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1 Introduction

The identity theorem of the sequent calculus exhibits one connection be-
tween the judgments A left and A right : If we assume A left we can prove
A right . In other words, the left rules of the sequent calculus are strong
enough so that we can reconstitute a proof of A from the assumption A. So
the identity theorem is a global version of the local completeness property
for the elimination rules.

The cut theorem of the sequent calculus expresses the opposite: if we
have a proof of A right we are licensed to assume A left . This can be in-
terpreted as saying the left rules are not too strong: whatever we can do
with the antecedent A left can also be deduced without that, if we know
A right . Because A right occurs only as a succedent, and A left only as an
antecedent, we must formulate this in a somewhat roundabout manner: If
Γ =⇒ A right and Γ, A left =⇒ J then Γ =⇒ J . In the sequent calculus for
pure intuitionistic logic, the only conclusion judgment we are considering
is C right , so we specialize the above property.

Because it is very easy to go back and forth between sequent calculus
deductions of A right and verifications of A↑, we can use the cut theorem
to show that every true proposition has a verification, which establishes a
fundamental, global connection between truth and verifications. While the
sequent calculus is a convenient intermediary (and was conceived as such
by Gentzen [Gen35]), this theorem can also be established directly using
verifications.
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L10.2 Cut Elimination

2 Admissibility of Cut

The cut theorem is one of the most fundamental properties of logic. Because
of its central role, we will spend some time on its proof. In lecture we
developed the proof and the required induction principle incrementally;
here we present the final result as is customary in mathematics. The proof
is amenable to formalization in a logical framework; details can be found
in a paper by the instructor [Pfe00].

Theorem 1 (Cut) If Γ =⇒ A and Γ, A =⇒ C then Γ =⇒ C.

Proof: By nested inductions on the structure of A, the derivation D of
Γ =⇒ A and E of Γ, A =⇒ C. More precisely, we appeal to the induction
hypothesis either with a strictly smaller cut formula, or with an identical
cut formula and two derivations, one of which is strictly smaller while the
other stays the same. The proof is constructive, which means we show how
to transform

D
Γ =⇒ A and

E
Γ, A =⇒ C to

F
Γ =⇒ C

The proof is divided into several classes of cases. More than one case
may be applicable, which means that the algorithm for constructing the
derivation of Γ =⇒ C from the two given derivations is naturally non-
deterministic.

Case: D is an initial sequent.

D =
Γ′, P =⇒ P

init

Γ = (Γ′, P ) This case
Γ′, P, P =⇒ C Deduction E
Γ′, P =⇒ C By Contraction (see Lecture 9)
Γ =⇒ C By equality

Case: E is an initial sequent using the cut formula.

E =
Γ, P =⇒ P

init
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A = P = C This case
Γ =⇒ A Deduction D

Case: E is an initial sequent not using the cut formula.

E =
Γ′, P, A =⇒ P

init

Γ = (Γ′, P ) This case
Γ′, P =⇒ P By rule init
Γ =⇒ P By equality

Case: A is the principal formula of the final inference in both D and E .
There are a number of subcases to consider, based on the last infer-
ence in D and E . We show some of them.
Subcase:

D =

D1

Γ =⇒ A1

D2

Γ =⇒ A2

Γ =⇒ A1 ∧A2
∧R

and E =

E1

Γ, A1 ∧A2, A1 =⇒ C

Γ, A1 ∧A2 =⇒ C
∧L1

Γ, A1 =⇒ C By i.h. on A1 ∧A2, D and E1

Γ =⇒ C By i.h. on A1, D1, and previous line

Actually we have ignored a detail: in the first appeal to the in-
duction hypothesis, E1 has an additionaly hypothesis, A1, and
therefore does not match the statement of the theorem precisely.
However, we can always weaken D to include this additional
hypothesis without changing the structure of D (see the Weak-
ening Theorem in Lecture 9) and then appeal to the induction
hypothesis. We will not be explicit about these trivial weaken-
ing steps in the remaining cases.

