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1 Introduction

In this lecture we develop the sequent calculus as a formal system for proof
search in natural deduction. The sequent calculus was originally intro-
duced by Gentzen [Gen35], primarily as a technical device for proving con-
sistency of predicate logic. Our goal of describing a proof search procedure
for natural deduction predisposes us to a formulation due to Kleene [Kle52]
called G3.

Our sequent calculus is designed to exactly capture the notion of a ver-
ification, introduced in Lecture 3. Recall that verifications are constructed
bottom-up, from the conclusion to the premises using introduction rules,
while uses are constructed top-down, from hypotheses to conclusions us-
ing elimination rules. They meet in the middle, where an assumption may
be used as a verification for an atomic formula. In the sequent calculus,
both steps work bottom-up, which will allows us to prove global versions
of the local soundness and completeness properties foreshadowed in Lec-
ture 3.

2 Sequents

When constructing a verification, we are generally in a state of the follow-
ing form
Al e Anl

ct
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L9.2 Sequent Calculus

where Ay, ..., A, are all assumptions we may use, while C'is the conclusion
we are trying to verify. A sequent is just a local notation for such a partially
complete verification. We write

Aqleft, ... A, left = C right

where the judgments A left and C'right correspond to A| and CT, respec-
tively. The judgments on the left are assumptions called antecedents, the
judgment on the right is the conclusion called the succedent.

The rules that define the A left and A right judgment are systematically
constructed from the introduction and elimination rules, keeping in mind
their directions in terms of verifications and uses. Introduction rules are
translated to corresponding right rules. Since introduction rules already
work from the conclusion to the premises, this mapping is straightforward.
Elimination rules work top-down, so they have to be flipped upside-down
in order to work as sequent rules, and are turned into left rules. Pictorially:

—— Hypotheses
Eliminations
1T ~ Initial Sequents
Introductions Left Rules Right Rules

(~ Elims™!) (~ Intros)

We now proceed connective by connective, constructing the right and
left rules from the introduction and elimination rules. When writing a se-
quent, we can always tell which propositions are on the left and which are
on the right, so we omit the judgments left and right for brevity. Also, we
abbreviate a collection of antecedents A; left,..., A, left by I'. The order
of the antecedents does not matter, so we will allow them to be implicitly
reordered.

Conjunction. We recall the introduction rule first and show the corre-
sponding right rule.
AT BT N I'—=A I'—=B8B
ANBT I'=AAB
The only difference is that the antecedents I' are made explicit. Both premises

have the same antecedents, because any assumption can be used in both
subdeductions.

AR
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Sequent Calculus L9.3

There are two elimination rules, so we two corresponding left rules.
Since the letters L and R are used to denote the type of rule in the sequent
calculus, we index the rules as first and second conjunction left rule.

AAB]| T, AAB,A—C
ANET, ALq

Al I AANB— C

AAB] T AAB,B—C
AER ALso

Bl T,AANB— C

We preserve the principal formula A A\ B of the left rule in the premise. This
is because we are trying to model proof construction in natural deduction
where assumptions can be used multiple times. If we temporarily ignore
the copy of AA B in the premise, it is easier to see how the rules correspond.

Truth. Truthis defined just by an introduction rule and has no elimination
rule. Consequently, there is only a right rule in the sequent calculus and no
left rule.

— 11 —= TR

m =T

Implication. Again, the right rule for implication is quite straightforward,
because it models the introduction rule directly.

Al
B7 INA=—a_hB
oY — DR
ADB] I'= ADB

We see here one advantage of the sequent calculus over natural deduc-
tion: the scoping for additional assumptions is simple. The new antecedent
A left is available anywhere in the deduction of the premise, because in the
sequent calculus we only work bottom-up. Moreover, we arrange all the
rule so that antecedents are persistent: they are always propagated from the
conclusion to all premises.

The elimination rule is trickier, because it involves a more complicated
combination of verifications and uses.

