
Lecture Notes on
Call-by-Need and Futures

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 22
November 16, 2004

In this lecture we first examine a technique to specify the operational se-
mantics for call-by-need, sometimes called lazy evaluation. This is an imple-
mentation technique for a call-by-name semantics that avoids re-evaluating
expressions multiple times by memoizing the result of the first evaluation.
Then we use a similar technique to specify the meaning of futures, a con-
struct that introduces parallelism into evaluation. Futures were first devel-
oped for Multilisp, a dynamically typed, yet statically scoped version of
Lisp specifically designed for parallel computation. A standard reference
on futures is:

Robert H. Halstead, Jr. Multilisp: A language for concurrent
symbolic computation. ACM Transactions on Programming Lan-
guages and Systems, 7(4):501-538, October 1985.

One advantage of call-by-name function application over call-by-value
is that it avoids the work of evaluating the argument if it is never needed.
More broadly, lazy constructors avoid work until the data are actually used.
In turn, this has several drawbacks. One of them is that the efficiency model
of such a language is more difficult to understand than for a call-by-value
language. The second is that lazy constructors introduce infinite values of
data types which complicate inductive reasoning about programs. How-
ever, the most obvious problem is that if an expression is used several times
it will be computed several times unless we can find an implementation
technique to avoid this.

There are two basic approaches to avoid re-evaluation of the argument
of a function application. The first is to analyze the function body to de-
termine if the argument is really needed. If so, we evaluate it eagerly and

LECTURE NOTES NOVEMBER 16, 2004



L22.2 Call-by-Need and Futures

then work with the resulting value. This is semantically transparent, but
there are many cases where we cannot tell statically if an argument will be
needed. The other is to create a so-called thunk1 and pass a reference to
the thunk as the actual argument. When the argument is needed we eval-
uate the thunk and memoize the resulting value. Further reference to the
thunk now just returns the value instead of evaluating it again. Note that
this strategy is only a correct implementation of call-by-name if there are
no effects in the language (or, if there are effects, they are encapsulated in a
monad).

We can think of a thunk as a reference that we can write only once (the
first time it is accessed) and henceforth will continue to be the same value.
So our semantic specification for call-by-need borrows from the ideas in
the operational semantics of mutable references. We generalize the basic
judgment e 7→ e′ to 〈H, e〉 7→ 〈H ′, e′〉 where H and H ′ contains all thunks,
and e and e′ can refer to them by their labels.

Thunks H : : = · | H, l=e

Note thunks may be expressions; after they have been evaluated the
first time, however, they will be replaced by values. First, the rules for
call-by-name application.

〈H, e1〉 7→ 〈H ′, e′
1〉

〈H, apply (e1, e2)〉 7→ 〈H ′, apply (e′
1, e2)〉

〈H, apply (fn (x.e1), e2)〉 7→ 〈(H, l=e2), {l/x}e1〉

In the second rule, the label l must be new with respect to H . When the
value of l is actually accessed, we need to force the evaluation of the thunk
and then record that value.

〈(H1, l=e,H2), e〉 7→ 〈(H ′
1, l=e∗,H ′

2), e
′〉

〈(H1, l=e,H2), l〉 7→ 〈(H ′
1, l=e′,H ′

2), l〉

v value
〈(H1, l=v,H2), l〉 7→ 〈(H1, l=v,H2), v〉

Note that in the first rule, the result e∗ must actually be equal to e. If it
were not, that means the evaluation of e would actually require the thunk

1The name is a whimsical past tense of think derived from “something that has been
thought of before”.

LECTURE NOTES NOVEMBER 16, 2004



Call-by-Need and Futures L22.3

l, which would lead to an infinite loop. This particular form of infinite loop
is called a black hole can be detected, while other forms of non-termination
remain.

It is left as an exercise to extend the statements of progress and preserva-
tion, or to show in which sense the call-by-name semantics coincides with
the call-by-need semantics. Note also that there are other rules that can cre-
ate thunks: essentially every time we need to substitute for a variable. We
show one of these cases, namely recursion.

〈H, rec (x.e)〉 7→ 〈(H, l={l/x}e), l〉

As an example of a black hole, consider fix f.f . As an example of an expres-
sion that is not a black hole, yet fails to terminate consider (fix f.λy.f (y +
1)) 1. It is instructive to simulate the execution of this expression.

