
Lecture Notes on
Stacks and Queues

15-317: Constructive Logic
Frank Pfenning

Lecture 25
December 5, 2017

1 Introduction

We begin this section by writing some more examples on ordered lists and
then implementations of lists and queues in an object-oriented style.

Recall the definition of ordered antecedents

Ω ::= (c : A) | ε | Ω1 · Ω2

where ’·’ is an associative operator with unit ε, and c is interpreted as a
channel. The basic judgment

(c1 : A1) · · · (cn : An) ` P :: (c : A)

means that P is a process using channels ci and providing channel c.
We summarize the language constructs so far in the following table,

from the point of view of the provider of a service.
Type Provider Continuation Client

c : ⊕{` : A`}`∈L c.k c : Ak case c (`⇒ Q`)`∈L
c : N{` : A`}`∈L case c (`⇒ Q`)`∈L c : Ak c.k

c : 1 close c (none) wait c ; Q
c : A •B send c d c : B x← recv c ; Qx

2 List Constructors

Recall the type of ordered lists

listA = ⊕{cons : A • listA, nil : 1}
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L25.2 Stacks and Queues

Even though this session type describes a message interface rather than
data layed out in memory, and it is ordered rather than composed of ar-
bitrary pairs, the analogy to data types in functional language should be
clear. For example, in the syntax of Standard ML, we might translate this
type as

datatype ’a list =
cons of ’a * ’a list

| nil of unit

In a functional language, this give us cons and nil as constructors. Are
there analogous processes here? Let’s consider

(x : A) (l : listA) ` cons :: (r : listA)

When defining cons, x, l, and r are process parameters, which we indicate
by

r ← cons← x l = . . .

where the body of the process definition refers to r, x, and l. The intent is
that r represents the list with head x and tail l. It can announce the fact that
is starts with a cons by sending this:

r ← cons← x l =
r.cons ; % (x : A) (l : listA) ` r : A • listA
. . .

Now we have to send a channel of type A along r. Fortunately, the element
x : A is at the left end of the antecedents so the ordering restriction on •R∗
is satisfied and we can send it.

r ← cons← x l =
r.cons ; % (x : A) (l : listA) ` r : A • listA
send r x ; % (l : listA) ` r : listA
. . .

Now that we have sent x, we express that the remainder of the list r is l by
forwarding l to r. Fortunately, the types are arranged in the right way.

r ← cons← x l =
r.cons ; % (x : A) (l : listA) ` r : A • listA
send r x ; % (l : listA) ` r : listA
r ← l

LECTURE NOTES DECEMBER 5, 2017



Stacks and Queues L25.3

The nil constructor for a process representing the empty list works analo-
gously.

` nil :: (r : listA)
r ← nil = r.nil ; close r

3 Following the Types

Next, we explore the prescriptive power of types. Which mystery processes
would have type

(l : listA) (x : A) ` myst :: (r : listA)

This is almost the type of cons, except that the order of the antecedents is
reversed. If we were working in linear logic, where A • B is symmetric,
cons would in fact satisfy this type, but not in ordered logic because after
sending the cons label

r ← myst← l x =
r.cons ; % (l : listA) (x : A) ` r : A • listA
. . .

we cannot send x because it is not at the left end of the antecedents.
Intuitively, if the list l is “virtually” in the context with its elements in

order, then maybe we should be able to add x at the end. This means we
actually have to read the elements from l, similar to our implementation of
append.

(l : listA) (x : A) ` myst :: (r : listA)
r ← myst← l x =

case l ( cons⇒ y ← recv l ; % (y : A) (l : listA) (x : A) ` (r : listA)
. . .)

At this point we can send cons and then y along r, but not x, which will
only be available once the list l has been been transferred to r in its entirety.
Once we have sent y, we can recurse, passing the same l and x back to myst.

(l : listA) (x : A) ` myst :: (r : listA)
r ← myst← l x =

case l ( cons⇒ y ← recv l ; % (y : A) (l : listA) (x : A) ` (r : listA)
r.cons ; send r y ; % (l : listA) (x : A) ` r : listA
r ← myst← l x

| nil⇒ . . .)
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L25.4 Stacks and Queues

In the case of nil we can wait for l to close and then send cons, x, nil, and
then close.

(l : listA) (x : A) ` myst :: (r : listA)
r ← myst← l x =

case l ( cons⇒ y ← recv l ; % (y : A) (l : listA) (x : A) ` (r : listA)
r.cons ; send r y ; % (l : listA) (x : A) ` r : listA
r ← myst← l x

| nil⇒ wait l ; % (x : A) ` r : listA
r.cons ; send r x % ` r : listA
r.nil ; close r)

We can also use our nil and cons in several places instead falling back on
sending messages directly.

