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1 Introduction

The inversion calculus from the last lecture constitutes a significant step
forward, but it still has the problem that in the ⊃L rule, the principal for-
mula has to be copied to the first premise. Therefore, the first premise may
not be smaller than the conclusion.

We now have two basic choices. One is to refine the idea of loop-
checking and make it as efficient as possible. We will not pursue this option
here, although it can be done fruitfully [How98, Chapter4].

The second choice is to refine our analysis of the rules to see if we can
design a calculus were all premises are smaller than the conclusion in some
well-founded ordering. For this purpose we return to the restrictive se-
quent calculus and postpone for the moment a discussion of inversion.
Dyckhoff [Dyc92] noticed that we can make progress by considering the
possible forms of the antecedent of the implication. In each case we can
write a special-purpose rule for which the premises are smaller than con-
clusion. The result is a beautiful calculus which Dyckhoff calls contraction-
free because there is no rule of contraction, and, furthermore, the principal
formula of each left rule is consumed as part of the rule application rather
than copied to any premise.

We repeat the rules of the restrictive sequent calculus here for reference.
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Γ, P −→ P
init

Γ −→ A Γ −→ B

Γ −→ A ∧B
∧R

Γ, A, B −→ C

Γ, A ∧B −→ C
∧L

Γ −→ >
>R

Γ −→ C

Γ,> −→ C
>L

Γ −→ A

Γ −→ A ∨B
∨R1

Γ −→ B

Γ −→ A ∨B
∨R2

Γ, A −→ C Γ, B −→ C

Γ, A ∨B −→ C
∨L

no ⊥R rule Γ,⊥ −→ C
⊥L

Γ, A −→ B

Γ −→ A⊃B
⊃R

Γ, A⊃B −→ A Γ, B −→ C

Γ, A⊃B −→ C
⊃L

2 Refining the Left Rule for Implication

We consider each possibility for the antecedent of the implication in turn.

Truth. Consider a sequent

Γ,>⊃B −→ C.

Can we find a simpler proposition expressing the same as >⊃B? Yes,
namely just B, since (>⊃B) ≡ B. So we can propose the following spe-
cialized rule:

Γ, B −→ C

Γ,>⊃B −→ C
>⊃L

Falsehood. Consider a sequent

Γ,⊥⊃B −→ C.
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Can we find a simpler proposition expressing the same contents? Yes,
namely >, since (⊥⊃B) ≡ >. But > on the left-hand side can be elimi-
nated by >L, so we can specialize the general rule as follows:

Γ −→ C

Γ,⊥⊃B −→ C
⊥⊃L

Disjunction. Now we consider a sequent

Γ, (D ∨ E)⊃B −→ C.

Again, we have to ask if there is a simpler equivalent formula we can use
instead of (C ∨ D)⊃B. If we consider the ∨L rule, we might consider
(D⊃B) ∧ (E⊃B). A little side calculation confirms that, indeed,

((D ∨ E)⊃B) ≡ ((D⊃B) ∧ (E⊃B))

We can exploit this, playing through the rules as follows

Γ, D⊃B,E⊃B −→ C

Γ, (D⊃B) ∧ (E⊃B) −→ C
∧L

Γ, (D ∨ E)⊃B −→ C
equiv

This suggests the specialized rule

Γ, D⊃B,E⊃B −→

Γ, (D ∨ E)⊃B −→ C
∨⊃L

The question is whether the premise is really smaller than the conclusion
in some well-founded measure. We note that both D⊃B and E⊃B are
smaller than the original formula (D ∨ E)⊃B. Replacing one element in
a multiset by several, each of which is strictly smaller according to some
well-founded ordering, induces another well-founded ordering on multi-
sets. So, the premise is indeed smaller in the multiset ordering.

Conjunction. Next we consider

Γ, (D ∧ E)⊃B −→ C.

In this case we can create an equivalent formula by currying.

Γ, D⊃(E⊃B) −→ C

Γ, (D ∧ E)⊃B −→ C
∧⊃L
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This formula is not strictly smaller, but we can make it so by giving con-
junction a weight of 2 while counting implications as 1. Fortunately, this
weighting does not conflict with any of the other rules we have.

Atomic propositions. How do we use an assumption P ⊃B? We can con-
clude if we also know P , so we restrict the rule to the case where P is al-
ready among the assumption.

P ∈ Γ Γ, B −→ C

Γ, P ⊃B −→ C
P⊃L

Clearly, the premise is smaller than the conclusion.

Implication. Last, but not least, we consider the case

Γ, (D⊃E)⊃B −→ C.