〈·, (fix f.λy.f (y + 1))1〉
7→ 〈(l = λy.l (y + 1)), l 1〉
7→ 〈(l = λy.l (y + 1)), (λy.l(y + 1)) 1〉
7→ 〈(l = λy.l (y + 1), l1 = 1), l (l1 + 1)〉
7→ 〈(l = λy.l (y + 1), l1 = 1), (λy.l(y + 1)) (l1 + 1)〉
7→ 〈(l = λy.l (y + 1), l1 = 1, l2 = l1 + 1), l (l2 + 1)〉
7→ . . .

In order to detect black holes and take appropriate action we would
allow thunks of the form l=• and replace the first rule by

〈(H1, l=•,H2), e〉 7→ 〈(H ′
1, l=•,H ′

2), e
′〉

〈(H1, l=e,H2), l〉 7→ 〈(H ′
1, l=e′,H ′

2), l〉

〈(H1, l=•,H2), l〉 7→ 〈(H1, l=•,H2),BlackHole〉

where BlackHole is a new error expression that must be propagated to the
top level as shown in a previous lecture on run-time exceptions and errors.

Futures. Next we consider futures. The idea is that an expression future(e)
spawns a parallel computation of e while returning immediately a pointer
to the resulting value. If the resulting value is ever actually needed we say
we are touching the future. When we touch the future we block until the
parallel computation of its value has succeeded. However, in most situa-
tions we can pass around the future, construct bigger values, etc.

LECTURE NOTES NOVEMBER 16, 2004



L22.4 Call-by-Need and Futures

There are two principal differences to call-by-need as shown above. The
first is that a future is treated as a value. This is important because unlike in
call-by-need, we are here in a call-by-value setting. Secondly, the computa-
tion of the future may proceed asynchronously, instead of being completed
in full exactly the first time it is accessed. However, it is similar in the sense
that once a future has been computed, its value is available everywhere it
is referenced.

The typing rule for futures in source programs is exceedingly simple,
since we consider futures related only to how a program executes (sequen-
tially or in parallel), but not what it computes.

Γ ` e : τ
Γ ` future(e) : τ

Process labels l that arise during computation are given types just as stores
or heaps are given types. Moreover, labels l are treated as values, which
forces us to refine the value inversion lemma if we want to prove the progress
theorem.

To describe such a computation we have to describe the overall state of
all the computing threads. For this, we just use H , as defined above.

Processes H : : = · | H, l=e

In this interpretation, labels l are thread identifiers, and l=v represents
a finished thread. So overall computation proceeds as in

H 7→ H ′

which non-deterministically selects a process that can proceed (that is, not
finished or blocked) and makes a step. The judgment of making a step in
the network of parallel processes is

〈H, e〉 7→ 〈H ′, e′〉

where H ′ may contain a new thread spawned by the step of e. Unlike call-
by-need evaluation, this judgment cannot change any binding in H ; this is
reserved for the primary judgment. We start the overall computation of an
expression e as a single process l0=e and we are finished when we have
reached a state where all processes have the form l=v.

In order to be able to prove a progress theorem, we would like to main-
tain an order between the processes which reflects possible dependencies.

LECTURE NOTES NOVEMBER 16, 2004



Call-by-Need and Futures L22.5

That is, a process can refer to labels on its left, but not to itself or processes
to its right.

The first rule non-deterministically selects a thread to perform a step. In
this setting, a process can never refer to itself, because we have no recursive
futures. Of course, we may have futures whose computation is recursive.

〈H1, e〉 7→ 〈H ′
1, e

′〉
(H1, l=e,H2) 7→ (H ′

1, l=e′,H2) l value

The rules for the judgment 〈H, e〉 7→ 〈H ′, e′〉 are the usual call-by-value
rules, threading through H . It is only changed or referenced in the follow-
ing two rules.

v val
〈(H1, l=v,H2), l〉 7→ 〈(H1, l=v,H2), v〉 〈H, future(e)〉 7→ 〈(H, l=e), l〉

Because l is a value, it can be passed around, or looked up (in case the
thread l has finished). This introduces some local non-determinism into
expressions such as apply (l, e) because l could be looked up, or e could
be reduced. In the end, the difference is not observable in a call-by-value
language without effects. It could also be removed with some additional
machinery, but we do not pursue this here, since non-determinism remains
anyway due to the selection of the process to step.

Notice that an expression such as apply (l, v) is blocked until the thread
computing l can completed. This is because it not a value, yet cannot be
reduced.

The process selection rule must be prescient in this formulation, because
we must traverse a thread expression to see if it is finished, can make a
step, or is blocked, waiting for another thread to finish. This is a feature
generally true for a small-step semantics with search rules. In a semantics
with an evaluation stack, this can be avoided because the sub-expression to
be evaluated is isolated at the top level of the state.

