
Lecture Notes on
Certifying Theorem Provers

15-317: Constructive Logic
Frank Pfenning

Lecture 13
October 17, 2017

1 Introduction

How do we trust a theorem prover or decision procedure for a logic? Ide-
ally, we would prove it correct (constructively, of course!) and extract the
implementation from the proof. For example, for the contraction-free se-
quent calculus for intuitionistic propositional logic (G4ip) we could try to
prove: Every sequent Γ −→G4ip A, either has a deduction D or not. This
is not an easy enterprise: We have to generalize it and then we have to
carry out a well-founded induction over a multiset ordering. Then we real-
ize that the extracted decision procedure is not very useful because it does
not account for invertible rules. So we write another system, which we (a)
have to prove equivalent to the first one, and (b) we have to then prove
decidable. Both of these are not easy, but in the end it will give us a warm
and fuzzy feeling to have a definitively correct implementation. After a
couple of months of hard work. Then we realize another optimization can
make our decision procedure more efficient and we have to go back to the
drawing board with our proof.

In this lecture we develop an alternative approach. In this approach we
first write a small, trusted proof checker for the logic at hand. Ideally we use
the simplest and most fundamental formulation of the logic (that usually
means natural deduction) to keep this checker as clean, short, and simple
as possible. Proofs are fundamentally related to programs, and proposi-
tions to types, so this is the same as writing a type checker for a small core
programming language.

LECTURE NOTES OCTOBER 17, 2017

L13.2 Certifying Theorem Provers

As a second step we instrument our decision procedure or theorem
prover to not just answer “yes” or “no”, but produce a proof term in case
the answer is “yes”. This can then be independently checked by our small,
trusted checker. Only if the checker also says “yes” do we accept and an-
swer of the decision procedure. This does not guarantee that the prover is
correct. It might, for example, incorrectly say “yes” on other propositions
and supply an incorrect proof term. It could also say “no” even though
the proposition is provable and we may never discover it. But, generally
speaking, we are more interested in theorems and proofs, so having our
prover certify theorems is a big step forward.

In this lecture we develop this in two steps: first the proof checker and
then we instrument the sequent calculus to produce proof terms.

2 Designing a Proof Checker

Natural deduction is the simplest and purest form of logic specification,
using only one judgment (A true) and the notion of hypothetical judgment.
However, it is not ideal if we try to develop a checker for proof terms. For
example, consider the rule

∆ `M : A

∆ ` inlM : A ∨B
∨I1

The term inlM in this rule has some inherent ambiguity because it serves
as a proof term for A ∨ B for any B! In order to enforce uniqueness, we
would have to annotate the constructor with the actual proposition B, for
example:

∆ ` inlBM : A ∨B
∆ `M : A

∨I1

We would soon find that our proof terms are littered with proposition,
which is annoying and can also be inefficient in terms of space needed to
represent proofs and time for checking them.

Now we should all remember the notion of verification. Recall that veri-
fications proceed with introduction rules from below and elimination rules
from above. When viewed in these two directions, all rules just break down
the proposition we are trying to prove into its constituents. Our motivation
was foundational: the meaning of a proposition should depend only on its
constituents. But we can now reap the benefits in terms of proof check-
ing: a proof terms that we extract from a verification should not need any
internal propositions!

LECTURE NOTES OCTOBER 17, 2017

Certifying Theorem Provers L13.3

Let’s start with conjunction, always a good and easy place to start.

A ↑ B ↑
A ∧B ↑

∧I
M : A ↑ N : B ↑

(M,N) : A ∧B ↑
∧I

This works perfectly: to check the term (M,N) against A∧B we can check
M against A and N against B.

The elimination rules, however, do not work like that.
A ∧B ↓
A ↓

∧E1

A ∧B ↓
B ↓

∧E2

R : A ∧B ↓
fstR : A ↓

∧E1

R : A ∧B ↓
sndR : B ↓

∧E2

We can not check fstR againstA by checkingR againstA∧B because we do
not know B. But we are reading the rule the wrong way! In a verification
the introduction rules are read bottom-up and the elimination rules are read
top-down.