ADB| A7 'N''A>B— A ©'’'ADB,B—C

DF DL
B\ I'N'A>DB=C
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L9.4 Sequent Calculus

In words: in order to use A D B we have to produce a verification of 4,
in which case we can use B. The antecedent A D B is carried over to both
premises to maintain persistence. Note that the premises of the left rule are
reversed, when compared to the elimination rule to indicate that we do not
want to make the assumption B unless we have already established A.

In terms of provability, there is some redundancy in the DL rule. For ex-
ample, once we know B, we no longer need A D B, because B is a stronger
assumption. As stressed above, we try to maintain the correspondence to
natural deductions and postpone these kinds of optimization until later.

Disjunction. The right rules correspond directly to the introduction rules,
as usual.

AT r— A
VI, _— VR
AV B1 I— AVB
Bi
VIg =25 VR,
AV Bl I— AVB

The disjunction elimination rule was somewhat odd, because it intro-
duced two new assumptions, one for each case of the disjunction. The left
rule for disjunction actually has a simpler form that is more consistent with
all the other rules we have shown so far.

— U —w
Al B
AVB| C1 1 IMAVB,A=C T,AVB,B=C .
vV E®W V
1 IAVDB=C

As for implication, scoping issues are simplified because the new assump-
tions A and B in the first and second premise, respectively, are available
anywhere in the deduction above.

Falsehood. Falsehood has no introduction rule, and therefore no right
rule in the sequent calculus. To arrive at the left rule, we need to pay atten-
tion to the distinction between uses and verifications, or we can construct
the 0-ary case of disjunction from above.

— L
1 I,L—C
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Sequent Calculus L9.5

Atomic propositions. Recall that we cannot use an introduction rule to
verify atomic propositions P because they cannot be broken down further.
The only possible verification of P is directly via a use of P. This turns into
a so-called initial sequent.

Pl .
?T lT @ nit

This rule has a special status in that it does not break down any proposition,
but establishes a connection between two judgments. In natural deduction,
it is the connection between uses and verifications; in sequent calculus, it is
the connection between the left and right judgments.

As a simple example, we consider the proof of (A V B) D(B V A).

- -
AVB,A— A" AVB,B—B
VR,

VR
AVB,A— BVA > AVB,B— BV A
VL

AVB= BV A 5
= (AVB)D(BVA)

3 Observations on Sequent Proofs

We have already mentioned that antecedents in sequent proofs are persis-
tent: once an assumption is made, it is henceforth usable above the infer-
ence that introduces it. Sequent proofs also obey the important subformula
property: if we examine the complete or partial proof above a sequent, we
observe that all sequents are made up of subformulas of the sequent itself.
This is consistent with the design criteria for the verifications: the verifica-
tion of a proposition A may only contain subformulas of A. This is impor-
tant from multiple perspectives. Foundationally, we think of verifications
as defining the meaning of the propositions, so a verification of a proposi-
tion should only depend on its constituents. For proof search, it means we
do not have to try to resort to some unknown formula, but can concentrate
on subformulas of our proof goal.

If we trust for the moment that a proposition A is true if and only if it
has a deduction in the sequent calculus (as = A), we can use the sequent
calculus to formally prove that some proposition can ot be true in general.
For example, we can prove that intuitionistic logic is consistent.
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L9.6 Sequent Calculus

Theorem 1 (Consistency) It is not the case that — L.

Proof: No left rule is applicable, since there is no antecedent. No right rule
is applicable, because there is no right rule for falsehood. Therefore, there
cannot be a proof of — L. O

Theorem 2 (Disjunction Property) If = AV B then either =— Aor —
B.

Proof: No left rule is applicable, since there is no antecedent. The only
right rules that are applicable are VR; and VRy. In the first case, we have
= A, in the second — B. O

Theorem 3 (Failure of Excluded Middle) It is not the case that =— AV —A
for arbitrary A.