We start by playing through the left rule for this particular case because,
as we have already seen, implication on the left does not simplify when
interacting with another implication.

Γ, (D⊃E)⊃B,D −→ E

Γ, (D⊃E)⊃B −→ D⊃E
⊃R

Γ, B −→ C

Γ, (D⊃E)⊃B −→ C
⊃L

The second premise is smaller and does not require any further attention.
For the first premise, we need to find a smaller formula that is equivalent
to ((D⊃E)⊃B) ∧D. The conjunction here is a representation of two dis-
tinguished formulas in the context. Fortunately, we find

((D⊃E)⊃B) ∧D ≡ (E⊃B) ∧D

which can be checked easily. This leads to the specialized rule

Γ, E⊃B,D −→ E Γ, B −→ C

Γ, (D⊃E)⊃B −→ C
⊃⊃L

This concludes the presentation of the specialized rules. The complete
set of rule is summarized in Figure 1.
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Γ, P −→ P
init

Γ −→ A Γ −→ B

Γ −→ A ∧B
∧R

Γ, A, B −→ C

Γ, A ∧B −→ C
∧L

Γ −→ >
>R

Γ −→ C

Γ,> −→ C
>L

Γ −→ A

Γ −→ A ∨B
∨R1

Γ −→ B

Γ −→ A ∨B
∨R2

Γ, A −→ C Γ, B −→ C

Γ, A ∨B −→ C
∨L

no ⊥R rule Γ,⊥ −→ C
⊥L

Γ, A −→ B

Γ −→ A⊃B
⊃R

P ∈ Γ Γ, B −→ C

Γ, P ⊃B −→ C
P⊃L

Γ, D⊃(E⊃B) −→ C

Γ, (D ∧ E)⊃B −→ C
∧⊃L

Γ, B −→ C

Γ,>⊃B −→ C
>⊃L

Γ, D⊃B,E⊃B −→

Γ, (D ∨ E)⊃B −→ C
∨⊃L

Γ −→ C

Γ,⊥⊃B −→ C
⊥⊃L

Γ, E⊃B,D −→ E Γ, B −→ C

Γ, (D⊃E)⊃B −→ C
⊃⊃L

Figure 1: Contraction-free sequent calculus
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3 Asynchronous Decomposition

At this point we need to reexamine the question from last lecture: where do
we really need to make choices in this sequent calculus? We ask the ques-
tion slight differently this time, although the primary tool will still be the
invertibility of rules. The question we want to ask this time: if we consider
a formula on the right or on the left, can we always apply the correspond-
ing rule without considering other choices? The difference between the two
question becomes clear, for example, in the P⊃L rule.

P ∈ Γ Γ, B −→ C

Γ, P ⊃B −→ C
P⊃L

This rule is clearly invertible, because P ∧ (P ⊃B) ≡ P ∧B. Nevertheless,
when we consider P ⊃B we cannot necessarily apply this rule because P
may not be in the remaining context Γ.

Formulas whose left or right rules can always be applied are called left
or right asynchronous, respectively. We can see by examining the rules and
considering the equivalences above and the methods from the last lecture,
that the following formulas are asynchrounous:

Right asynchronous A ∧B, >, A⊃B
Left asynchronous A ∧B, >, A ∨B, ⊥,

(D ∧ E)⊃B, >⊃B, (D ∨ E)⊃B, ⊥⊃B

This leaves

Right synchronous P , A ∨B, ⊥
Left synchronous P , P ⊃B, (D⊃E)⊃B

Proof search now begins by breaking down all asynchronous formulas,
leaving us with a situation where we have a synchronous formula on the
right and only synchronous formulas on the left. We now check if init or
P⊃L can be applied and use them if possible. Since these rules are invert-
ible, this does not require a choice. When no more of these rules are ap-
plicable, we have to choose between ∨R1, ∨R2 or ⊃⊃L, if the opportunity
exists; if not we fail and backtrack to the most recent choice point.

This strategy is complete and efficient for many typical examples, al-
though in the end we cannot overcome the polynomial-space completeness
of the intuitionistic propositional logic [Sta79].

The metatheory of the contraction-free sequent calculus has been inves-
tigated separately from its use as a decision procedure by Dyckhoff and
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Negri [DN00]. The properties there could pave the way for further ef-
ficiency improvements by logical considerations, specifically in the treat-
ment of atoms.

An entirely different approach to theorem proving in intuitionistic propo-
sitional logic is to use the inverse method [MP08] which is, generally speak-
ing, more efficient on difficult problems, but not as direct on easier prob-
lems. We will discuss this technique in a later lecture.
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