15-312 Foundations of Programming Languages
Recitation 1: Concrete Syntax

Daniel Spoonhower
spoons+Q@cs

Revised by: Matthew Moore
mlmlm@cmu.edu

August 30, 2004

1 Defining a Grammar

We can imagine a spectrum of different representations of a concept or an idea,
from the most concrete (e.g. written on a blackboard) to the more ethereal (e.g.
your understanding). We’ll begin with a description of one of the more concrete:
the syntax of our language. We will be looking for two characteristics of this
representation: its success in conveying the more abstract understanding that
underlies it (i.e. readability) and to what extent it specifies a program without
ambiguity.

EXAMPLE The number three is an abstract concept. The following are five
different concrete representations of the number three.

IIr 3 1+14+1 011

(Which representation is best?)

We will use a context-free grammar to define the syntax of our language.
Using a grammar, we will combine strings of symbols, letters, words, tokens, or
atoms to form sentences, phrases, statements, and programs. In addition, we
will see that syntax lets us make simple syntactic distinctions, for example as
between digits (i.e. 0, 1, 2, ..., 9) and numbers (e.g. 5119). Finally, we will see
an example of an ambiguous grammar and how we might disambiguate it.

1.1 Context-Free Grammars (CFGs)

A context-free grammar is composed of the following three components:

e An alphabet ¥ composed of a finite set of terminals (or symbols)

e A set of non-terminals N that form syntactic categories

e A set of production rules P of the form
A—a
where « is a string of terminals and non-terminals

(Why is this form context-free? What would the productions of a context-
sensitive grammar look like?)
Consider the following grammar:

d—0 d—1 d—2 d—3
d—4 d—5 d—6 d—7
d—8 d—9 n—d n—dn

(What are the terminals? The non-terminals?)

Strings are derived from the grammar by the application of production rules.
For each non-terminal A that occurs in the current string 8, and given a rule
A — «, we substitute the right-hand side of the rule « for each instance of A in
0.

EXAMPLE Using the rule n — d n, we can show the following.
dn=ddn

How do we show that the numeral “3” can be derived beginning with the
non-terminal n? What about “5119”7?

n=d=3
n=>dn=5n=5dn=51ln=51ldn= ...

Given a grammar, the language of a non-terminal A is the set of all strings
derivable from applications of the production rules, starting with A. We will
call this language L(A).

We have just shown that “3” € L(n) and “5119” € L(n). What is another
name for L(n)? What about L(d)? How does it compare to L(n)?

1.2 Backus-Naur Form (BNF)

Rather than write the same non-terminals over and over again, we can abbre-
viate the grammar using Backus-Naur Form:

d == 0]1|2]...1]9
n == d|dn

(Many instances of BNF use ankle-brackets around non-terminals (e.g. (n) :=
(d) (n)) but T'll avoid doing so unless there is an overlap in the way we write
terminals and non-terminals.)

2 Ambiguity

Let’s add sums and products to our language using another non-terminal:

d == 0]1]...1]9
n = d|dn
e = nletelexe

Now take the expression “3 + 4 % 5”. Here is one derivation of this expression.
e>ete=>n+e=>d+e=>3+e=>3+exe=...
But what about this alternative? (How is this significant?)
e=>exe=>exn=>exd=>exdH= ...

The conventional rules of arithmetic would tell us that * has higher precedence
than +, that we should read the expression as “3 + (4 x 5)”.

How can we make the grammar unambiguous? Conceptually, we’d like to
separate those expressions that we multiply together (i.e. factors) from those
we add (i.e. terms).

n= t]t+e

e
t = f|fxt
foa= e

What does a derivation of “3 + 4 x5” look like given our new rules?

e=>t+e=>f+e=>n+e=d+e=3+e=>3+t=3xf+t=...

3 Parsing

The process of finding a derivation for a given string is called parsing; this is
exactly what we have been doing by hand, above. Obviously, this is a process
we would like to automate.

How would we write a program to parse our arithmetic expressions starting
with the non-terminal e? Consider the two productions for e: both start with
the non-terminal ¢, so we start by parsing a term. Afterward, if we’ve reached
the end of the input string, we use the first production (and then we’ve finished
parsing), otherwise we expect to see “4” followed by another expression: we
consume the “4” and start again. We can use a similar algorithm in parsing
terms t. Finally, for factors f, if the next symbol is a digit, we use the first
production. Otherwise, we expect an “(” followed by an expression and a)”.

Note that for our arithmetic grammar, whenever we need to make a decision
as to which production to use, the next terminal of the input always tells us
which choice to make. This sort of algorithm is called a recursive-descent parser.

In fact, the prose in the preceding paragraph could easily be translated to form
a working recursive-descent parser.

Not all context-free grammars are this simple; in general, finding the deriva-
tion for a string given a CFG and a starting non-terminal can be far more dif-
ficult. While most programming languages have grammars that can be parsed
in a reasonable (linear) amount of time, there are few where you would actually
want to write the parser. In many cases, programmers who write compilers use
parser generators turn a BNF grammar into a working program.

In this course, we won'’t need a parser generator— our grammar will remain
fairly simple— and you won’t need to worry much about parsing: we will do
most of that work for you.

4 Further reading

e Andrew Appel’s “Modern Compiler Implementation in {ML, Java, C}”
covers a variety of different types of grammars and their respective parsers.

e “Compilers: Principles, Techniques and Tools” by Aho, Sethi, and Ullman
has similar coverage of these topics.