(l : listA) (x : A) ` myst :: (r : listA)
r ← myst← l x =

case l ( cons⇒ y ← recv l ; % (y : A) (l : listA) (x : A) ` r : listA
s← myst← l x ; % (y : A) (s : listA) ` r : listA
r ← cons← y s

| nil⇒ wait l ; % (x : A) ` r : listA
n← nil ; % (x : A) (n : listA) ` r : listA
r ← cons← x n)

Note how, for example, the recursive call to myst consumes (l : listA) (x : A)
from the antecedents and replace it by (s : listA). This stems from the form
of the ordered cut rule

Ω ` P :: (x : A) ΩL · (x : A) · ΩR ` Q :: (z : C)

ΩL · Ω · ΩR ` (x← P ; Q) :: (z : C)
cut

where here ΩL = (y : A), Ω = (l : listA) (x : A), and ΩR = ε.
Also, in the case of nil where we spawn a new nil process, no antecedents

are consumed, so the new channel n can go anywhere in the context. We
will need it to the right of x : A so we can call cons next to construct a
singleton list.

So we see there are different programs, with different behavior (for ex-
ample, the placement of the recursive call), and yet in the end the observ-
able behavior along r should be the same: the elements of l followed by
x.
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4 Ordered Implications

Now we move on from the quasi-functional style a quasi-object-oriented
example: implementing a store with insert and delete operations. Rather
than an internal choice (⊕) like lists, the interface will present the client
with a choice between insertion and deletion in the form of an external
choice (N).

Here is our simple interface to a storage service for channels:

storeA = N{ ins : A \ storeA,
del : ⊕{none : 1, some : A • storeA}}

In the first line we see that the provider may receive and ins message, and
then it must receive the channel to insert into the store. We model this with
A \B, which we have not yet introduced. First, the right rule:

(y:A) Ω ` Py :: (x : B)

Ω ` (y ← recv x ; Py) :: (x : A \B)
\R

Operationally, a provider of x : A \ B receives a channel of type A, adds it
to the left end of the antecedents, and continues with x : B.

A client process using a channel x : A\B must therefore send a channel
of type A. Moreover, due to ordering constraints, this channel must be
immediately to the left of x.

ΩL (x : B) ΩR ` Q :: (z : C)

ΩL (w : A) (x : A \B) ΩR ` (send x w ; Q) :: (z : C)
\L∗

The following computation rule implements the cut reduction of \R and
\L∗.

proc(x, y ← recv x ; Py) proc(z, send x w ; Q)

proc(x, [w/y]Py) proc(z,Q)
\C

Note that the operational reading here is identical for B / A; the difference
is entirely in the restrictions about where w:B or y:B are to be found. In the
/R rule it will be added to the right of the antecedents and in the /L∗ rule
it must be immediately to the right of the receiving channel.

Ω (y:A) ` Py :: (x : B)

Ω ` (y ← recv x ; Py) :: (x : B / A)
/R

ΩL (x : B) ΩR ` Q :: (z : C)

ΩL (x : B / A) (w : A) ΩR ` (send x w ; Q) :: (z : C)
/L∗
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L25.6 Stacks and Queues

5 Implementing a Store

Recall the desired type of a store interface, using A \B:

storeA = N{ ins : A \ storeA,
del : ⊕{none : 1, some : A • storeA}}

Using our operational interpretation, we can read this as follows:

A store for channels of typeA offers a client a choice between insertion
(label ins) and deletion (label del).
When inserting, the clients sends a channel of type A which is added
to the store.
When deleting, the store responds with the label none if there are no
elements in the store and terminates, or with the label some, followed
by an element.
When an element is actually inserted or deleted the provider of the
storage service then waits for the next input (again, either an insertion
or deletion).

In this reading we have focused on the operations, and intentionally ig-
nored the restrictions order might place on the use of the storage service.
Hopefully, this will emerge as we write the code and analyze what the re-
strictions might mean.

First, we have to be able to create an empty store. We will write the
code in stages, because I believe it is much harder to understand the final
program than it is to follow its construction.

storeA = N{ ins : A \ storeA,
del : ⊕{none : 1, some : A • storeA}}

First, the header of the process definition.

· ` empty :: (s : storeA)
s← empty = . . .

Because a storeA is an external choice, we begin with a case construct, branch-
ing on the received label.

