
Lecture Notes on
Datalog

15-317: Constructive Logic
Frank Pfenning

Lecture 18
November 2, 2017

1 Introduction

In the previous lecture we have seen backward chaining from a logical per-
spective, and how this can be seen as a foundation for backward-chaining
logic programming languages like Prolog.

In this lecture we take a small step sideways: instead of considering all
atoms to be negative we consider all atoms positive. This has a rather dras-
tic impact on the operational behavior of proof search, leading to forward-
chaining logic programming. This is also called bottom-up logic programming,
although the direction is strangely reversed from the way we consider the
proof construction process.

2 Reading Inference Rules from Premises to Conclu-
sion

Mostly over the last serious of lectures, we read inference rules by looking
at the conclusion first and then the premises. This was so, because that is
the direction of proof construction. In fact, the sequent calculus was specif-
ically engineered by Gentzen to have this property!

Now we will read inference rules starting with the premises. For exam-
ple, assume we would like to calculate the path relation in an undirected
graph, where we say there is a path from vertex x to y if there a sequence
of vertices x = x0, x1, . . . , xn = y such that all xi and xi+1 are connected by
an edge. For simplicity, let us say that n ≥ 1.

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.2

We represent the vertices of a graph by constants, and the edge rela-
tion with a predicate edge(x, y) if there is an edge from x to y. Here is a
specification of the path relation:

edge(x, y)

edge(y, x)
sym

edge(x, y)

path(x, y)
ep

path(x, y) path(y, z)

path(x, z)
trans

The first rule (sym) expresses we are working over an undirected graph.
The second (ep) expresses that an edge represents a valid path, and the
third that the path relation is transitive.

Read from the conclusion to the premises, backward logic program-
ming search over this specification is useless. Even just the rule sym rule
will lead to an infinite loop, and the trans rule has an unknown y in the
premise even if x and z are known in the conclusion.

Read from the premises to the conclusion, however, this is a decent pro-
gram if we avoid re-deriving facts we already know. After while, this program
must terminate because there are at most O(n2) facts of the form edge(x, y)
and path(x, y) that could be derived. When inference reaches the point
where any additional inference only infers facts we already know, we say
the program has reached saturation and it halts. At this point we can answer
any specific query simply by looking it up in the collection of derived facts,
usually called the database.

3 Saturation

As another example, we first consider the usual bottom-up specifications
of even(n) and odd(n) for unary numbers.

even(z)
evz

odd(N)

even(s(N))
evs

even(N)

odd(s(N))
ods

Reading these from the premise to the conclusion does not work: these
rules would create an unbounded database with facts

even(z), odd(s(z)), even(s(s(z))), . . .

But if we view these as introduction rules we can derive elimination rules that
work in the other direction, using what we already know!

even(s(N))

odd(N)
ev′s

odd(s(N))

even(N)
od′s

odd(z)

C
od′z

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.3

Note that there is no rule for even(z) because we cannot extract any infor-
mation from that: there rule evz has no premises. In the last rule we have
derived a contradiction, which is manifest in being able to conclude any
proposition C. If we want to use this as a program, we have to use a spe-
cific proposition. Unfortunately, ↑⊥ is not part of the chaining fragment
(for good reason), so we use a new atom no, in the best tradition of the
Prolog top level.

If we want to know if, say, the fact even(s(s(s(z)))) is consistent with the
definition of the predicate, we assert it in the database of facts and satu-
rate the database using forward inference. Because of the simple nature of
these rules, our hand is forced at each point of inference, and we obtain the
following saturated database:

even(s(s(s(z)))), odd(s(s(z))), even(s(z)), odd(z), no

This tells us that asserting that 3 is even is inconsistent with the definition
of evenness. On the other hand, we we assert even(s(s(z))), we learn:

even(s(s(z))), odd(s(z)), even(z)

This database is now saturated and there is no contradiction, so the asser-
tion that 2 is even is consistent with the definition of evenness.