Note that the left-to-right ordering between processes is necessary to
guarantee progress because it prevents a situation where two processes
wait for each other to finish. This situation is referred to as a deadlock. It
is instructive to compute an example of such a process configuration.

The typing judgment on process configurations must take this into ac-
count. It has the form H : Λ, where Λ assigns types to processes. We also
generalize the typing judgment for expressions to allow labels to occur—

LECTURE NOTES NOVEMBER 16, 2004



L22.6 Call-by-Need and Futures

they are simply propagated except in the one rule shown below.

· : ·
H : Λ Λ; · ` e : τ

(H, l=e) : (Λ, l:τ)

l:τ in Λ
Λ; Γ ` l : τ

The preservation theorem is not difficult to formulate.

Theorem 1 (Preservation)
(i) If H : Λ and Λ; · ` e : τ and 〈H, e〉 7→ 〈H ′, e′〉 then there is a Λ′ ⊇ Λ

such that H ′ : Λ′ and Λ′; · ` e′ : τ .

(ii) If H : Λ and H 7→ H ′ then there is a Λ′ ⊇ Λ such that H ′ : Λ′.

Proof: By induction on the derivation of the step relation, applying inver-
sion on the typing assumptions. �

The progress theorem requires more care. We first formalize the notion
of a terminal state.

· terminal
H terminal v value
(H, l=v) terminal

Theorem 2 (Progress)
(i) If H1 : Λ1, H1 terminal, and Λ1; · ` e : τ then either

(a) e value, or

(b) there exists H ′
1 and e′ such that 〈H1, e〉 7→ 〈H ′

1, e
′〉

(ii) If H : Λ then either

(a) H terminal, or

(b) there exists H ′ such that H 7→ H ′

Proof: For (i) by induction on the derivation of Λ1; · ` e : τ , using a gener-
alization of value inversion that permits labels. Labels must be defined in
H1 and bound to values (since H1 is terminal), thereby assuring progress.

For (ii) by appeal to (i) given H = H1, l=e,H2, where e is not a value.
Such a decomposition must be possible if H is not terminal. �

LECTURE NOTES NOVEMBER 16, 2004



Call-by-Need and Futures L22.7

We close this lecture with a two examples of programs written using
the future construct. These have been adapted from Halstead’s paper, but
are present in ML assuming a construct future(e) . A simple sequential
simulation is simply to define future as the identity function.

The first example is the insertion of a node into an ordered binary tree.
An ordered binary tree is either Empty , a data-carrying Leaf(x) , or a node
Node(left,y,right) where y is a discriminator so that every element
in the left subtree left is smaller or equal to y , and every element in the
right subtree right is larger than y .

The parallelism in this example is the possibility to spawn a thread at
each recursive call to insert , which returns immediately and continues
insertion of the subtree. Thereby, if we insert several elements in a row, the
computations can ripple down the tree simultaneously almost in a pipeline
structure (although there is no assumption that the operations are indeed
performed in lock-step).

datatype Tree =
Empty

| Leaf of int
| Node of Tree * int * Tree

fun insert (x, Empty) = Leaf(x)
| insert (x, tree as Leaf(y)) =

if y < x
then Node (tree, y, Leaf(x))

else Node (Leaf(x), x, tree)
| insert (x, Node(left, y, right)) =

if y < x
then Node (left, y, future (insert (x, right)))

else Node (future (insert (x, left), y, right))

As a second example, we consider quicksort , implemented on lists.
It first partitions a list into elements smaller and greater than a pivot el-
ement (the first element in the list) and then sorts the sublists in parallel
before appending them. There is also a smaller amount of parallelism in
the partition function shown below.

LECTURE NOTES NOVEMBER 16, 2004



L22.8 Call-by-Need and Futures

fun quicksort (nil, acc) = acc
| quicksort (x::l, acc) =

let
val (smaller, greater) = partition (x, l)

in
quicksort (smaller,

x::future (quicksort (greater, acc)))
end

and partition (x, nil) = (nil, nil)
| partition (x, y::l) =

let
val parts = future (partition (x, l))

in
if y < x

then (y::future(#1(parts)), future (#2(parts)))
else (future (#1(parts)), y::future (#2(parts)))

end

It is instructuve to consider the above function without the future con-
struct and systematically search for opportunities of parallelism.

LECTURE NOTES NOVEMBER 16, 2004