· ` empty :: (s : storeA)
s← empty = case s ( ins⇒ % · ` s : A \ storeA

| del⇒ . . . % · ` s : ⊕{none : 1, some : A • storeA}
)
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The case of deletion is actually easier: since this process represents an
empty store, we send the label none and terminate.

· ` empty :: (s : storeA)
s← empty = case s (ins⇒ % · ` s : A \ storeA

| del⇒ s.none ; close s)

In the case of an insertion, the type dictates that we receive a channel
of type A which we call x. It is added at the left end of the antecedents.
Since they are actually none, both A \ storeA and storeA / A would behave
the same way here.

· ` empty :: (s : storeA)
s← empty = case s (ins⇒ % · ` s : A \ storeA

x← recv s ;% x:A ` s : storeA
. . .

| del⇒ s.none ; close s)

At this point it seems like we are stuck. We need to start a process imple-
menting a store with one element, but so far we just writing the code for an
empty store. We need to define a process elem

(x:A) (t:storeA) ` elem :: (s : storeA)

which holds an element x:A and also another store t:storeA with further
elements. In the singleton case, t will then be the empty store. Therefore,
we first make a recursive call to create another empty store, calling it n for
none.

· ` empty :: (s : storeA)
s← empty = case s (ins⇒ x← recv s ; % x:A ` s : storeA

n← empty ; % (x:A) (n:storeA) ` s : storeA
. . .

| del⇒ s.none ; close s)

(x:A) (t:storeA) ` elem :: (s : storeA)
s← elem← x t = . . .

Postponing the definition of elem for now, we can invoke elem to create a
singleton store with just x, calling the resulting channel e. This call will
consume x and n, leaving e as the only antecedent.

· ` empty :: (s : storeA)
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s← empty = case s (ins⇒ x← recv s ; % x:A ` s : storeA
n← empty ; % (x:A) (n:storeA) ` s : storeA
e← elem← x n ; % e:storeA ` s : storeA
. . .

| del⇒ s.none ; close s)

(x:A) (t:storeA) ` elem :: (s : storeA)
s← elem← x t = . . .

At this point we can implement s by e (the singleton store), which is just an
application of the identity rule.

· ` empty :: (s : storeA)
s← empty = case s (ins⇒ x← recv s ; % (x:A) ` s : storeA

n← empty ; % (x:A) (n:storeA) ` s : storeA
e← elem← x n % e:storeA ` s : storeA
s← e

| del⇒ s.none ; close s)

(x:A) (t:storeA) ` elem :: (s : storeA)
s← elem← x t = . . .

It remains to write the code for the process holding an element of the
store. We suggest you reconstruct or at least read it line by line the way we
developed the definition of empty, but we will not break it out explicitly into
multiple steps. However, we will still give the types after each interaction.
For easy reference, we repeat the type definition for storeA.

storeA = N{ ins : A \ storeA,
del : ⊕{none : 1, some : A • storeA}}

(x:A) (t:storeA) ` elem :: (s : storeA)
1 s← elem← x t =
2 case s (ins⇒ y ← recv s ; % (y:A) (x:A) (t:storeA) ` s : storeA
3 t.ins ; % (y:A) (x:A) (t:A \ storeA) ` s : storeA
4 send t x ; % (y:A) (t:storeA) ` s : storeA
5 r ← elem← y t ; % r:storeA ` s : storeA
6 s← r
7 | del⇒s.some ; % (x:A) (t:storeA) ` s : A • storeA
8 send s x ; % t:storeA ` s : storeA
9 s← t)

A few notes on this code. Look at the type at the end of the previous line to
understand the next line.
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• In line 2, we add y:A at the left end of the context since s : A \ storeA.

• In line 4, we can only pass x to t but not y, due restrictions of \L∗.

• In line 5, y and t are in the correct order to call elem recursively.

• In line 8, we can pass x along s since it is at the left end of the context.

How does this code behave? Assume we have a store s holding elements
x1 and x2 it would look like

proc(s, s← elem← x1 t1) proc(t1, t1 ← elem← x2 t2) proc(t2, t2 ← empty)

where we have indicated the code executing in each process without un-
folding the definition. If we insert an element along s (by sending ins and
then a new y) then the process s← elem← x1 t1 will insert x1 along t1 and
then, in two steps, become s← elem← y t1. Now the next process will pass
x2 along t2 and hold on to x1, and finally the process holding no element
will spawn a new one (t3) and itself hold on to x2.

proc(s, s← elem← y t1) proc(t1, t1 ← elem← x1 t2)
proc(t2, t2 ← elem← x2 t3) proc(t3, t3 ← empty)

If we next delete an element, we will get y back and the store will effectively
revert to its original state, with some (internal) renaming.

proc(s, s← elem← x1 t2) proc(t2, t2 ← elem← x2 t3) proc(t3, t3 ← empty)

In essence, the store behaves like a stack: the most recent element we have
inserted will be the first one deleted. If you carefully look through the in-
termediate types in the elem process, it seems that this behavior is forced.
We conjecture that any implementation of the store interface we have given
will behave like a stack or might at some point not respond to further mes-
sages.