Subcase:

D =

D2

Γ, A1 =⇒ A2

Γ =⇒ A1⊃A2
⊃R
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L10.4 Cut Elimination

and E =

E1

Γ, A1⊃A2 =⇒ A1

E2

Γ, A2⊃A2, A2 =⇒ C

Γ, A1⊃A2 =⇒ C
⊃L

Γ =⇒ A1 By i.h. on A1⊃A2, D and E1

Γ =⇒ A2 By i.h. on A1 from above and D2

Γ, A2 =⇒ C By i.h. on A1⊃A2, D and E2

Γ =⇒ C By i.h. on A2 from above

Case: A is not the principal formula of the last inference inD. In that caseD
must end in a left rule and we can appeal to the induction hypothesis
on one of its premises. We show some of the subcases.

Subcase:

D =

D1

Γ′, B1 ∧B2, B1 =⇒ A

Γ′, B1 ∧B2,=⇒ A
∧L1

Γ = (Γ′, B1 ∧B2) This case
Γ′, B1 ∧B2, B1 =⇒ C By i.h. on A, D1 and E
Γ′, B1 ∧B2 =⇒ C By rule ∧L1

Γ =⇒ C By equality

Subcase:

D =

D1

Γ′, B1⊃B2 =⇒ B1

D2

Γ′, B1⊃B2, B2 =⇒ A

Γ′, B1⊃B2 =⇒ A
⊃L

Γ = (Γ′, B1⊃B2) This case
Γ′, B1⊃B2, B2 =⇒ C By i.h. on A, D2 and E
Γ′, B2⊃B2 =⇒ C By rule ⊃L on D1 and above
Γ =⇒ C By equality

Case: A is not the principal formula of the last inference in E . This overlaps
with the previous case, since A may not be principal on either side. In
this case, we appeal to the induction hypothesis on the subderivations
of E and directly infer the conclusion from the results. We show some
of the subcases.
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Subcase:

E =

E1

Γ, A =⇒ C1

E2

Γ, A =⇒ C2

Γ, A =⇒ C1 ∧ C2
∧R

C = C1 ∧ C2 This case
Γ =⇒ C1 By i.h. on A, D and E1

Γ =⇒ C2 By i.h. on A, D and E2

Γ =⇒ C1 ∧ C2 By rule ∧R on above

Subcase:

E =

E1

Γ′, B1 ∧B2, B1, A =⇒ C

Γ′, B1 ∧B2, A =⇒ C
∧L1

Γ = (Γ′, B1 ∧B2) This case
Γ′, B1 ∧B2, B1 =⇒ C By i.h. on A, D and E1

Γ′, B1 ∧B2 =⇒ C By rule ∧L1 from above

�

3 Cut Elimination

Gentzen’s original presentation of the sequent calculus included an infer-
ence rule for cut. The analogue in our system would be

Γ =⇒ A Γ, A =⇒ C

Γ =⇒ C
cut

The advantage of this calculus is that it more directly corresponds to nat-
ural deduction in its full generality, rather than verifications. The disad-
vantage is that it cannot easily be seen as capturing the meaning of the
connectives by inference rules, because with the rule of cut the meaning of
C might depend on the meaning of any other proposition A (possibly even
including C as a subformula).

In order to clearly distinguish between the two kinds of calculi, the
one we presented is sometimes called the cut-free sequent calculus, while
Gentzen’s calculus would be a sequent calculus with cut. The theorem con-
necting the two is called cut elimination: for any deduction in a sequent
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calculus with cut, there exists a cut-free deduction of the same sequent.
The proof is a straightforward induction on the structure of the deduction,
appealing to the cut theorem in one crucial place.

Theorem 2 (Cut Elimination) If D is a deduction of Γ =⇒ C possibly using
the cut rule, then there exists a cut-free deduction D′ of Γ =⇒ C.

Proof: By induction on the structure of D. In each case, we appeal to the
induction hypothesis on all premises and then apply the same rule to the
result. The only interesting case is when a cut rule is encountered.

Case:

D =

D1

Γ =⇒ A
D2

Γ, A =⇒ C

Γ =⇒ C
cut

Γ =⇒ A without cut By i.h. on D1

Γ, A =⇒ C without cut By i.h. on D2

Γ =⇒ C By the Cut Theorem

�

Similarly, Gentzen also allowed initial sequents with a non-atomic prin-
cipal formula. It is a straightforward exercise to show that any deduction
that uses non-atomic initial sequents can be expanded into one that uses
only atomic ones.