Read top-down, the ∧E1 expresses the following: “If R has type A ∧ B
then fstR will have type A.” Fortunately, this is entirely sensible (although at
the moment we can’t be sure).

Distinguishing the two judgments, we say that verifications A ↑ are
annotated with checkable terms N , and propositions whose use is justified
with A ↓ are annotated with synthesizing terms R. We are shooting for the
following theorem (to be refined later, see Theorem 1):

(i) Given N and A, either N : A ↑ or not, and
(ii) given R there exists an A such that R : A other there exists

no such A.

We say that N checks against A and R synthesizes A.
So far we have

Checkable terms M,N ::= (M,N) | . . .
Synthesizing terms R ::= fstR | sndR | . . .

Continuing with implication:

A ↓
u

...
B ↑

A⊃B ↑
⊃Iu

u : A ↓
u

...
M : B ↑

(fn u⇒M) : A⊃B ↑
⊃Iu

LECTURE NOTES OCTOBER 17, 2017

L13.4 Certifying Theorem Provers

which means that functions are checkable while variables are synthesizing.
How about the elimination rule? Just based on the directions of the infer-
ences in verifications, we get the following:

A⊃B ↓ A ↑
B ↓

⊃E
R : A⊃B ↓ M : A ↑

RM : B ↓
⊃E

Recall that working from below and above meets at the ↓↑ rule. We model
this by allowing and synthesizing term R as a checkable one. Intuitively,
this should be okay because we can synthesize the type of R and compare
it to the given type.

A ↓
A ↑
↓↑

R : A ↓
R : A ↑

↓↑

Filling in more details in our picture, we now have:

Checkable terms M,N ::= (M,N) | (fn u⇒M) | R | . . .
Synthesizing terms R ::= fstR | sndR | u | RM | . . .

The other connectives don’t present any more new and interesting ideas.
We do note, for example, that inlM ends up as being a checkable term, which
avoids the problem we encountered for natural deduction in general. In
particular, we don’t need to annotate inl with a type, because inlM is always
checked against A ∨B.

() : > ↑
>I

no >E

M : A ↑
inlM : A ∨B ↑

∨I1
N : B ↑

inrN : A ∨B ↑
∨I2

R : A ∨B ↓

u : A ↓
u

...
M : C ↑

v : B ↓
v

...
N : C ↑

(case R of inlu⇒M | inr v ⇒ N) : C ↑
∨E

no ⊥I
R : ⊥ ↓

abortR : C ↑
⊥E

LECTURE NOTES OCTOBER 17, 2017

Certifying Theorem Provers L13.5

In summary (so far):

Checkable terms M,N ::= (M,N) | (fn u⇒M) | R
| inlM | inrN | (case R of inl u⇒M | v ⇒ N)
| abortR

Synthesizing terms R ::= fstR | sndR | u | RM | . . .

In order to formulate our theorem, we make the hypothetical judgment
explicit. We write ∆ = (u1:A1↓, . . . , un:An↓). In lecture we worked our way
up to this theorem, but I hope we have enough intutition at this point we
can state it directly. We refer to this as bidirectional type checking because we
interleave checking (bottom-up) and synthesis (top-down).

Theorem 1 (Decidability of bidirectional type checking)

(i) Given ∆, M , and A, either ∆ `M : A ↑ or ∆ 6`M : A ↑, and

(ii) Given ∆ and R, either there exists a unique A such that ∆ ` R : A ↓ or
there exists no A such that ∆ ` R : A ↓.

Proof: By mutual induction on the structure of N and R. For part (i) alone,
we may have been able to use the structure of A, but for part (ii) we do not
have A. ∆ does not give us much structure to work with, which leaves the
structure of N and R.

There is subtle point in the case for ↓↑ in that the term R does not be-
come smaller, so we also have specify that (ii)< (i). This means in an appeal
to the induction hypothesis (ii) in a case for (i) the proof term can remain the
same, but in an appeal to (i) from (ii), the proof term must become strictly
smaller (which, fortunately, it does in all the cases).

We show four cases.

