : A | Ω1 ·Ω2.
We read the judgment

(d1 : A1) · · · (dn : An) ` P :: (c : A)

as meaning the process P provides a service of type A along channel c, and uses
channels di of type Ai. To emphasise that d1, . . . ,dn and c are bound in P, we will
instead notate process declarations as:

c← P ← d1 . . .dn = P(c,d1, . . . ,dn).

The rule driving computation is

Ω ` Px :: (x : A) ΩL (x : A) ΩR ` Qx :: (z : C)

ΩL Ω ΩR ` (x← Px ; Qx) :: (z : C)
cut

where we use subscripts to denote which variables are bound in the processes. The
other rules are available on the last page of this document, excerpted from the
15-816 Lecture 8 notes from fall 2016. We remark that we have not seen and will
not use the rules for the “ ◦ ” twist connective.

Date: 6 December 2017.
Based in part on Frank Pfenning’s 15-816 lecture notes from fall 2016.

1

2 RYAN KAVANAGH

2. EXAMPLES

We will spend the remainder of the recitation exploring examples involving lists
and list segments. First, we recall the definition of listA from Lecture 24:

listA = ⊕{cons : A • listA, nil : 1}.

A list segment is a list prefix, that is to say, a process of the type

segA = listA/listA

expecting to receive a tail from the right, and which then provides the concatenation
of the prefix with the tail. We will implement several natural list segments.

The first is the empty list segment which, given a list on its right, simply produces
that list. This leads us to believe that it should be typed · ` empty :: (s : segA). Its
implementation is then:

s ← empty = % · ` s : listA/listA
t← recv s; % t : listA ` s : listA
s← t

In the second line, we receive the tail t : listA oven the channel s, and in the third
line, we forward from t to s. The comments following the “%” sign describe the type
of the term we must provide on the remaining lines. For example, on the first line,
it denotes that we must provide a body empty(s) such that · ` empty(s) :: (s : segA),
and on the second line that we must provide a term T such that t : listA ` T :: (s :

listA).
Another thing we can do is concatenate segments. Its type should be:

(s1 : segA)(s2 : segA) ` concat :: (s : segA).

We implement it as follows:

s ← concat← s1 s2 =

t← recv s; % (s1 : segA)(s2 : segA)(t : listA) ` s : listA
send s1 t; % (s1 : segA)(s2 : listA) ` s : listA
send s1 s2; % s1 : listA ` s : listA
s← s1

We may wish to convert segments to lists by simply providing them with nil
as a tail. The corresponding type ought to be: s : segA ` toList :: (l : listA). The
implementation is:

l ← toList← s =

n← nil; %(s : segA)(n : listA) ` l : listA
send s n; % s : listA ` l : listA
l← s

(Recall from lecture: · ` nil :: (l : listA) given by l ← nil = l.nil; close l.)
Conversely, we may wish to convert a list to a list segment. The corresponding

type is l : listA ` toSeg :: (s : segA). The implementation is:

s ← toSeq← l =

t← recv l % (l : listA)(t : listA) ` s : listA
concat

RECITATION 14: ORDERED PROGRAMMING 3

where we make use of the helper function (q : listA)(r : listA) ` concat :: (s : listA)

that concatenates two lists:
s ← concat← q r =

case q (nil⇒ wait q; s← r

| cons⇒ h← recv q; s.cons; send s h; concat)

Law and Order L8.4

Judgmental Rules

Ω ` Px :: (x:A) ΩL (x:A) ΩR ` Qx :: (z:C)

ΩL Ω ΩR ` (x← Px ; Qx) :: (z:C)
cut

y:A ` x← y :: (x:A)
id

Additive Connectives

Ω ` P :: (x:Ak) (k ∈ I)

Ω ` (x.lk ; P) :: (x : ⊕{li:Ai}i∈I)
⊕Rk

ΩL (x:Ai) ΩR ` Qi :: (z:C) (∀i ∈ I)

ΩL (x:⊕{li:Ai}i∈I) ΩR ` case x (li ⇒ Qi)i∈I :: (z:C)
⊕L

Ω ` Pi :: (x:Ai) (∀i ∈ I)

Ω ` case x (li ⇒ Pi)i∈I :: (x:N{li:Ai}i∈I))
NR

ΩL (x:Ak) ΩR ` P :: (z:C) (k ∈ I)

ΩL (x : N{li:Ai}i∈I) ΩR ` (x.lk ; Q) :: (z:C)
NLk

Multiplicative Connectives

· ` close x :: (x:1)
1R

ΩL ΩR ` Q :: (z:C)

ΩL (x:1) ΩR ` (wait x ; Q) :: (z:C)
1L

Ω (y:B) ` Py :: (x:A)

Ω ` (y ← recv x ; Py) :: (x:A / B)
/R

ΩL (x:A) ΩR ` Q :: (z:C)

ΩL (x:A / B) (w:B) ΩR ` (send x w ; Q) :: (z:C)
/L∗

(y:B) Ω ` Py :: (x:A)

Ω ` (y ← recv x ; Py) :: (x:B \A)
\R

ΩL (x:A) ΩR ` Q :: (z:C)

ΩL (w:B) (x:B \A) ΩR ` (send x w ; Q) :: (z:C)
\L∗

Ω ` P :: (x:B)

(w:A) Ω ` (send x w ; P) :: (x:A •B)
•R∗

ΩL (y:A) (x:B) ΩR ` Qy :: (z:C)

ΩL (x:A •B) ΩR ` (y ← recv x ; Qy) :: (z:C)
•L

Ω ` P :: (x:B)

Ω (w:A) ` (send x w ; P) :: (x:A ◦B)
◦R∗

ΩL (x:B) (y:A) ΩR ` Qy :: (z:C)

ΩL (x:A •B) ΩR ` (y ← recv x ; Qy) :: (z:C)
◦L

LECTURE NOTES SEPTEMBER 22, 2016

	1. Ordered Logic Term Assignment Rules
	2. Examples