Proof: From the disjunction property, either — A or — —A. For the
tirst sequent, no rule applies. For the second sequent, only DR applies and
we would have to have a deduction of A = L. But for this sequent no
rule applies. O

There are other simple observations that are important for some appli-
cations. The first is called weakening, which means that we can add an arbi-
trary proposition to a derivable sequent and get another derivable sequent
with a proof that has the same structure.

Theorem 4 (Weakening) IfI' — C then I', A = C with a structurally iden-
tical deduction.

Proof: Add A to every sequent in the given deduction of I' = C, but
never use it. The result is a structurally identical deduction of I', A = C.
O

Theorem 5 (Contraction) If I') A, A = C then I'|A = C with a struc-
turally identical deduction.

Proof: Pick one copy of A. Wherever the other copy of A is used in the
given deduction, use the first copy of A instead. The result is a structurally
identical deduction with one fewer copy of A. O
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Sequent Calculus L9.7

The proof of contraction actually exposes an imprecision in our presen-
tation of the sequent calculus. When there are two occurrences of a propo-
sition A among the antecedents, we have no way to distinguish which one
is being used, either as the principal formula of a left rule or in an initial
sequent. It would be more precise to label each antecedent with a unique
label and then track labels in the inferences. We may make this precise
at a later stage in this course; for now we assume that occurrences of an-
tecedents can be tracked somehow so that the proof above, while not for-
mal, is at least somewhat rigorous.

Now we can show that double negation elimination does not hold in
general

Theorem 6 (Failure of Double Negation Elimination) It is not the case that
= -~ A D A for arbitrary A.

Proof: Assume we have the shortest proof of = ——=A D A. There is only
one rule that could have been applied (DR), so we must also have a proof
of -—A = A. Again, only one rule could have been applied,

A= A A, L= A

DL
—A = A

We can prove the second premise, but not the first. If such a proof existed,
it must end either with the DR or DL rules.

Case: The proof proceeds with DR.

—A A= 1

DR

Now only DL could have been applied, and it premises must have

been
—AA— A ——AA1l— 1

—AA= 1

DL

Again, the second premise could have been deduced, but not the first.
If it had been inferred with DR and, due to contraction, we would
end up with another proof of a sequent we have already seen, and
similarly if DL had been used. In either case, it would contradict the
assumption of starting with a shortest proof.
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L9.8 Sequent Calculus

Case: The proof proceeded with DL.

DL

The first premise is identical to the conclusion, so if there were a de-
duction of that, there would be one without this rule, which is a con-
tradiction to the assumption that we started with the shortest deduc-
tion.

0

4 Identity

We permit the init rule only for atomic propositions. However, the version
of this rule with arbitrary propositions A is admissible, that is, each instance
of the rule can be deduced. We call this the identity theorem because it shows
that from an assumption A we can prove the identical conclusion A.

Theorem 7 (Identity) For any proposition A, we have A = A.

Proof: By induction on the structure of A. We show several representative
cases and leave the remaining ones to the reader.

Case: A = P. Then

init

Case: A = A; A Asy. Then

By i.h. on A; and weakening By ih. on A; and weakening

Al/\AQ,A1:>Al Al/\AQ,A2:>A2

ANLq ALo

Al NAy — A A NAy — Ay R
AN

AL NAy = A1 N Ay

Case: A= A1 D As. Then

By ih. on A; and weakening By i.h. on A; and weakening
A1 DA Al = Ay A1 DAy A, Ay = Ao

AlDAQ,A1:>A2
A13A2:>A1:)A2

DL

DR
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Sequent Calculus L9.9

Case: A= 1. Then
1L

O

The identity theorem is the global version of the local completeness
property for each individual connective. One can recognize the local ex-
pansion as embodied in each case of the inductive proof of identity.

In the next lecture we will see a new theorem, called cut, which is the
global analogue of local soundness.
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