4 Forward Chaining

Our translation from rules to propositions leads us to the following propo-
sitions representing the downward-reading rules for even and odd num-
bers:

Γeo = ∀n. even(s(n))⊃ odd(n),
∀n. odd(s(n))⊃ even(n),
odd(z)⊃ no

We then ask, for example,

Γeo, even(s(s(s(z)))) −→ no

to find out if the fact that 3 is even is consistent with the knowledge in Γeo.
This search is now the exact opposite of goal directed, let’s call is database

directed. We ignore the succedent (no) and saturate the database, which are
the atoms in the antecedents. Only once we have saturated the database,
do we even look at the succedent and see if it is a fact in the database (or,

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.4

more generally, can be proven from the database directly without further
forward chaining).

For this intuition to work, we have to start by instantiating n in the first
proposition with s(s(z)) and then use the implication left rule to conclude
odd(s(s(z))). It is this process we call forward chaining. To formalize this, we
first recall the language and rules for backward chaining.
Backward chaining fragment: all atoms are negative, and the only polar-
ity shift has the form ↓P−. So far, we have only shown the rules for the
connectives in red.

Program formulas D− ::= P− | G+ ⊃D− | ∀x.D−(x) | D−1 ∧D−2 | >
Programs Γ− ::= · | Γ−, D−
Goal formulas G+ ::= ↓P− | G+

1 ∧G+
2 | > | ∃x.G+(x) | G+

1 ∨G+
2 | ⊥

Forward chaining fragment: all atoms are positive, and the only polarity
shift has the form ↑P+.

Program formulas D− ::= ↑P+ | G+ ⊃D− | ∀x.D−(x) | D−1 ∧D−2 | >
Database Γ ::= · | Γ, D− | Γ, P+

Goal formulas G+ ::= P+ | G+
1 ∧G+

2 | > | ∃x.G+(x) | G+
1 ∨G+

2 | ⊥

The antecedents now mix the program formulas D− (sometimes called
the IDB) and the database facts P+ (sometimes called the EDB), while the
succedent is always positive since negative atoms are not part of this frag-
ment. We have the following three judgments

Backward Chaining Forward Chaining

Γ−
f−→ P− stable sequent Γ

f−→ C+

Γ−, [D−]
f−→ P− left focus Γ, [D−]

f−→ C+

Γ−
f−→ [G+] right focus Γ

f−→ [G+]

The rules for the connectives remain the same, with the exception of the
order of premises in the ⊃L rule.1 We also remove the rules concerned
with negative atoms and add those for positive ones.

1It is possible that in a combined forward/backward chaining language, there should
be two forms of implication, presenting the premises in different order: A ⊃ B proves
A before assuming B, and B ⊂ A assumes B before proving A. This first one would be
employed in forward chaining, the second in backward chaining. Of course, logically the
two are the same, but not operationally when viewed from the computation-as-proof-search
perspective.

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.5

D− ∈ Γ Γ, [D−]
f−→ C+

Γ
f−→ C+

focusL
Γ, P+ f−→ C+

Γ, [↑P+]
f−→ C+

↑L

Γ, [D−(X)]
f−→ C+

Γ, [∀x.D−(x)]
f−→ C+

∀L∗
Γ

f−→ [G+] Γ, [D−]
f−→ C+

Γ, [G+ ⊃D−]
f−→ C+

⊃L

no longer applicable

 Q− = P−

Γ, [Q−]
f−→ P−

id−
no rule if Q− 6= P−

Γ, [Q−]
f−→ P−

Q+ ∈ Γ Q+ = P+

Γ
f−→ [P+]

id+
no rule if Q+ 6= P+ for all Q+ ∈ Γ

Γ
f−→ [P+]

Γ
f−→ [G+

1] Γ
f−→ [G+

2]

Γ
f−→ [G+

1 ∧G+
2]

∧R
Γ

f−→ [>]
>R

Γ
f−→ [G(X)]

Γ
f−→ [∃x.G+(x)]

∃R∗
no longer applicable

 Γ−
f−→ P−

Γ−
f−→ [↓P−]

↓R

Γ, [D−1]

f−→ C+

Γ, [D−1 ∧D−2]
f−→ C+

∧L1

Γ, [D−2]
f−→ C+

Γ, [D−1 ∧D−2]
f−→ C+

∧L2

no rule for >L

Γ
f−→ [G+

1]

Γ
f−→ [G+

1 ∨G+
2]

∨R1

Γ
f−→ [G+

2]

Γ
f−→ [G+

1 ∨G+
2]

∨R2

no rule for ⊥R

Figure 1: Forward chaining fragment of Horn logic

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.6

Let’s observe these rules in action on our program and goal, where all
atoms are positive. We have added shifts on the right-hand side of impli-
cations during polarization of the propositions.