6 Tail Calls

If we look at lines 5 and 6

r ← elem← y t ; % r:storeA ` s : storeA
s← r
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we are starting a new process, providing along a new channel r and then
forward this to s. Instead, we can simply continue in the current process,
executing elem, which is written as

s← elem← y t ;

The examples now simplify very slightly.

storeA = N{ ins : A \ storeA,
del : ⊕{none : 1, some : A • storeA}}

· ` empty :: (s : storeA)
s← empty = case s (ins⇒ x← recv s ; % (x:A) ` s : storeA

n← empty ; % (x:A) (n:storeA) ` s : storeA
s← elem← x n % e:storeA ` s : storeA

| del⇒ s.none ; close s)

(x:A) (t:storeA) ` elem :: (s : storeA)
s← elem← x t =

case s (ins⇒ y ← recv s ; % (y:A) (x:A) (t:storeA) ` s : storeA
t.ins ; % (y:A) (x:A) (t:A \ storeA) ` s : storeA
send t x ; % (y:A) (t:storeA) ` s : storeA
s← elem← y t

| del⇒s.some ; % (x:A) (t:storeA) ` s : A • storeA
send s x ; % t:storeA ` s : storeA
s← t)

7 Queues

As notes, our implementation so far ended up behaving like a stack, and
we conjectured that the type of the interface itself forced this behavior. Can
we modify the type to allow (and perhaps force) the behavior of the store
as a queue, where the first element we store is the first one we receive back?
I encourage you to try to work this out before reading on . . .
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The key idea is to change the type

storeA = N{ ins : A \ storeA,
del : ⊕{none : 1, some : A • storeA}}

to

queueA = N{ ins : queueA / A,
del : ⊕{none : 1, some : A • queueA}}

We will not go through this in detail, but reading the following code and
the type after each interaction should give you a sense for what this change
entails.

· ` empty :: (s : queueA)

1 s← empty =
2 case s (ins⇒ x← recv s ; % x:A ` s : queueA
3 n← empty ; % (x:A) (n:queueA) ` s : queueA
4 s← elem← x n
5 | del⇒ s.none ; close s)

(x:A) (t:queueA) ` elem :: (s : queueA)

6 s← elem← x t =
7 case s (ins⇒ y ← recv s ; % (x:A) (t:queueA) (y:A) ` s : queueA
8 t.ins ; % (x:A) (t:queueA / A) (y:A) ` s : queueA
9 send t y ; % (x:A) (t:queueA) ` s : queueA
10 s← elem← x t
11 | del⇒s.some ; % (x:A) (t:queueA) ` s : A • queueA
12 send s x ; % t:queueA ` s : queueA
13 s← t)

The critical changes are in line 7 (where y is added to the right end of the
antecedents instead of the left) and line 9 (where consequently y instead of
x must be sent along t).

The complexity of all the operations remains the same, since the only
difference is whether the current x or the new y is sent along t, but the
implementation now behaves like a queue rather than a stack.

8 Summary, and Linear Logic

We complete the table from the beginning of the lecture that summarizes
the computational interpretation of ordered logic.
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Type Provider Continuation Client
c : ⊕{` : A`}`∈L c.k c : Ak case c (`⇒ Q`)`∈L
c : N{` : A`}`∈L case c (`⇒ Q`)`∈L c : Ak c.k

c : 1 close c (none) wait c ; Q
c : A •B send c d c : B x← recv c ; Qx

c : A \B x← recv c ; Px c : B send c d
c : B / A x← recv c ; Px c : B send c d

The difference between the last two rows are the places of x and d among
the antecedents.

In the case of linear logic, the last two lines collapse, using A ( B in a
unified notation, and the multiplicative conjunction A •B no longer is sub-
ject to any ordering constraint and is written as A ⊗ B. The programming
constructs do not change.

Type Provider Continuation Client
c : ⊕{` : A`}`∈L c.k c : Ak case c (`⇒ Q`)`∈L
c : N{` : A`}`∈L case c (`⇒ Q`)`∈L c : Ak c.k

c : 1 close c (none) wait c ; Q
c : A⊗B send c d c : B x← recv c ; Qx

c : A( B x← recv c ; Px c : B send c d
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