Case: M = (fn u ⇒ M2) for some M2. Then we distinguish cases on A.
We refer to inversion when a judgment could have been derived by no
rule (and therefore does not hold) or just one rule (and therefore the
premise would have to hold).

Subcase: A = A1 ⊃A2 for some A1 and A2. Then

Either ∆, u:A1↓ `M2 : A2 ↑ or not by i.h.(i) on M2

∆, u:A1↓ `M2 : A2 ↑ first subsubcase
∆ ` fnu⇒M2 : A1 ⊃A2 ↑ by rule ⊃I

∆, u:A1↓ 6`M2 : A2 ↑ second subsubcase
∆ 6` (fn u⇒M2 : (A1 ⊃A2) ↑ by inversion

LECTURE NOTES OCTOBER 17, 2017

L13.6 Certifying Theorem Provers

Subcase: A 6= A1 ⊃A2 for all A1 and A2. Then

∆ 6` (fn u⇒M2) : A by inversion

Case: M = RN for some R and N .

∆ ` R : B ↓ for a unique B or there is no such B by i.h.(ii) on R
∆ ` R : B ↓ for a unique B first subcase
B = B1 ⊃B2 for some B1 and B2 first subsubcase
∆ ` N : B1 ↑ or ∆ 6` N : B1 ↑ by i.h.(i) on N

∆ ` N : B1 ↑ first sub3case
∆ ` RN : B2 ↓ by rule ⊃E
B2 is unique by inversion and uniqueness of B

∆ 6` N : B1 ↑ second sub3case
∆ 6` RN : A ↓ for any A by inversion and uniqueness of B

B 6= B1 ⊃B2 for any B1 and B2 second subsubcase
∆ 6` RN : A ↓ for any A by inversion and uniqueness of B

Case: M = R.

∆ ` R : A′ ↓ for a unique A′ or there is no such A′ by i.h.(ii) on R
Either A = A′ or A 6= A′ by decidability of equality on propositions
A = A′ first subcase
∆ ` R : A ↑ by rule ↑↓

A 6= A′ second subcase
∆ 6` R : A ↑ by inversion and uniqueness of A′.

Case: R = u

∆ ` u : A ↓ iff u : A ∈ ∆ by hypothetical judgment
A is unique because declarations u:A in ∆ are unique

�

From this proof (if completed), we can extract two functions of the fol-
lowing types in ML:

check : (var * prop) list -> chk_term -> prop -> bool
synth : (var * prop) list -> syn_term -> prop option

LECTURE NOTES OCTOBER 17, 2017

Certifying Theorem Provers L13.7

Here, the checkable terms have type chk_term, synthesizing terms have
type syn_term, and propositions are represented in the type prop. A
context represented a list of pairs of variables and their types. There are a
lot of cases to consider, but exploiting the pattern-matching facilities in ML
it remains small and manageable. In a realistic implementation, one would
want to print error messages or return error code instead of just false (for
check) and NONE (for synth), but this is a extra-logical refinement.

As an aside, in such representation of terms we can not just include ev-
ery synthesizable term as a checkable term, but we would need an explicit
constructor that creates a checkable term from a synthesizable term. Such
a constructor makes it less intuitive to write terms, so we can instead just
have a single type of term and have the check and synth functions sort
out which must be which.

3 Instrumenting a Theorem Prover

The next step will be to instrument some theorem prover so it can produce
a proof term in case it succeeds. What helps us here is that (a) we already
designed the sequent calculus as a purely bottom-up system for searching
for a verification, and (b) more efficient search procedures (such as G4ip,
which is in fact a decision procedure) are actually presented as refinements
of the sequent calculus. As an example we consider here G4, which is the
sequent calculus from Lecture 11, Section 4.