Γeo = ∀n. even(s(n))⊃ ↑odd(n),
∀n. odd(s(n))⊃ ↑even(n),
odd(z)⊃ ↑no

Γeo, even(s(s(s(z))))
f−→ no

Say we focus on the first proposition in Γeo.

...

Γeo, even(s(s(s(z))))
f−→ [even(s(N))]

...

Γeo, even(s(s(s(z)))), [↑odd(N)]
f−→ no

Γeo, even(s(s(s(z)))), [even(s(N))⊃ ↑odd(n)]
f−→ no

⊃L

Γeo, even(s(s(s(z)))), [∀n. even(s(n))⊃ ↑odd(n)]
f−→ no

∀L

Now we match even(s(s(s(z)))) against even(s(N)) which succeeds with
substitution N = s(s(z)), which is applied globally to the partial proof
which then looks as follows:

Γeo, even(s(s(s(z))))
f−→ [even(s(s(s(z))))]

id+
...

Γeo, even(s(s(s(z)))), [↑odd(s(s(z)))]
f−→ no

Γeo, even(s(s(s(z)))), [even(s(s(s(z))))⊃ ↑odd(n)]
f−→ no

⊃L

Γeo, even(s(s(s(z)))), [∀n. even(s(n))⊃ ↑odd(n)]
f−→ no

∀L

In the right branch of the proof we now lose focus, and we have reached a
stable sequent, adding another fact to the database.

Γeo, even(s(s(s(z))))
f−→ [even(s(s(s(z))))]

id+

...

Γeo, even(s(s(s(z)))), odd(s(s(z)))
f−→ no

Γeo, even(s(s(s(z)))), [↑odd(s(s(z)))]
f−→ no

↑L

Γeo, even(s(s(s(z)))), [even(s(s(s(z))))⊃ ↑odd(n)]
f−→ no

⊃L

Γeo, even(s(s(s(z)))), [∀n. even(s(n))⊃ ↑odd(n)]
f−→ no

∀L

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.7

This will continue until we add odd(z) and then no to the database. At this
point the goal looks like

...

Γeo, . . . , no
f−→ no

Recall that all atoms are positive, so we can now focus on the succedent
and complete the proof.

Γeo, . . . , no
f−→ [no]

id+

Γeo, . . . , no
f−→ no

focusR

We can also see what happens if we focus on the “wrong” antecedent, that
is, one that we cannot use with forward chaining.

fails

Γeo, even(s(s(s(z))))
f−→ [odd(s(N))]

...

Γeo, even(s(s(s(z)))), [↑even(N)]
f−→ no

Γeo, even(s(s(s(z)))), [odd(s(N))⊃ ↑even(N)]
f−→ no

⊃L

Γeo, even(s(s(s(z)))), [∀n. odd(s(n))⊃ ↑even(n)]
f−→ no

∀L

Experience shows that, generally, the reduction in the search space with
forward chaining is not quite as drastic as with backward chaining. This
is because there is only one goal (the succedent) but many clauses in the
database (the antecedents). Nevertheless, there are many algorithms more
easily described with forward chaining than with backward chaining. We
will show one in Section 6 on unification.

