Assignment 5:
 Arithmetic

15-317: Constructive Logic

Out: Thursday, October 9, 2008
Due: Thursday, October 16, 2008, before class

1 Tutch Proofs (10 pts)

In Tutch, the recursor $\mathrm{R}(\mathrm{t}, \mathrm{M} 0, \mathrm{x} . \mathrm{u} . \mathrm{M} 1(\mathrm{x}, \mathrm{u}))$ is written as a primitive recursion schema:

```
rec t of f O => MO
    f (S x) => M1 (x,f(x)) end;
```

For example, here is a defintion of addition:

```
val plus : nat -> nat -> nat =
fn x => rec x of
    p 0 => fn y => y
    | p (s n) => fn y => s (p n y)
    end;
```

Here's an example of a proof that uses induction over natural numbers.

```
proof plus0R : (!m:nat. m = plus m 0) =
begin
    [m : nat;
    % the 0 case
    0 = plus 0 0;
    % the s case; note that it binds two assumptions
    [x : nat , x = plus x 0;
        s x = plus (s x) 0];
    m = plus m 0];
(!m:nat. m = plus m 0);
end;
```

Task 1 (15 pts). Your task is to prove transitivity of equality. Hint: this will be longer than any Tutch proof you have done so far.

```
proof eqtrans : !x:nat. !y:nat. !z:nat. (x = y) => (y = z) => (x = z);
```


2 Proof terms ($\mathbf{1 0} \mathbf{~ p t s) ~}$

Here is an example proof term:

```
term plus0R : (!m:nat. m = plus m 0) =
fn m => rec m of
    p 0 => eq0
    | p (s x) => eqS (p x)
end;
```

Task 1 (10 pts). Prove the following:

```
term eqrefl : (!m:nat. m = m);
term plusSR : (!m:nat. !n:nat. s (plus m n) = plus m (s n));
```

Hint: you will need to use eqrefl as a lemma to prove plusSR.
The rules for equality are named as follows:

$$
\overline{e q 0:(0=0)} \frac{M:\left(t=t^{\prime}\right)}{\operatorname{eqSS} M:\left(s t=s t^{\prime}\right)} \frac{M:\left(s t=s t^{\prime}\right)}{\operatorname{eqESS} M:\left(t=t^{\prime}\right)} \frac{M: 0=s t}{\operatorname{eqE} 0 S M: J} \frac{M: t=0}{\operatorname{eqESOM}: J}
$$

3 Even and Odd (20 pts)

Consider the following rules for even and odd:

$$
\begin{array}{cll}
\frac{\text { even }(0) \text { true }}{} e v I_{0} & \frac{\operatorname{odd}(n) \text { true }}{\text { even }(\mathrm{s} n) \text { true }} e v I_{S} & \frac{\text { even }(n) \text { true }}{\operatorname{odd}(\mathrm{s} n) \text { true }} \operatorname{oddI_{S}} \\
\frac{\operatorname{odd}(0) \operatorname{true}}{J} \operatorname{odd} E_{0} & \frac{\text { even }(\mathrm{s} n) \operatorname{true}}{\operatorname{odd}(n) \operatorname{true}} e v E_{S} & \frac{\operatorname{odd}(\mathrm{~s} n) \text { true }}{\text { even }(n) \text { true }} \operatorname{odd} E_{S}
\end{array}
$$

Task 1 (5 pts). Prove that these rules are locally sound.
Task 2 (5 pts). Give a natural deduction derivation of the following:

$$
(\forall x: \operatorname{nat} . \operatorname{even}(x) \vee \operatorname{odd}(x)) \text { true }
$$

Be sure to label each inference with the rule used.
Task 3 (10 pts). Give a natural deduction derivation for the following:

$$
(\forall x: \operatorname{nat} .(\operatorname{even}(x) \supset \exists m: \text { nat. }(x=2 * m)) \wedge(\operatorname{odd}(x) \supset \exists m: \text { nat. }(x=2 * m+1))) \text { true }
$$

Be sure to label each inference with the rule used. State what properties of addition and multiplication you need to complete the derivation (e.g., $2 m+2=2(m+1)$), but you do not need to give derivations for these equalities.

4 Handin Instructions

- To run Tutch with the requirements files, run
/afs/andrew/course/15/317/bin/tutch -r hw05.req <your file>
This uses the requirements file /afs/andrew/course/15/317/req/hw05.req.
- To submit your Tutch proofs, run
/afs/andrew/course/15/317/bin/submit -r hw05.req <your file>

To check the status of your submission, run/afs/andrew/course/15/317/bin/status hw05.

- Submit your written work at the beginning of class, or, if you wish to do an electronic handin, copy a PDF to
/afs/andrew/course/15/317/submit/<yourid>/hw05.pdf