LECTURE NOTES OCTOBER 17, 2017

http://www.cs.cmu.edu/~fp/courses/15317-f17/lectures/11-proving.pdf#section.3

L13.8 Certifying Theorem Provers

Γ, P −→ P
id

Γ −→ A Γ −→ B

Γ −→ A ∧B
∧R

Γ, A,B −→ C

Γ, A ∧B −→ C
∧L

Γ −→ >
>R

Γ −→ C

Γ,> −→ C
>L

Γ −→ A

Γ −→ A ∨B
∨R1

Γ −→ B

Γ −→ A ∨B
∨R2

Γ, A −→ C Γ, B −→ C

Γ, A ∨B −→ C
∨L

no ⊥R rule Γ,⊥ −→ C
⊥L

Γ, A −→ B

Γ −→ A⊃B
⊃R

Γ, A⊃B −→ A Γ, B −→ C

Γ, A⊃B −→ C
⊃L

Recall that this is an optimization of the system which we obtained from
translating

A1↓, . . . , An↓...
C ↑ to

...
A1, . . . , An =⇒ C

The assignment of synthesizing and checking terms to the verifications on
the side of natural deduction suggests the corresponding annotations on
the side of sequents.

R1:A1↓, . . . , Rn:An↓...
N : C ↑ to

...
R1:A1, . . . , Rn:An =⇒ N : C

Furthermore, since propositions A ↓, working downwards from hypothe-
ses, are always fully justified as we are searching for a proof while C ↑ is
unknown until we complete the proof, the theorem we are aiming for is:

Theorem 2 (Sequent Proof Annotation)
For every deduction A1, . . . , An −→ C and for all hypotheses ∆ with ∆ `
R1:A1 ↓, . . . ,∆ ` Rn:An ↓ there exists an N such that R1:A1, . . . , Rn:An −→
N : C and ∆ ` N : C ↑

LECTURE NOTES OCTOBER 17, 2017

Certifying Theorem Provers L13.9

Proof: By induction on the structure of
D

A1, . . . , An −→ C �

Rather than show the proof case by case, we develop the proof term
annotation case by case. Let’s start with

Γ, A −→ B

Γ −→ A⊃B
⊃R

We can annotate the antecedents in Γ with a sequence ρ = (R1, . . . , Rn) of
synthesizing terms, which we abbreviate by ρ : Γ. By induction hypothesis,
and with a fresh variable u, we get some N such that

ρ : Γ, u : A −→ N : B

from which we can glean that the annotated rule should be

ρ : Γ −→ (fn u⇒ N) : A⊃B

Moreover, since ∆, u:A↓ ` u : A ↓, we have ∆, u:A↓ ` N : B ↑ and hence
∆ ` (fn u⇒ N) : A⊃B ↓ by ⊃I .

This means our annotated rule should be

ρ : Γ, u : A =⇒ N : B

ρ : Γ −→ (fn u⇒ N) : A⊃B
⊃R

As a second case, we consider ⊃L. We have

Γ, A⊃B −→ A Γ, B −→ C

Γ, A⊃B −→ C
⊃L

We are also given ρ : Γ, R : A ⊃ B. By induction hypothesis, we get an M
such that

ρ : Γ, R : A⊃B −→M : A and ∆ `M : A

In order to be able to apply the induction hypothesis to the second premise,
we need some (synthesizing) term, denoting a proof of B. We we have
R : A ⊃ B and M : A, so RM : B and we obtain from the induction
hypothesis some N such that

ρ : Γ, RN : B −→ N : C and ∆ ` N : C

LECTURE NOTES OCTOBER 17, 2017

L13.10 Certifying Theorem Provers

which allows us to choose N : C in the conclusion as well. Summarizing
this as a rule, we get

ρ : Γ, R : A⊃B −→M : A ρ : Γ, RM : B −→ N : C

ρ : Γ, R : A⊃B −→ N : C
⊃L

As a final case, we consider the identity rule.

Γ, P −→ P
id

We also have ρ : Γ, R : P so we can choose N = R:

ρ : Γ, R : P −→ R : P
id

and ∆ ` R : P ↓ implies ∆ ` R : P ↑ by rule ↓↑.
We now summarize all the rules, but reusing the notation Γ for ρ : Γ to

make the rules more readable.