5 Comparing Backward and Forward Chaining

We return to a simple example from last lecture

a, a⊃ b, b⊃ c −→ c

If we polarize all atoms negatively, we obtain

a−, ↓a− ⊃ b−, ↓b− ⊃ c−
f−→ c−

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.8

where the shift operators binds tightest.
Without backward chaining there are different proofs. In particular, we

could apply ⊃L to a⊃ b, or to b⊃ c. With backward chaining, there is only
one possible proof: at each choice point, when we focus, only on possibility
will succeed and the others will fail immediately. You should convince
yourself that this is the case. We define Γ0 = (a−, ↓a− ⊃ b−, ↓b− ⊃ c−)

Γ0, [c
−]

f−→ c−
id−

Γ0, [b
−]

f−→ b−
id−

Γ0, [a
−]

f−→ a−
id−

Γ0
f−→ a−

focusL

Γ0
f−→ [↓a−]

↓R

Γ0, [↓a− ⊃ b−]
f−→ b−

⊃L

Γ0
f−→ b−

focusL

Γ0
f−→ [↓b−]

↓R

Γ0, [↓b− ⊃ c−]
f−→ c−

⊃L

Γ0
f−→ c−

focusL

Going back to our sequent

a, a⊃ b, b⊃ c −→ c

if we polarize all the atoms positively, in preparation for forward chaining,
we get

a+, a+ ⊃ ↑b+, b+ ⊃ ↑c+ f−→ c+

Now we must focus on a+ ⊃ ↑b+ first, then b+ ⊃ ↑c+, then c+. All other
attempts at focusing will either fail, or lead conclude a fact that is already

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.9

in the database. We abbreviate Γ1 = (a+, a+ ⊃ ↑b+, b+ ⊃ ↑c+)

a+ ∈ Γ

Γ1
f−→ [a+]

id+

Γ1, b
+ f−→ [b+]

id+

Γ1, b
+, c+

f−→ [c+]
id+

Γ1, b
+, c+

f−→ c+
focusR

Γ1, b
+, [↑c+]

f−→ c+
↑L

Γ1, b
+, [b+ ⊃ ↑c+]

f−→ c+
⊃L

Γ1, b
+ f−→ c+

focusL

Γ1, [↑b+]
f−→ c+

↑L

Γ1, [a
+ ⊃ ↑b+]

f−→ c+
⊃L

Γ1
f−→ c+

focusL

6 Unification

As a major and significant example of forward chaining, which is similar to
many realistic applications of Datalog, we use unification itself. So far, we
have just treated in informally, despite its complexity.

We describe the algorithm by a set of rules concerning a predicate t
.
= s

for (first-order) terms t and s. This set of rules can be translated to a col-
lection of propositions Γu where all atoms are positive. We assert a new
equality, adding it as an antecedent, and then saturate the database. If it
produces no, then the new equality is inconsistent with all the information
we already had. Otherwise, the new saturated database represents the “so-
lution” and shows consistency.

We begin with two rules that compare the function symbol at the head
of the two terms. We write t̄ for a sequence of terms.

f(t̄)
.
= f(s̄)

t̄
.
= s̄

con=
f(t̄)

.
= g(s̄) f 6= g

no
con6=

The first rule expresses that if f(t̄) is equal to f(s̄) then the sequences of
arguments must be equal. This means that function symbols are “unin-
terpreted”: they are used as data constructors, not to stand for arbitrary
mathematical functions.

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.10

The second rule expresses that if the data constructors are different then
the terms are not equal. In other words, if we know they are equal, then
this is a contradiction.

These two rules also capture constants, since we think of a constant c
and c(), with the empty sequence of arguments.

Now we need four rules for comparing sequences of arguments.

(t, t̄)
.
= (s, s̄)

t
.
= s

seq=1

(t, t̄)
.
= (s, s̄)

t̄
.
= s̄

seq=2

()
.
= (s, s̄)

no
seq6=1

(t, t̄)
.
= ()

no
seq 6=2

Note that there is not rule for ()
.
= (), because such an equality contains no

information to extract.
At this point we have enough rules to decide equality, but not yet enough

to implement unification. Consider

f(X,X)
.
= f(c(), d())

This problem must fail, since X cannot be equal to c() and d() simulta-
neously, but the rules so far do not account for this. The simple device
of stating symmetry and transitivity of equality will solve this particular
problem.

t
.
= s

s
.
= t

sym
t
.
= s s

.
= r

t
.
= r

trans

Now we deduce:

f(X,X)
.
= f(c(), d()) given

(X,X)
.
= (c(), d()) by rule con=

X
.
= c() by rule seq=1

(X)
.
= (d()) by rule seq=2

X
.
= d() by rule seq=1

c()
.
= X by rule sym

c()
.
= d() by rule trans

no by rule con6=

One could make these rules more efficient, for example, by restricting some
terms in symmetry and transitivity to be variables.