4 Quantification in Sequent Calculus

In natural deduction, we had two forms of hypotheses: A true and c : τ
for parameters c. The latter form was introduced into deductions by the ∀I
and ∃E rules. In the sequent calculus we make all assumptions explicit on
the left-hand side of sequents. In order to model parameters we therefore
need a second kind of judgment on the left that reads c : τ . It is customary
to collect all such hypotheses in a different context, denoted Σ for signature.
A sequent then has the form

c1:τ1, . . . , cm:τm︸ ︷︷ ︸
Σ

; A1 left, . . . , An left︸ ︷︷ ︸
Γ

=⇒ C right
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We assume that all parameters declared in a signature Σ are distinct. Some-
times this requires us to choose a parameter with a name that has not yet
been used. When writing down a sequent Σ; Γ =⇒ C we presuppose that
all parameters in Γ and C are declared in Σ. In the bottom-up construction
of a deduction we make sure to maintain this.

The typing judgment for terms, t : τ , can depend on the signature Σ but
not on logical assumptions A left . We therefore write Σ ` t : τ to express
that term t has type τ in signature Σ.

In all the propositional rules we have so far, the signature Σ is propa-
gated unchanged from the conclusion of the rule to all premises. In order
to derive the rules for the quantifiers, we reexamine verifications for guid-
ance, as we did for the propositional rules in Lecture 9.

Universal quantification. We show the verification on the left and with
the corresponding right rule.

c : τ...
A(c)↑

∀x:τ. A(x)↑
∀Ic

Σ, c:τ ; Γ =⇒ A(c)

Σ; Γ =⇒ ∀x. A(x)
∀R

Our general assumption that the signature declares every parameter at
most once means that c cannot occur in Σ already or the rule would not
apply. Also note that Σ declares all parameters occurring in Γ, so c cannot
occur there, either.

The elimination rule that uses a universally quantified assumption cor-
responds to a left rule.

∀x:τ. A(x)↓ t : τ

A(t)↓
∀E

Σ ` t : τ Σ; Γ,∀x:τ. A(x), A(t) =⇒ C

Σ; Γ,∀x:τ. A(x) =⇒ C
∀L

Existential quantification. Again, we derive the sequent calculus rules
from the introduction and eliminatinon rules.

t : τ A(t)↑

∃x:τ. A(x)↑
∃I

Σ ` t : τ Σ; Γ =⇒ A(t)

Σ; Γ =⇒ ∃x:τ. A(x)
∃R
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L10.8 Cut Elimination

As for disjunction elimination, the natural deduction rule already has some-
what of the flavor of the sequent calculs.

∃x:τ. A(x)↓

c : τ A(c)↓
u

...
C↑

C↑
∃Ec,u

Σ, c:τ ; Γ,∃x:τ. A(x), A(c) =⇒ C

Σ; Γ,∃x:τ. A(x) =⇒ C
∃L

5 Cut Elimination with Quantification

The proof of the cut theorem extends to the case when we add quantifiers.
A crucial property we need is substitution for parameters, which corre-
sponds to a similar substitution principle on natural deductions: If Σ ` t : τ
and Σ, c : τ ; Γ ` A then Σ; [t/c]Γ ` [t/c]A. This is proved by a straightfor-
ward induction over the structure of the second deduction, appealing to
some elementary properties such as weakening where necessary.

We show only one case of the extended proof of cut, where an existential
formula is cut and was just introduced on the right and left, respectively.

Subcase:

D =

T
Σ ` t : τ

D1

Σ; Γ =⇒ A1(t)

Σ; Γ =⇒ ∃x:τ. A1(x)
∃R

and E =

E1

Σ, c:τ ; Γ,∃x:τ. A1(x), A1(c) =⇒ C

Σ; Γ,∃x:τ. A1(x) =⇒ C
∃L

Σ; Γ,∃x:τ. A1(x), A1(t) =⇒ C By substitution [t/c]E1

Σ; Γ, A1(t) =⇒ C By i.h. on ∃x. A1(x), D, and [t/c]E1

Σ; Γ =⇒ C By i.h. on A1(t), D1, and above

The induction requires that A1(t) is considered smaller than ∃x. A1(x).
Formally, this can be justified by counting the number of quantifiers
and connectives in a proposition and noting that the term t does not
contain any. A similar remark applies to check that [t/c]E1 is smaller
than E . Also note how the side condition that c must be a new param-
eter in the ∃L rule is required in the substitution step to conclude that
[t/c]Γ = Γ, [t/c]A1(c) = A(t) = [t/x]A1(x), and [t/c]C = C.
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