Γ, R : P −→ R : P
id

Γ −→M : A Γ −→ N : B

Γ −→ (M,N) : A ∧B
∧R

Γ, fstR : A, sndR : B −→ N : C

Γ, R : A ∧B −→ N : C
∧L

Γ −→ () : >
>R

Γ −→ C

Γ, R : > −→ C
>L

Γ −→M : A

Γ −→ inlM : A ∨B
∨R1

Γ −→ N : B

Γ −→ inrN : A ∨B
∨R2

Γ, u : A −→ N1 : C Γ, v : B −→ N2 : C

Γ, R : A ∨B −→ (case R of inlu⇒ N1 | inr v ⇒ N2) : C
∨L

no ⊥R rule Γ, R : ⊥ −→ abortR : C
⊥L

Γ, u : A −→ N : B

Γ −→ (fn u⇒ N) : A⊃B
⊃R

Γ, R : A⊃B −→M : A Γ, (RM) : B −→ N : C

Γ, R : A⊃B −→ N : C
⊃L

LECTURE NOTES OCTOBER 17, 2017

Certifying Theorem Provers L13.11

4 Justifying Cut

In homework assignment 6 you are asked to provide a similar proof term
assignment in G4ip, which you previously implemented in homework 5.
This requires one further thought: how would we handle the rule of cut if
it were needed? Let’s come back to our inductive proof of Theorem 2 and
consider that case that we would have cut as a rule (but we write it as the
admissible rule it is):

Γ −→ A Γ, A −→ C

Γ −→ C
cut

We know, by the fact that cut is admissible, that there is a cut-free proof
of the conclusion. We could construct this using the proof of admissibility
(which was constructive) and annotate the result. Unfortunately, the result
could be quite large, since cut elimination can explode the size of the proof.

Alternatively, we can make up a new kind of proof term for this rule,
standing in for what cut elimination might compute. First, since we have
ρ : Γ we can appeal to the induction hypothesis and construct and M such
that

ρ : Γ −→M : A

If we could only turn the checkable term M into a synthesizing term R, we
could use this to justify the antecedent A in the second premise. For this
we create a new construct (M : A) in the syntax for synthesizing terms.
It synthesized A (which is therefore unique) if M checks against A. But
M (which we obtained from an appeal to the induction hypothesis) was a
checkable term! Then, again by induction hypothesis we obtain

ρ : Γ, (M : A) : A −→ N : C

which we can use to conclude

ρ : Γ −→ N : C

as required. This leads to the rule

Γ −→M : A Γ, (M : A) : A −→ N : C

Γ −→ N : C
cut

We would need the new rule
∆ `M : A ↑

∆ ` (M : A) : A ↓
↑↓

LECTURE NOTES OCTOBER 17, 2017

L13.12 Certifying Theorem Provers

For verifications, this cannot be a primitive rule (since it destroys the mean-
ing explanation for the connectives), but we can use it the the type checker
if we extend our syntax with (M : A) as a new form of synthesizing term.

Alternatively, we could use the let form by justifying A by a variable u
which is discharged using the verification of A in the conclusion:

Γ `M : A Γ, u : A ` N : C

Γ ` (let u : A = M in N) : C
cut

The let form here is necessary in the conclusing because otherwise the con-
clusion would still depend on u. This form is much more pleasant from a
programming perspective. It also means we can type every term (not just
normal terms) if we annotate the let form with its type. Additionally, this
is the only form where we need a type. In some ways, this is the essence of
bidirectional type-checking: only redexes need to be annotated with a type.
If all redexes are expressed as let forms, this means only let forms need to
be annotated, and really only if the term we are assigning is only checkable.
If it were synthesizing, as in let u = R in N , we could synthesize the type
A of R and proceed to check N under the antecedent u : A.

Adding both of these alternatives to the syntax (even though only one
is really required), we obtain this syntax that allows us to express arbitrary
proofs, not just those annotating verifications.

Checkable terms M,N ::= (M,N) | (fn u⇒M) | R
| inlM | inrN | (case R of inl u⇒M | v ⇒ N)
| abortR
| (let u : A = M in N)

Synthesizing terms R ::= fstR | sndR | u | RM | (M : A)

LECTURE NOTES OCTOBER 17, 2017

	Introduction
	Designing a Proof Checker
	Instrumenting a Theorem Prover
	Justifying Cut