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.11

At this point we have arrived at Prolog-style unification. Unfortunately,
we know that this is unsound, because an equation such as

X
.
= f(X)

is not recognized as inconsistent. We can incorporate this by adding some
rules for the occurs-check that disover such inconsistencies.

X
.
= f(t̄)

X /∈ f(t̄)

X /∈ X

no

X /∈ f(t̄)

X /∈ t̄

X /∈ (t, t̄)

X /∈ t

X /∈ (t, t̄)

X /∈ t̄

X /∈ Y Y
.
= t

X /∈ t

The last rule is necessary to obtain contradictions from problems such as

X = f(Y), Y = g(X)

With a few optimization, these rules can be seen to define Huet’s algo-
rithm for (first-order) unification [Hue76]. This proceeds in two stages: in
the first stage we saturate the equalities, and once they are saturated we
perform the occurs-check. If implemented correctly, this will have com-
plexity O(n log(n)), where n is the size of the input problem. Robinson’s
original unification algorithm [Rob71] in contrast was exponential in the
size of input, although in the context of his applications it performed quite
well [CB83].

7 From Propositions to Rules of Inference

As we have seen in this lecture and also already in the last lecture, we
can translate inference rules to propositions and then use either forward or
backward chaining to specify and operational semantics for proof search.

Question: can we go the other way? That is, can we take proposition and
turn them into inference rules? Another way to pose the question: can we
take advantage of the chaining semantics to compile program propositions
into “big-step” inference rules so we don’t have to play through focusing
all the time?

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.12

Let’s try with the example of the type of the S combinator:

(a⊃ (b⊃ c))⊃ ((a⊃ b)⊃ (a⊃ c))

In order to prove this, we first apply inversion as far as we can an arrive at
the sequent

a, a⊃ b, a⊃ (b⊃ c) −→ c

Now we have to decide on a polarization. We’ll try all first all negative and
then all positive.

Polarizing all atoms as negative we then have

a−, ↓a− ⊃ b−, ↓a− ⊃ (↓b− ⊃ c−)
f−→ c−

Which propositions could we focus on? Not on c− in the succedent—there
is no rule for that in the backward chaining fragment. But we can focus
on each of the antecedents since they are all negative propositions. In each
case we imagine what would happen if we focused on the proposition, not
knowing the remaining antecedents Γ− or the conclusion P−. But note
that since antecedents are persistent, all propositions in Γ0 = (a−, ↓a− ⊃
b−, ↓a− ⊃ (↓b− ⊃ c−)) will always be present in Γ.

a− = P−

Γ−, [a−]
f−→ P−

id−

Γ−
f−→ P−

focusL

So for the focus on a− to succeed, the right-hand side P− must be equal to
a−. This gives use the derived rule

Γ−
f−→ a−

R1

Focusing on the second proposition:

P− = b−

Γ−, [b−]
f−→ P−

id−
Γ−

f−→ a−

Γ−
f−→ [↓a−]

↓R

Γ−, [↓a− ⊃ b−]
f−→ P−

⊃L

Γ−
f−→ P−

focusL

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.13

We see P− = b− and we have one stable subgoal that will be the premise of
the derived rule.

Γ−
f−→ a−

Γ−
f−→ b−

R2

Finally, focusing on the third antecedent:

c− = P−

Γ−, [c−]
f−→ P−

id−
Γ−

f−→ b−

Γ−
f−→ [↓b−]

↓R

Γ−, [↓b− ⊃ c−]
f−→ P−

⊃L
Γ−

f−→ a−

Γ−
f−→ [↓a−]

↓R

Γ−, [↓a− ⊃ (↓b− ⊃ c−)]
f−→ P−

⊃L

Γ−
f−→ P−

focusL

We read off P− = c− and the two stable sequents that are the premises of
the derived rules:

Γ−
f−→ b− Γ−

f−→ a−

Γ−
f−→ c−

R3

Summarizing the three rules:

Γ−
f−→ a−

R1
Γ−

f−→ a−

Γ−
f−→ b−

R2
Γ−

f−→ b− Γ−
f−→ a−

Γ−
f−→ c−

R3

To see how they prove our original sequent

a−, ↓a− ⊃ b−, ↓a− ⊃ (↓b− ⊃ c−)
f−→ c−

we first take all the negative propositions away from the antecedents. That’s
because instead of focusing on them, we should be using a derived rule.
Here is the resulting proof

· f−→ a−
R1

· f−→ b−
R2

· f−→ a−
R1

· f−→ c−
R3

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.14

Of course, this is much shorter and more efficient that the proof using the
explicit focusing rules.

Circling back: let’s make all atoms positive

a+, a+ ⊃ ↑b+, a+ ⊃ (b+ ⊃ ↑c+)
f−→ c+

This time, we cannot focus on a+ in the antecedent, but on the other two
propositions and also on the succedent. Let’s do each in turn. Again, re-
member that Γ0 = (a+ ⊃ ↑b+, a+ ⊃ (b+ ⊃ ↑c+)) is a part of every sequent in
a proof. The succedent can be any positive proposition G+.

a+ ∈ Γ

Γ
f−→ [a+]

id+
Γ, b+

f−→ G+

Γ, [↑b+]
f−→ G+

↑L

Γ, [a+ ⊃ ↑b+]
f−→ G+

⊃L

Γ
f−→ G+

focusL

Here, a+ ∈ Γ should be seen as a constraint, so we just write Γ = (Γ′, a+)
and obtain the rule

Γ′, a+, b+
f−→ G+

Γ′, a+
f−→ G+

S1

For the second proposition:

a+ ∈ Γ

Γ
f−→ [a+]

id+

b+ ∈ Γ

Γ
f−→ [b+]

id+
Γ, c+

f−→ G+

Γ, [↑]c+ f−→ G+

↑L

Γ, [b+ ⊃ ↑c+]
f−→ G+

⊃L

Γ, [a+ ⊃ (b+ ⊃ ↑c+)]
f−→ G+

⊃L

Γ
f−→ G+

focusL

Again, collecting membership constraints we see Γ = (Γ′, a+, b+) and we
get

Γ′, a+, b+, c+
f−→ G+

Γ′, a+, b+
f−→ G+

S2

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.15

Finally, we can focus on the succedent:

c+ ∈ Γ

Γ
f−→ [c+]

id+

Γ
f−→ c+

focusR

which gives us

Γ′, c+
f−→ c+

S3

In summary:

Γ′, a+, b+
f−→ G+

Γ′, a+
f−→ G+

S1

Γ′, a+, b+, c+
f−→ G+

Γ′, a+, b+
f−→ G+

S2

Γ′, c+
f−→ c+

S3

With these three rules we can drop Γ0 since their only purpose would be
to focus on them—and that has been replaced by the derived rules. Our
big-step proof becomes:

a+, b+, c+
f−→ c+

S3

a+, b+
f−→ c+

S2

a+
f−→ c+

S1

Note that we have kept a+ among the antecedents since we cannot focus
on a positive atom (or any positive proposition, for that matter) in the an-
tecedent.

8 Polarization: A Brief Roadmap

A critical component in understanding the various fragment and opera-
tional interpretations we have seen is polarization [Lau99]. We started from
the inversion strategy.

Negative Propositions are those with invertible right rules, that is, if we
see them in the succedent we can apply their right rule without con-
sidering any other choice and search remains complete.

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.16

Positive Propositions are those with invertible left rules, that is, if we see
them in the antecedent we can apply their left rule without consider-
ing any other choice and search remains complete.

In order for every proposition to have a polarized version we need the so-
called shift operators ↑ and ↓ to go between the two classes of propositions.
We get:

Neg. props. A− ::= P− | B+ ⊃A− | ∀x.A−(x) | A−1 ∧A−2 | > | ↑B+

Pos. props. B+ ::= P+ | B+
1 ∧B+

2 | > | ∃x.B+(x) | B+
1 ∨B+

2 | ⊥ | ↓A−

Atoms can be either negative (P−) or positive (P+). During polarization
we can choose the polarization of each atom p freely, but must assign the
same polarity to each occurence of p. Conjunction and truth have invertible
left and right rules, so they appear in both rows.

Chaining is the opposite of inversion: we focus on a particular negative
antecedent or positive succedent and continue to apply rules only to the
single proposition in focus until the focusing phase is interrupted by a shift,
changing the polarity of the proposition.

Chaining by itself is complete for proof search as long as the shifts are
restricted such that we only have B− ::= · · · | ↓P− and A− ::= · · · | ↑P+.
The language so restricted is (an insignificant extension) of Horn logic.

In case all atoms are negative, chaining is called backward chaining (also
called top-down logic programming), which is a goal-directed proof search
strategy and the foundation of Prolog [Kow88].

In case all atoms are positive, chaining is called forward chaining (also
called bottom-up logic programming [NR91]), which is a saturation-based
proof search strategy and the foundation of Datalog.

There is the possibility of allowing both positive and negative atoms,
but the resulting mixed chaining logic programming language has never
been deeply investigated, as far as I am aware. However, chaining is com-
plete for this language, so it is a plausible candidate for an interesting and
expressive language.

If we allow arbitrary polarized propositions, then chaining alone is in-
sufficient: positive (non-atomic) propositions can show up in the antecedents,
and negative (non-atomic) propositions in the succedent. When such a
proposition is encountered, we apply inversion until we once again reach
a stable sequent which is characterized with only negative propositions and
positive atoms as antecedents, and positive propositions and negative atoms
as succedents.

LECTURE NOTES NOVEMBER 2, 2017

Datalog L18.17

Focusing = chaining + inversion was first discovered by Andreoli [And92],
with two caveats: (1) his propositions were not implicitly polarized, and (2)
focusing was defined for linear logic [Gir87], which we will only see later in
this course. However, focusing (and also the chaining-only fragment based
on Horn logic) has been remarkably robust in that it applies to a large num-
ber of reasonable substructural, modal, and other logics, both intuitionistic
and classical.

We will discuss focusing in the next lecture.

References

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in
linear logic. Journal of Logic and Computation, 2(3):197–347, 1992.

[CB83] Jacques Corbin and Michel Bidoit. Rehabilitation of Robinson’s
unification algorithm. In Information Processing 83, volume 9,
pages 909–914, 1983.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[Hue76] Gérard Huet. Résolution d’équations dans des langages d’ordre
1, 2, . . . , ω. PhD thesis, Université Paris VII, September 1976.

[Kow88] Robert A. Kowalski. The early years of logic programming. Com-
munications of the ACM, 31(1):38–43, 1988.

[Lau99] Olivier Laurent. Polarized proof-nets: Proof-nets for LC. In J.-
Y. Girard, editor, Proceedings of the 4th International Conference on
Typed Lambda Calculi and Applications (TLCA 1999), pages 213–227,
L’Aquila, Italy, April 1999. Springer LNCS 1581.

[NR91] Jeff Naughton and Raghu Ramakrishnan. Bottom-up evaluation
of logic programs. In J.-L. Lassez and G. Plotkin, editors, Com-
putational Logic. Essays in Honor of Alan Robinson, pages 640–700.
MIT Press, Cambridge, Massachusetts, 1991.

[Rob71] J. A. Robinson. Computational logic: The unification computa-
tion. Machine Intelligence, 6:63–72, 1971.

LECTURE NOTES NOVEMBER 2, 2017

	Introduction
	Reading Inference Rules from Premises to Conclusion
	Saturation
	Forward Chaining
	Comparing Backward and Forward Chaining
	Unification
	From Propositions to Rules of Inference
	Polarization: A Brief Roadmap

